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3.1 Introduction

In this chapter, we find out the Riemann solutions of Euler system with a logarithmic

state equation and a Coulomb-type friction. The logotropic system with a Coulomb-

type friction can be written as


∂t%+ ∂x (%v) = 0,

∂t (%v) + ∂x (%v2 + A ln %) = η%,

(3.1)

where % is the density and v is the velocity of the gas. The A > 0, η > 0 are constant

parameters. For η = 0, the model has been proposed in the field of astrophysics to

explain the certain properties of molecular clouds that could not be understood in

terms of isothermal distributions. The authors in [83], [84] and [85] have studied

the logarithmic equation of state to study the Logotropic dark fluid as a unification

of dark energy (DE) and dark matter (DM). The Euler system with the logarithmic

equation of state, named as “Logotropic model”, provides more interesting cosmo-

logical behaviors as compared to the several generalized forms of the “Chaplygin gas

model”. This chapter concerns with the Riemann Problem for the non-homogeneous

logotropic system with the following piecewise discontinuous initial data

%(x, 0) =


%−, x < 0,

%+, x > 0,

, v(x, 0) =


v−, x < 0,

v+, x > 0,

(3.2)

where %± and v± are known constants.

The study of the hyperbolic systems have significant physical background, which is

interesting but leads to complex problems in Mathematics. However, the study of

the Riemann Problem in the area of non-linear hyperbolic conservation laws is also

an interesting problem. It is well known that the Riemann Problem is an initial
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value problem with piecewise discontinuous initial data. In the study of the Rie-

mann Problem (3.1) and (3.2), the system (3.1) is formulated into quasilinear form

and it is obtained that the characteristic fields corresponding to the characteristic of

the system (3.1) is genuinely nonlinear. This implies that the Riemann solution for

(3.1) and (3.2) are composed of the elementary waves that is only rarefaction waves

and shock waves. The study of the Riemann solution for the non-homogeneous Eu-

ler system is of great interest among the researchers in the subject of physics and

mathematics. As to our observation, the study of δ-shock, rarefaction waves and

shock waves in the solution of Riemann Problem has been increasingly active topic

since few decades.

In last few decades, many authors have studied the solutions of the Riemann Prob-

lem for homogeneous and non-homogeneous hyperbolic p-system. [5], [86] and [87]

proposed a p-system with the equation of state p(%) = A%−1, known as Chaplygin

gas model, to include the lifting force on the airplane wing in gas dynamics. [88]

proposed the solution to the Chaplygin gas equation with concentration when the

initial data lying in special domain of plane. [60], [89] have successfully applied

differential constraint method to analyze the solution of non-homogeneous Riemann

Problem. Further, [90] and [91] have studied the Riemann solution for homogeneous

and non-homogeneous Chaplygin gas model, respectively. Recently, the limiting be-

havior of the solutions for vanishing pressure hyperbolic model have been discussed

by [34], [45]. [92] have used the weak asymptotic method to deal the δ-shock wave

problem. The authors in [77] and [93] have discussed the Riemann Problem for

magnetogasdynamic flow and the polytropic dusty gas flow, respectively. Recently,

[94] has studied the elementary wave interaction of the Riemann solution for the

dusty gas flow.

The motivation of this study is to analyze the Riemann solutions to the non-

homogeneous hyperbolic system with the logotropic equation of state due to its
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wide applications in the area of cosmology, astrophysics, aerodynamics and engi-

neering. Also, the Riemann solutions have gained significant importance due to its

practical and theoretical applications for the general mathematical theory of hy-

perbolic equations. Therefore, we analyze the Riemann solution for (3.1) and (3.2)

case by case, and obtain the global structure of the solution for the Riemann Prob-

lem. The friction force term appearing in the momentum equation of the logotropic

model was used first time in [95]. The advantage of the source term appearing in

the logotropic model (3.1) is that the inhomogeneous model (3.1) can be reformu-

lated in to the homogeneous conservation form which enable us to determine the

solution of the Riemann Problem for the logotropic model which causes to bent

all the waves including shock wave, contact discontinuity, rarefaction wave into the

parabolic shape, and the solution of the Riemann Problem for the model (3.1) is not

self-similar solution.

