
Chapter 2

Solution of generalized Riemann

Problem for hyperbolic p−system

with damping ∗

“Mathematics is the language with which

God has written the universe”

–Galileo Galilei

2.1 Introduction

In this chapter, we consider the model, hyperbolic p−system with linear damping

and determine the exact solution of generalized Riemann Problem using differential
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constraint method. The governing equations describing the hyperbolic p−system

with linear damping of a compressible flow, in the Lagrangian coordinate is given

by [68, 69] 
ρt − vx = 0,

vt + p(ρ)x = −αv,
(2.1)

where (x, t) ∈ R× R+. x and t, respectively, represent space and time coordinates.

v(x, t) and ρ(x, t)>0 are the velocity and the specific volume respectively. The

function p(ρ) (pressure) is the smooth function such that p(ρ)>0 and p′(ρ)<0. The

term −αv, which appears in the momentum equation represents a linear damping

with α>0. In the present Chapter, we consider a particular case that the pressure

p is given by a γ-law with γ=1 as [70, 71]

p(ρ) =
1

ρ
.

The system (2.1) is considered by several authors in past decades and various results

have been examined. The authors Mei [68, 72], Nishihara [69] etc. have discussed

the behavior of solution of system (2.1). In the present Chapter we use the method

of differential constraints to obtain the exact solution of generalized Riemann Prob-

lem for the hyperbolic system (2.1). In past decades several types of mathematical

methods have been used to obtain the exact or approximate analytical solution of

the system of PDEs. For example, perturbation method, similarity method, dif-

ferential constraints method etc. Among these methods the differential constraints

method is of great interest because of its systematic procedure to find the exact

solution of hyperbolic system of PDEs. This method is applicable to the system of

PDEs and it was first used by Janenko [61] in the gasdynamics regime. The exact

solution describing soliton-like interaction in a non dispersive medium is obtained

by Seymour and Varley [73]. Further, C. Curro et al. [64] have studied the exact



Chapter 2. Solution of generalized Riemann Problem ..... 23

description of simple wave for multicomponent hyperbolic system.

Within this theoretical framework, differential constraint method is used for solving

generalized Riemann Problem for hyperbolic p−system with linear damping. In re-

cent years, Curro et al. [59, 60, 57], Manganaro [74], Sahoo et al. [67] have discussed

the solution of Riemann Problem as well as generalized Riemann Problem for hy-

perbolic balance law. Chaiyasena et al. [75] have studied the generalized Riemann

Problem and their adjoinment through a shock wave. Shekhar et al. [76], Singh et

al. [77], Kuila et al. [78], Gupta et al. [79] have studied the classical Riemann Prob-

lem for several relevant cases. The study of generalized Riemann Problem (GRP)

involves complexities and requires more attention. Since the analytical expressions

for the exact or approximate solution of GRP, in the case of quasilinear hyperbolic

system, are usually not available. In order to find the solution of GRP, authors have

used this method for several models like p−system with relaxation ([58]), rate-type

material ([67]), fast diffusion equations ([80]), traffic flow model ([59, 60]), ET6 model

([81]), non-linear transmission lines ([57]), non-linear diffusion-convention equations

([82]) etc.

The rest of the Chapter is organized as: section (2.2) contains the procedure of the

method to find the exact solution of system (2.1). Section (2.3) contains the brief

analysis of model taken in this Chapter. Section (2.4) sketches the phenomenon of

generalized Riemann Problem and the exact solution of generalized Riemann Prob-

lem is obtained. In last section (2.5), we discuss the results and conclusions of the

Problem.



