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PREFACE

It is well known that Gas dynamics is a branch of compressible fluid dynamics. It

evolved in the end of 19th century to understand high speed fluid flow phenomenon.

A wave can be thought as a propagating feature of disturbance. It is defined as

any notable feature that is propagated from one medium to another or within the

medium with a recognizable speed. It can be any characteristic of the disturbance,

such as the formation of trough and crest or sudden change etc., in some physical

quantity, provided that it can be clearly noticed and its position at any time can be

found. The characteristic feature may contort, be magnified, and change its velocity

provided it is still recognizable. Certain types of wave can be formulated mathemat-

ically in terms of hyperbolic partial differential equations.

In 1860, Riemann studied fluid dynamics through a shock tube. He introduced

the Riemann problem for a system of conservation laws in gas dynamics which is

a specific initial value problem composed of a conservation equation together with

piecewise constant initial data which has a single discontinuity in the domain of in-

terest. The Riemann problem is very useful for the understanding of equations like

Euler conservation equations because all properties, such as shocks and rarefaction

waves, appear as characteristics in the solution. It also gives an exact solution to

some complex nonlinear equations. A shock wave is a surface of discontinuity across

which the flow properties experience a sudden jump. Across a rarefaction wave the

flow properties are continuous. The velocity and pressure are continuous across a

contact wave but density, temperature, entropy etc. experience a sudden change.

Shock waves are most challenging phenomenon occurring in non linear wave motion;

they can develop and propagate, even if the initial data are continuous. The reason

is that non linear partial differential equations do not admit continuous solutions.
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The present thesis, embodies the results of researches carried out by me at the De-

partment of Mathematical sciences, Indian Institute of Technology (BHU), Varanasi,

during the period July 2017 to February 2022 under the supervision of Prof. L. P.

Singh. The present work deals with some problems associated with the solutions

of the Riemann problem for quasilinear one-dimensional conservative hyperbolic

system which occur in many physical phenomena having practical importance in

real life. Our aim is to solve, those homogeneous and non-homogeneous hyperbolic

systems where classical and non-classical situations arise, using various approaches

like flux approximation method, Differential constraints method, vanishing pressure

limit method and Characteristic method for hyperbolic system. We are motivated

to solve the problem for non-homogeneous hyperbolic system which is modified into

homogeneous hyperbolic system of conservation laws to study the solution of Rie-

mann problem with constant initial data by introducing new variable for the velocity.

Also, this thesis concerns with the solutions of the Riemann problem with constant

and non-constant initial data for different hyperbolic systems. We introduce the

notions of rarefaction waves, shock waves, contact discontinuities and delta shock

waves, which play an essential role in the explicit construction of the solution of

the Riemann problem. Then, we discuss the local existence and uniqueness of the

solution of Riemann problem for a system in the sense that the initial states are suf-

ficiently close. It is also proved that this is true for the dusty gas dynamic equations.

We consider the strictly hyperbolic system of conservation laws which describes the

background flow carrying dust particles and whose Riemann solution contains clas-

sical elementary waves as well as delta shock wave in certain situation. The whole

thesis is divided into six chapters as fallows:

Chapter - 1 is introductory and gives a general idea of when and how a discon-

tinuity appears. The mathematical theory and their fundamental properties have

also been briefly discussed. The physical properties of hyperbolic systems, equation

of state, dusty gas, reacting gas and methods which are used throughout the thesis

xvi



are briefly reviewed.

Chapter - 2 concerns with the study of the exact solution of the generalized Rie-

mann problem for the 2 × 2 hyperbolic p−system with linear damping by using

Differential constraint method. This method is used to develop the consistency

conditions and constraint equations for the considered non-homogeneous hyperbolic

system and obtained the exact solution of the system of governing equations. Fur-

ther, the generalized Riemann problem of non-homogeneous hyperbolic p−system

which involves non-constant discontinuous initial data is solved.

In Chapter - 3, the structure of the Riemann solutions for compressible hyperbolic

system of PDEs with logarithmic equation of state, so called Logotropic model,

in the presence of a Coulomb-type friction is analyzed. The system considered in

this chapter is hyperbolic in nature and the characteristic fields associated with the

characteristics are genuinely non-linear. The classical wave solutions of the Riemann

problem for the Logotropic model are structured explicitly for all cases. It is shown

that the Riemann solutions for the Logotropic model with a Coulomb-type friction

term composed of the rarefaction wave and shock wave. Also, It is found that the

Coulomb-type friction term, appearing in the governing equations, influences the

Riemann solution for the system.

In Chapter - 4, the solution of the Riemann problem for hyperbolic system of

PDEs with modified Chaplygin gas (MCG) equation of state in the presence of con-

stant external force is studied. The analysis leads to the fact that in some special

circumstances delta shock appears in the solution of the Riemann problem. Further,

the Rankine-Hugoniot relations for delta shock wave which are utilized to determine

the strength, position and propagation speed of the delta shocks have been derived.

Delta shock wave solution to the Riemann problem for the non-homogeneous hyper-

bolic system with modified Chaplygin gas equation of state is obtained. It is found

that the external force term, appearing in the governing equations, influences the

Riemann solution for the system.
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In Chapter - 5, the concentration and cavitation phenomenon in the solution of

the Riemann problem to the pressure-less isentropic Euler equations for the dusty

gas model is investigated by using two parameter flux approximation. The similar

solution of the Riemann problem for dusty gas model is obtained. The formation of

delta - shock and vacuum state in the flow field is discussed. Also, it is shown that

the solution, containing two shock waves, of the Riemann problem to the isentropic

Euler equations for dusty gas converges to the delta - shock wave solution of the

transport equations and the solution, containing two rarefaction waves, of the Rie-

mann problem converges to the vacuum state solution of the transport equations.

In Chapter - 6, the evolutionary process of shock wave along the characteristic

path under the effect of dust particles in a polytropic reacting gasdynamics is inves-

tigated. Using the characteristics of the governing quasilinear hyperbolic system as

a reference coordinate system, we transform the governing equations and obtain the

solution of it. It is shown that a linear solution in the characteristic plane can exhibit

a non-linear behaviour in the physical plane. It is shown how the presence of dust in

reacting gas affects the growth and decay of the compressive and expansive waves.

The transport equation leading to the evolution of shock wave is determined which

provides the relations for the shock formation. The comparative study of the effect

of reacting gas parameter and dust particles on the flow patterns and distortion of

shock wave for planar, cylindrically symmetric and spherically symmetric flows is

also performed.

Lastly, in Chapter - 7, the work done in the thesis is summarized. Major contribu-

tions made in the thesis are briefly discussed followed by a discussion on the future

scope.
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