This chapter is structured into following sections as: In section (3.2), the inhomoge-

neous system (3.1) is modified into homogeneous conservative system by using new

state variables and obtain the general properties of the modified system. Further-

more, the classical Riemann solution for modified system is discussed. We obtained

the Riemann invariants corresponding to these characteristic fields. Also, we obtain

the solution of the Riemann Problem for the inhomogeneous system (3.1) with the

help of results obtained for the modified conservative system. Section (3.3) contains

conclusions of this study.

3.2 Riemann solution of modified homogeneous

system

We study the Riemann solution for the modified homogeneous conservative form of

(3.1) by introducing new variable for the velocity, u(x, t) = v(x, t)− ηt.
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Authors in [96] have introduced this new state variable to discuss the Riemann Prob-

lem for inhomogeneous shallow water equations. On insertion of this new velocity

in (3.1), we obtain the following conservation form of the logotropic system with

friction term 
∂t%+ ∂x (%(u+ ηt)) = 0,

∂t (%u) + ∂x (%u(u+ ηt) + A ln %) = 0.

(3.3)

We consider the Riemann Problem for the modified conservative model (3.3) with

the same initial data,

%(x, 0) =


%−, x < 0,

%+, x > 0,

, u(x, 0) =


v−, x < 0,

v+, x > 0.

(3.4)

Now, the Riemann solution for the original model (3.1) and (3.2) can be determined

from the corresponding ones to the system (3.3) and (3.4) by utilizing the new state

variables, (%, v)(x, t) = (%, u + ηt)(x, t). Reformulating (3.3) into the quasi-linear

form as

MUt +NUx = 0, (3.5)

where U =

%
u

 ,M =

1 0

u %

 and N =

 u+ ηt %

u(u+ ηt) + A
%

2%(u+ ηt)

 .

Let λ1 and λ2 are two eigenvalues of the system (3.3) which can be directly obtained

from (3.5), given by

λ1 = u+ ηt−

√
A

%
, λ2 = u+ ηt+

√
A

%
(3.6)

and the right eigenvectors corresponding to both characteristic roots are

d1 =

(
−%

√
A
%

)Tr
, d2 =

(
%
√

A
%

)Tr
. (3.7)
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Thus, on straight calculation it leads to ∇λi · di 6= 0, i = 1, 2, for A > 0. Here,

∇ =
(
∂
∂%
, ∂
∂u

)
. Since for A > 0, ∇λi · di 6= 0 which implies that the characteristic

fields corresponding to the characteristic roots λ1 and λ2 are genuinely nonlinear.

Hence the waves for each of them is either rarefaction waves (continuous solution)

or shock waves (bounded discontinuous solution) denoted by R and S, respectively.

Along these characteristic fields the Riemann invariants are defined as

1−Riemann invariant = w = u− 2

√
A

%
,

2−Riemann invariant = z = u+ 2

√
A

%
.

(3.8)

3.2.1 Rarefaction wave solution

Here, we study the rarefaction wave solution satisfying (3.3) which is a continuous

solution satisfying the system (3.3) can be computed by solving the integral curve

of both characteristic fields. Also, it is worthwhile to notice that K- Riemann

invariant (K = 1, 2) is conserved in the K- rarefaction wave. Now, for a given left

state (%−, u−) in terms of 1-Riemann invariant, the state (%, u) can be connected to

the state (%−, u−) in the phase plane by the 1- rarefaction wave curve denoted by

R1(%−, u−) and can be written as (See [90, 91])

R1(%−, u−) :



dx
dt

= λ1 = u+ ηt−
√

A
%
,

u− 2
√

A
%

= u− − 2
√

A
%−

= w−,

λ1(%−, u−) ≤ λ1(%, u).

(3.9)
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On taking derivative of u with respect to % of second equation of (3.9), we have

du

d%
= −
√
A%−3/2 < 0,

d2u

d%2
=

3
√
A

2
%−5/2 > 0.