Chapter 2. Solution of generalized Riemann Problem ..... 24

2.2 Differential constraint method

In this section, for our convenience, we discuss the important steps of differential

constraint method, described by Curro et al. [58], which will be helpful to obtain

the solution of system (2.1). We consider the one-dimensional hyperbolic system of

quasilinear PDEs

Ut +M(U)Ux = N(U), (2.2)

where U ∈ Rn, M(U) and N(U) are column vector representing field variables, the

coefficient matrix and column vector representing source terms respectively. Since

the system (2.2) is hyperbolic in nature, therefore the matrix Mn×n has n real

eigenvalues λ(i), i = 1, 2, ....n., and corresponding to each eigenvalue λ(i) we have

n linearly independent left eigenvectors L(i) and n right eigenvectors R(i). Let us

consider that the system (2.2) is strictly hyperbolic system i.e., λ(i) 6= λ(k),∀i, k =

1, 2, ...n, i 6= k. Let us assume that

L(i).R(k) =

 0 if i 6= k,

1 if i = k.
(2.3)

We append the set of n− 1 differential constraints of first order as [57]

L(i) · Ux = Q(i)(x, t, U), i = 1, 2, ....., n− 1, (2.4)

where the function Q(i) is an unspecified function which will be determined during

the reduction process.

The consistency conditions for the arbitrary function Q(i) can be determined from

(2.2) and (2.4), given as
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Q
(i)
t + λ(i)Q(i)

x +
n−1∑
k=1

Q(k)
(
L(i)(∇R(k)N −∇NR(k)) +Q(i)∇λ(i)R(k)

)
+

n−1∑
j=1

n−1∑
k=1

Q(j)Q(k)(λ(j) − λ(i))L(i)∇R(j)R(k)

+∇Q(i)

(
N −

n−1∑
j=1

Q(j)(λ(j) − λ(i))R(j)

)
= 0,

(2.5)

(λ(i) − λ(n))∇Q(i)R(n) +
n−1∑
k=1

Q(k)(λ(k) − λ(n))L(i)(∇R(k)R(n) −∇R(n)R(k))

+ L(i)(R(n)N −∇NR(n)) +Q(i)∇λ(i)R(n) = 0,

(2.6)

where ∇ = ∂/∂U , i = 1, 2, ...n− 1.

Once the function Q(i) satisfies the consistency conditions (2.5) and (2.6), the sys-

tems (2.2) and (2.4) become compatible. Then we can obtain a class of exact solu-

tion of the given system of governing PDEs by direct integration of overdetermined

system (2.2) and (2.4). The overdetermined constraint equations and consistency

conditions help to rewrite the original system in to a partial decoupled form so that

we can solve it and obtain exact solution which satisfies the original system and

constraint equations. The reduced system is written in the following form

Ut + λ(n)Ux = N +
n−1∑
i=1

Q(i)
(
λ(n) − λ(i)

)
R(i). (2.7)

Once Q(i) satisfies the consistency conditions, the solution of the systems (2.2) and

(2.4) can be obtained by direct integration of the equations (2.7) along with the

constraint equations (2.4). Furthermore, since the constraint equations (2.4) are

involutive, they will characterize the set of initial conditions compatible with the

class of solution under interest. Also, it is noticeable from (2.2) and (2.4) that

when the source term N(U) = 0 and Q(i) = 0, system (2.7) results in a classical

wave solution to a hyperbolic system. Therefore, the obtained solution of (2.2)
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characterized by (2.7) generalizes the simple wave of the homogeneous case taking

into account source-like effects in hyperbolic wave process. For more details one may

refer [63, 59, 57, 58].

2.3 Exact solution

In this section, we use the above mentioned method to obtain the exact solution of

the hyperbolic system (2.1) describing p−system with linear damping. The system

(2.1) can be written in the form of (2.2), where

U =

ρ
v

 , M(U) =

 0 −1

p′(ρ) 0

 , N(U) =

 0

−αv

 . (2.8)

Consider λ(i), i = 1, 2 are eigenvalues of the coefficient matrix M2×2, R(i) and L(i)

are the right and left eigenvectors of the corresponding eigenvalues, λ(i), i = 1, 2,

defined as

λ(1) = −
√
−p′(ρ), λ(2) =

√
−p′(ρ),

which can be written as

λ(i) = λ0

√
−p′(ρ), (2.9)

where λ0 = ±1.

and corresponding eigenvectors are

L(1) =

(√
−p′(ρ) 1

)
, L(2) =

(
−
√
−p′(ρ) 1

)
,

R(1) =

(
1

2
√
−p′(ρ)

1
2

)Tr
, R(2) =

(
− 1

2
√
−p′(ρ)

1
2

)Tr
,

(2.10)
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respectively. From equation (2.4), the required differential constraint associated to

the system (2.1) can be written in the form

vx + λ(ρ)ρx = Q(x, t, ρ, v). (2.11)

Substituting equations (2.8), (2.9), (2.10) and (2.11) in the consistency conditions

(2.5) and (2.6), we obtain the following consistency equations

Qt + λQx − αvQv +Q(λQv +Qρ) = −αQ, (2.12)

Qρ + λQv = − 1

2λ
(λα + λ′Q), (2.13)

where the prime denotes the differentiation. Once Q(x, t, ρ, v) is obtained by (2.12)

and (2.13), from (2.14) we obtain the solution of the system (2.1) and (2.11) by

integrating the following set of constraints along with (2.11)


ρt + λρx = Q,

vt + λvx = −(αv + λQ).

(2.14)

Prior to determine the exact solution of the system (2.14), we determine the ar-

bitrary function Q(x, t, ρ, v) from the consistency equations (2.12) and (2.13). On

integrating (2.13), we obtain the following general solution

Q = −αρ+ ρ1/2φ(x, t,m), (2.15)

where m = v − λ0 log ρ and φ(x, t,m) is an arbitrary function.

Next the substitution of (2.15) into (2.12) yields

φt + λφx − αvφm −
1

2
ρ−1/2φ2 − α

2
φ = 0. (2.16)
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The last step of the process is to determine φ(x, t,m) which satisfies (2.16) for all

ρ. It is noticeable that φ = 0 must satisfy the above equation (2.16) for all ρ which

implies that φ = 0 must be a solution of equation (2.16). On the insertion in (2.15),

we find that Q = −αρ.

Now we look for a special solution of the compatibility conditions (2.12) and (2.13)

under the form Q = Q(ρ). On substituting it in (2.12) and (2.13), and solving

the resulting equations we obtain that Q = −αρ is the solution of the consistency

conditions (2.12) and (2.13) as well as p(ρ) = c1/ρ+c2, where c1 and c2 are arbitrary

constants.

Substituting this to the system (2.14) specialize to


ρt + λρx = −αρ,

vt + λvx = −αv + λαρ.

(2.17)

along with (2.11)

vx + λ(ρ)ρx = −αρ. (2.18)

Now, we integrate the system (2.18) with initial data ρ(x, 0) = ρ0(x) and v(x, 0) =

v0(x) gives the following solution of the system (2.1)


ρ(z, t) = ρ0(z)e−αt,

v(z, t) = v0(z)e−αt + λ0(1− e−αt),

z = x+
λ0

αρ0

(
1− eαt

)
.

(2.19)

Within the context of differential constraint method, we have obtained the solution

(2.19) of the system (2.1) for arbitrary initial data ρ0(x) and v0(x). Now we are

interested to introduce the initial conditions in the next section which are known as

generalized Riemann Problem. In next section, we solve the generalized Riemann
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Problem to determine the exact solution for the model (2.1).

2.4 Generalized Riemann Problem

The purpose of this section is to discuss how the differential constraint method helps

to solve the generalized Riemann Problem of interest in 2× 2 hyperbolic p−system

with damping. The generalized Riemann Problem for the system (2.1) with the

initial data can be written as

U(x, 0) =


(ρl(x), vl(x)), for x < 0,

(ρr(x), vr(x)), for x > 0,

(2.20)

where ρr(x), vr(x), ρl(x) and vl(x) are arbitrary functions. We set

ρL = lim
x−→0−

ρl(x), vL = lim
x−→0−

vl(x),

ρR = lim
x−→0+

ρr(x), vR = lim
x−→0+

vr(x),

(2.21)

where ρL 6= ρR and vL 6= vR. In order to solve the generalized Riemann Problem

(2.20), we consider the solution (2.19) and substitute this into the constraint (2.18)

which gives the following constraint equation for the initial conditions

dv0(z)

dz
+ λ0ρ

−1
0

dρ0(z)

dz
= −αρ0(z). (2.22)