Thus, the 1-rarefaction wave is convex in (%, u) phase plane and satisfying u ≥

u−, % ≤ %−.

Let us consider that the state (%1, u1) is 1-rarefaction wave solution at a point (x, t)

inside of the 1-rarefaction wave curve R1(%−, u−). To express the (%1, u1) in the

interior of 1-rarefaction wave curve, we solve the initial value problem

dx

dt
= λ1(ρ1, u1), x(0) = 0.

On integrating, yields

x

t
− 1

2
ηt = u1 −

√
A

%1

. (3.10)

Besides, %1, u1 also satisfies the following equality,

u1 − 2

√
A

%1

= u− − 2

√
A

%−
= w.

Then on insertion of (2.10) in to the above equality, we obtain the 1-rarefaction

wave solution (%1, u1) as

(%1, u1) (x, t) =

(
A

(
x

t
− 1

2
ηt− w−

)−2

, 2

(
x

t
− 1

2
ηt

)
− w−

)
. (3.11)

Similarly, for a given left state (%−, u−) in terms of 2-Riemann invariant, the state

(%, u) can be connected to the state (%−, u−) in the phase plane by the 2-rarefaction
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wave curve denoted by R2(%−, u−) and can be written as

R2(%−, u−) :



dx
dt

= λ2 = u+ ηt+
√

A
%
,

u+ 2
√

A
%

= u− + 2
√

A
%−

= z−,

λ2(%−, u−) ≤ λ2(%, u).

(3.12)

On taking derivative of u with respect to % in second equation of (3.12), we have

du

d%
=
√
A%−3/2 > 0,

d2u

d%2
= −3

√
A

2
%−5/2 < 0.

Thus, the 2-rarefaction wave is concave in (%, u) phase plane and satisfying u ≥

u−, % ≥ %−.

Let us consider that the state (%2, u2) is 2-rarefaction wave solution at a point (x, t)

inside of the 2-rarefaction wave curve R2(%−, u−). To express the (%2, u2) in the

interior of 2-rarefaction wave curve, we solve the initial value problem

dx

dt
= λ2(ρ2, u2), x(0) = 0.

On integrating, yields

x

t
− 1

2
ηt = u2 −

√
A

%2

. (3.13)

Besides, %2, u2 also satisfies the following equality,

u2 + 2

√
A

%2

= u− + 2

√
A

%−
= z−.
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On substituting (3.10) in to the above equality, we obtain the 2-rarefaction wave

solution (%2, u2) as

(%2, u2) (x, t) =

(
A

(
z− −

x

t
+

1

2
ηt

)−2

, 2

(
x

t
− 1

2
ηt

)
− z−

)
. (3.14)

3.2.2 Shock wave solution

Now, our attention to study the discontinuous solution of modified conservative

system (3.3) which is called shock wave solution satisfying Rankine -Hugoniot jump

relations and entropy condition. Let the jump speed of the shock wave, denoted by

ξ(t) = x′(t), connects the two states (%, u) and (%−, u−), then the Rankine-Hugoniot

jump relations for (3.3) are


−ξ(t) [%] + [%(u+ ηt)] = 0,

−ξ(t) [%u] + [%u(u+ ηt) + A ln %] = 0,

(3.15)

where [h] = hr − hl with hl = h(x(t)− 0, t), hr = h(x(t) + 0, t) represents the jump

of h across the shock.

If ξ(t) = 0, from (3.15) we obtain trivial solution (%, u) = (%−, u−). Otherwise, if

ξ(t) 6= 0, we get

[%u]2 − [%] [%u(u+ ηt) + A ln %] = 0. (3.16)

On simplifying, we get

ur = ul ±

√
A

(
1

%l
− 1

%r

)
(ln %r − ln %l). (3.17)

For a given left state (%−, u−), 1-shock wave curve, denoted by S1(%−, u−), should

satisfy
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S1(%−, u−) :



ξ1(t) = %u−%u−
%−%− + ηt,

u− u− = −
√
A
(

1
%−
− 1

%

)
(ln %− ln %−),

u− > u, %− < %.

(3.18)

Analogously, the 2-shock wave curve, denoted by S2(%−, u−), should satisfy

S2(%−, u−) :



ξ2(t) = %u−%u−
%−%− + ηt,

u− u− = −
√
A
(

1
%−
− 1

%

)
(ln %− ln %−),

u− > u, %− > %.

(3.19)

It follows from (3.18) that

du

dρ
= −

√
A
(

1
ρ2 ln ρ

ρ−
+
(

1
ρ−
− 1

ρ

)
1
ρ

)
2

√(
1
ρ−
− 1

ρ

)(
ln ρ− ln ρ−

) < 0 for ρ > ρ−,

and

du

dρ
=

√
A
(

1
ρ2 ln ρ

ρ+
+
(

1
ρ+
− 1

ρ

)
1
ρ

)
2

√
A
(

1
ρ
− 1

ρ+

)(
ln ρ+ − ln ρ

) > 0 for ρ < ρ−,

Thus, through tedious calculations, we obtain that the concavity of 1-shock wave

curve (or convexity of 2-shock wave curve) is similar to that for 1-rarefaction curve

(or 2-rarefaction curve). Now, it is clear that the set of possible states, connected on

the right, consist of the 1-shock wave S1(%−, v−), 1-rarefaction wave curveR1(%−, v−),

2-Shock wave S2(%−, v−) and the 2-rarefaction wave R2(%−, v−). Thus, for the given

left state (%−, v−), the curves of R1(%−, v−), R2(%−, v−), S1(%−, v−) and S2(%−, v−)

divide the phase plane into four regions which are denoted with I, II, III and IV (See

Fig. 3.1).

Now, in view of the right state (%+, v+) in the different regions, we can construct
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Figure 3.1: The (%, u) phase plane for the model (1).

the unique global Riemann solution of the system (3.3) which connects two states

(%−, v−) and (%+, v+).

If (%+, v+) ∈ I, then the solution of Riemann Problem of (3.3) and (3.4) is composed

of 1-shock wave S1 and 2-rarefaction waves R2, and (%∗, u∗) obtained as


u∗ = v− −

√
A
(

1
%−
− 1

%∗

)
(ln %∗ − ln %−),

u∗ + 2
√

A
%∗

= v+ + 2
√

A
%+

= z+.

(3.20)

In this case the solution of the Riemann Problem of (3.3) and (3.4) is,

(%, u)(x, t) =



(%−, v−), x < C1(t),

(%∗, u∗), C1(t) ≤ x ≤ C−2 (t),

(%2, u2), C−2 (t) ≤ x ≤ C+
2 (t),

(%+, v+), C+
2 (t) < x,

(3.21)

where the state (%2, u2) in R2 is given by (3.14) and the position of S1 and R2 curves
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are defined as

C1(t) =

(
%∗u∗ − %−v−
%∗ − %−

)
t+

ηt2

2
, (3.22)

C+
2 (t) =

(
v+ +

√
A

%+

)
t+

ηt2

2
, (3.23)

C−2 (t) =

(
u∗ +

√
A

%∗

)
t+

ηt2

2
. (3.24)

If (%+, v+) ∈ II, then the Riemann solution of (3.3) and (3.4) consists of 1-shock wave

S1 and 2-shock wave S2, and the intermediate constant state (%∗, u∗) obtained by


u∗ = v− −

√
A
(

1
%−
− 1

%∗

)
(ln %∗ − ln %−),

u∗ = v+ +

√
A
(

1
%∗
− 1

%+

)
(ln %+ − ln %∗),

(3.25)

then the Riemann solution of (3.3) and (3.4) can be written as,

(%, u)(x, t) =


(%−, v−), x < C1(t),

(%∗, u∗), C1(t) ≤ x ≤ C2(t),

(%+, v+), C2(t) < x,

(3.26)

where the position of 1-shock wave S1 is given by (3.22) and 2-shock wave curve is

defined as

C2(t) =

(
%+v+ − %∗u∗
%+ − %∗

)
t+

ηt2

2
. (3.27)