According to method of differential constraints, the initial data (2.20) satisfies the

constraint equation (2.22). Then on integrating (2.22) along with the initial data
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(2.20) yields the following implicit forms


vl(x) = vL(x)− λ0 (ln ρl(x)− ln ρL)− α

∫ x

0

ρl(ξ)dξ,

vr(x) = vR(x)− λ0 (ln ρr(x)− ln ρR)− α
∫ x

0

ρr(ξ)dξ.

(2.23)

Now we characterize the solution (2.19) to solve the governing system (2.1) along

with (2.20).

Case I- For x < 0, we get


ρ(z, t) = ρl(z)e−αt,

v(z, t) = vl(z)e−αt − λ0(1− e−αt),
(2.24)

along with

z = x+ λ0

αρl
(1− eαt).

Case II- For x > 0, we get


ρ(z, t) = ρr(z)e−αt,

v(z, t) = vr(z)e−αt − λ0(1− e−αt),
(2.25)

along with

z = x+ λ0

αρr
(1− eαt).

Since vl(x) and vr(x) are given by (2.23) and we obtain that z = x at t = 0.

Therefore the solution (2.24) exists for z < 0, i.e. x < xl(t), where

xl(t) =
λ0

αρl

(
eαt − 1

)
. (2.26)

Similarly, the solution (2.25) exists for x > xr(t), where

xr(t) =
λ0

αρr

(
eαt − 1

)
. (2.27)
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In order to connect smoothly the left state (2.24) to the right state (2.25), we

integrate the differential constraints (2.17) subject to the following initial conditions

x(0) = 0, ρ = S(a), v = V (a), ∀ a ∈ [0, 1],

S(0) = ρL, S(1) = ρR, V (0) = vL, V (1) = vR.

(2.28)

Then the solutions are
ρ(x, t) = S(a)e−αt,

v(x, t) = V (a)e−αt − λ0 (1− e−αt) ,

x = − λ0

αS(a)
(eαt − 1) .

(2.29)

On substitution of (2.29) in (2.18), yields

V ′ = λ0S
−1S ′. (2.30)

On integrating (2.30) along the conditions (2.28), we get

V (a) = vL + λ0 (lnS(a)− ln ρL) , (2.31)

along with

vL − λ0 ln ρL = vR − λ0 ln ρR. (2.32)

Now, in order to confirm the existence of the solution (2.29), we need dλ/da > 0

which implies that ρL > ρR if λ0 = 1 and ρL < ρR if λ0 = −1. Therefore the central

state (2.29) exists in the region xl(t) ≤ x(t) ≤ xr and it connects the left state (2.26)

with right state (2.27) provided that the condition (2.32) is satisfied.

On eliminating S(a) from first and third equations of (2.29), and substituting (2.31)
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in second equation of (2.29) yields the required result


ρ(x, t) = λ0

αx
(e−αt − 1) ,

v(x, t) = (vL + λ0 (lnS(a)− ln ρL)) e−αt − αxS(a)e−αt,

(2.33)

where S(a) = λ0

αx
(1− eαt) .

Equation (2.33) is required solution of generalized Riemann Problem for the govern-

ing system (2.1).

2.5 Conclusion

In this present study, we consider the hyperbolic system of first order PDEs de-

scribing p−system with linear damping and use differential constraint method to

characterize the solution of this model. Within the framework of this method, we

have obtained the consistency conditions for the governing model. Compatibility of

the solution of the constraint equation and governing system is also discussed. The

solution of the governing model is obtained in section (2.3) which is characterized

for an arbitrary function as initial data to determine the exact solution for general-

ized Riemann Problem. The solution obtained for the generalized Riemann Problem

consists of two states; left state and right state which are connected smoothly by

the solution. This solution describes the rarefaction wave of the homogeneous case.

***********