If (%+, v+) ∈ III, then the solution of Riemann problem of (3.3) and (3.4) consists of

1-rarefaction wave R1, 2-shock wave S2, and the intermediate state (%∗, u∗) obtained
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by 
u∗ − 2

√
A
%∗

= v− − 2
√

A
%∗

= w−,

u∗ = v+ +

√
A
(

1
%∗
− 1

%+

)
(ln %+ − ln %∗),

(3.28)

then, the Riemann solution of system (3.3) and (3.4) can be written as

(%, u)(x, t) =



(%−, v−), x < C−1 (t),

(%1, u1), C−1 (t) ≤ x ≤ C+
1 (t),

(%∗, u∗), C+
1 (t) ≤ x ≤ C2(t),

(%+, v+), C2(t) < x,

(3.29)

where the state (%1, u1) in R1 and the position of 2-shock wave S2 are given by (3.11)

and (3.27), and the position of 1-rarefaction wave curve are defined as

C−1 (t) =

(
v− −

√
A

%

)
t+

ηt2

2
, (3.30)

C+
1 (t) =

(
u∗ −

√
A

%∗

)
t+

ηt2

2
. (3.31)

If (%+, v+) ∈ IV , then the solution of Riemann Problem of (3.3) and (3.4) consists

of rarefaction waves R1, R2 and (%∗, u∗) is obtained by


v∗ − 2

√
A
%∗

= v− − 2
√

A
%−

= w−,

v∗ + 2
√

A
%∗

= v+ + 2
√

A
%+

= z+.

(3.32)
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Thus the solution of the Riemann Problem of (3.3) and (3.4) can be written explicitly

as

(%, u)(x, t) =



(%−, v−), x < C−1 (t),

(%1, u1), C−1 (t) ≤ x ≤ C+
1 (t),

(%∗, u∗), C+
1 (t) ≤ x ≤ C−2 (t),

(%2, u2), C−2 (t) ≤ x ≤ C+
2 (t),

(%+, v+), C+
2 (t) < x,

(3.33)

where the states (%1, u1) and (%2, u2) are given by (3.11) and (3.14), respectively,

and the position of R1 and R2 wave curve are defined by (3.23), (3.24) and (3.30),

(3.31),respectively.

As in [24], to ensure the uniqueness of the solution of the Riemann Problem for all

regions, it suffices to show that ∂v
∂%∗

> 0. Suppose (%+, v+) ∈ I, then using equations

v = u∗ +

√
A

(
1

%−
− 1

%∗

)
(ln %∗ − ln %−), u∗ + 2

√
A

%∗
= v+ + 2

√
A

%+

,

we compute

∂v

∂%∗
=

2A

%2
∗

√
%∗
A

+
A√

A
(

1
%−
− 1

%∗

)
(ln %∗ − ln %−)

(
(%∗ − %−)

%−
+ (ln %∗ − ln %−)

)
1

%2
∗
.

Hence ∂v
∂%∗

> 0 for A > 0, which implies the uniqueness result in region I. Similarly,

we can prove for all regions.

Now, we discuss the structure of Riemann solutions for the original system (3.1) and

(3.2) by using the change of variables (%, v)(x, t) = (%, u + ηt)(x, t).These solutions

can be structured from the corresponding solutions of the Riemann Problem (3.3)

and (3.4) case by case as follows.
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Case I: In this case the Riemann solutions of the original system of (3.1) and (3.2)

is as (See fig.3.2),

(%, v)(x, t) =



(%−, v− + ηt), x < C1(t),

(%∗, u∗ + ηt), C1(t) ≤ x ≤ C−2 (t),

(%2, u2 + ηt), C−2 (t) ≤ x ≤ C+
2 (t),

(%+, v+ + ηt), C+
2 (t) < x,

(3.34)

where the state (%2, u2) in R2 is given by (3.14) and the position of 1-shock wave S1

and 2-rarefaction wave curve are defined by (3.22) and (3.24).

Figure 3.2: Solution structure of system (3.1) and (3.2) for case I.

Case II: If (%+, v+) ∈ II, then the Riemann solution of (3.3) and (3.4) consists of

1-shock wave S1 and 2-shock wave S2, then the Riemann solution of (3.1) and (3.2)
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can be written as (See fig. 3.3),

(%, v)(x, t) =


(%−, v− + ηt), x < C1(t),

(%∗, u∗ + ηt), C1(t) ≤ x ≤ C2(t),

(%+, v+ + ηt), C2(t) < x,

(3.35)

where the position of 1-shock wave S1 and 2-shock wave curve S2 are given by (3.22)

and (3.27).

Figure 3.3: Solution structure of system (3.1) and (3.2) for case II.

Case III: If (%+, v+) ∈ III, then the solution of Riemann Problem of (3.1) and (3.2)

consists of 1-rarefaction wave R1, 2-shock wave S2, then the Riemann solution of

system (3.1) and (3.2) can be written as (See fig.3.4)

(%, v)(x, t) =



(%−, v− + ηt), x < C−1 (t),

(%1, u1 + ηt), C−1 (t) ≤ x ≤ C+
1 (t),

(%∗, u∗ + ηt), C+
1 (t) ≤ x ≤ C2(t),

(%+, v+ + ηt), C2(t) < x,

(3.36)
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where the state (%1, u1 + ηt) in R1, the position of 2-shock wave S2 ad 1-rarefaction

wave curve are given by (3.11), (3.30), (3.31) and (3.27), respectively.

Figure 3.4: Solution structure of system (3.1) and (3.2) for case III.

Case IV: If (%+, v+) ∈IV, then the solution of Riemann Problem of (3.1) and (3.2)

consists of rarefaction waves R1, R2, then the solution of the Riemann Problem of

(3.1) and (3.2) can be written as (See fig.3.5)

(%, v)(x, t) =



(%−, v− + ηt), x < C−1 (t),

(%1, u1 + ηt), C−1 (t) ≤ x ≤ C+
1 (t),

(%∗, u∗ + ηt), C+
1 (t) ≤ x ≤ C−2 (t),

(%2, u2 + ηt), C−2 (t) ≤ x ≤ C+
2 (t),

(%+, v+ + ηt), C+
2 (t) < x,

(3.37)

where the states (%1, u1) and (%2, u2 + ηt) are given by (3.11) and (3.14), respec-

tively, and the position of R1 and R2 are defined by (3.23), (3.24) and (3.30), (3.31),

respectively.
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Figure 3.5: Solution structure of system (3.1) and (3.2) for case IV .

It is noticeable that the solutions of logotropic model with a source term (3.1) and

(3.2) also consist rarefaction wave solution and shock wave solution but presence of

Coulomb-type friction term, all the elementary waves in (x, t)-plane like rarefaction

wave and shock wave present in the Riemann solutions of (3.1) and (3.2) do not

remain straight. Hence, the solutions of logotropic model with a Coulomb-type

friction term (3.1) and (3.2) are not self-similar.

3.3 Conclusions

In the current study, we concern with structure of solutions of the Riemann Prob-

lem for the logotropic model with a Coulomb-type friction term appearing in the

momentum equation of the governing system. It is noticed that the Riemann so-

lution for the non-homogeneous logotropic model can be determined directly by

introducing new variable for the velocity, discussed in section (3.2), which leads to

the Riemann Problem for homogeneous model. It is obtained that the modified

model is strictly hyperbolic model and the characteristic fields corresponding to its

characteristic roots are genuinely nonlinear. Also, the elementary waves associated
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with these characteristic fields are presented in the explicit forms. The solutions

of the non-homogeneous logotropic model is obtained by four cases on the behalf

of elementary waves appearing in the solutions. Also, we analyzed that the pres-

ence of Coulomb-type friction term causes to bend all the elementary waves in the

parabolic shape like shock wave, rarefaction wave in the Riemann solution of the

logotropic model. Particularly, the logotropic model have no self-similar solutions

in (x, t)-plane due to the presence of time-dependent Coulomb-type friction term.

***********


