
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Micro and Nano-Electromechanical Systems and

Applications

Micro and nano-electromechanical systems (MEMS/NEMS) are the devices that inte-

grate electrical and mechanical functions of the systems at the micro and nanoscales.

They consist of miniaturized electrical and mechanical apparatuses such as actuators,

beams, sensors, pumps, resonators, and motors. These components convert one form

of energy into another, which can be quickly and conveniently measured. The MEMS

sensors commonly measure pressure, force, linear acceleration, rate of angular motion,

torque, and flow. The MEMS/NEMS actuators provide the ability to manipulate phys-

ical parameters at the micro and nanoscale, and can employ eletrostatic, thermal, mag-

netic, piezoelectric, piezoresistive, and shape memory transformation methods. The

MEMS structures such as micro-nozzles are used in atomizers, medical inhalers, fluid

spray systems, fuel injection, and ink jet printers. The MEMS/NEMS inherently have

a reduced size and weight for the function they carry out, but they can also carry ad-

vantages such as low power consumption, improved speed, increased function in one

package, and higher precision.

In fact, MEMS/NEMS are enabling technologies that bring new functionalities with
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the potential to radically transform markets ranging from consumer products to na-

tional defense. The meteoric rise of the smartphone is an excellent example, in which

MEMS/MEMS accelerometers, gyroscopes, microphones, displays, and radio frequency

filters and oscillators provide functionality that has made the most sophisticated mobile

phone from a decade ago. Furthermore, the micrometer and nanometer length-scales

are particularly relevant to biological materials because they are comparable to the size

of cells and molecules. The most popular structures utilized as MEMS/NEMS systems

are resonators, which have a wide range of applications such as musical instruments,

quartz watches, radio transmitters, and so on.

1.1.1 Micro and nanomechanical resonators

A resonators is a device or system that exhibits resonance or resonant behavior. It nat-

urally oscillates with greater amplitude at some frequencies, called resonant frequencies,

than at other frequencies. The resonant frequency of micro and nanomechanical res-

onators depend upon many factors, including geometry, structural material properties,

stress, external loading, surface topography etc. The oscillations in a resonator can

be either electromagnetic or mechanical (including acoustic). The resonators are used

to either generate waves of specific frequencies or to select specific frequencies from a

signal. The musical instruments use acoustic resonators that produce sound waves of

specific tones. Another example is quartz crystals used in electronic devices such as

radio transmitters and quartz watches to produce oscillations of very precise frequency.

With the rapid advancements of the micro and nanotechnologies in MEMS/NEMS,

more and more micro and nanomechanical resonators have been developed, which are of

interest to both the scientific community and engineering fields. Due to their small sizes

and low weight, micro and nanomechanical resonators can oscillate at very high resonant

frequencies, which provides them with a remarkable ability to perform both sensing

and detection in advanced technological applications, including ultra-sensitive mass
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and force sensing, ultra-low-power radio frequency (RF) signal generation and timing,

chemical and biological sensing, environmental control, and quantum measurement.

A physical system can have as many resonant frequencies as it has degrees of free-

dom; each degree of freedom can vibrate as a harmonic oscillator. Systems with one

degree of freedom, such as a mass on a spring, pendulums, balance wheels, and LC tuned

circuits have one resonant frequency. Systems with two degrees of freedom, such as cou-

pled pendulums and resonant transformers can have two resonant frequencies. Various

geometrical structures like cantilever and bridge beams, and plates are the most typical

micro and nanomechanical resonators. These resonators are of very simple geometry

and can easily be fabricated by using surface manufacturing techniques.

1.1.2 Quality factor of mechanical resonators

Energy of the resonator can be lost due to many physical mechanisms. The rate at

which a resonator dissipates energy is defined as the quality factor of the resonator. Low

loss of energy implies the high quality factor, and is important for all the applications

of micro and nanobeam resonators. There are mainly three important sources from

which a resonator losses the energy. The resonators can dissipate energy through the

intrinsic dissipation mechanism, through the clamping to the substrate via elastic waves,

and through surrounding medium. By improving the resonator’s design and medium

interconnection losses, one can minimize the clamping losses. The material friction and

fundamental loss mechanisms, such as phonon-phonon interaction and thermoelastic

damping, cause intrinsic losses. In fact, damping dilution under tensile stress reduces

the effect of intrinsic loss of resonators and increases the quality factor up to several

million even at room temperature.

The quality factor (Q) is defined as the ratio of stored energy in the system and

dissipated energy by the system per cycle of vibration, i.e.,
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Q = 2π
StoredEnergy

DissipatedEnergy

In the most general definition, Q represents all the processes by which the vibration

energy (average kinetic and potential energy per vibration period) of the resonator

decays over time. A high quality factor (Q) is directly related to reduced motional

impedance, improved stability and improved noise performance of the MEMS resonator.

In light of these performance attributes, prediction of Q is specifically important for

optimizing the function of many applications such as time reference oscillators and

inertial sensors.

1.1.3 Energy loss mechanisms in resonators

Energy dissipation in mechanical resonators has been of significant interest to the sci-

entific and engineering communities since the early 1950s. After more than 50 years,

researchers continue to refine their understanding of dissipation mechanisms, still mo-

tivated towards a high demand for low-loss resonators in frequency selection, timing,

and sensing applications.

In order to design high-performance mechanical resonators, the understanding of

damping effects is important. Damping in micromechanical resonators represents all

of the processes by which the energy associated with the vibration of the resonator

(average of kinetic and potential energy over a complete cycle) decays over time. There

are various processes through which the energy of the resonator can be lost. Some of

them are as follows:

1.1.3.1 Air damping

When the resonators oscillate, it has to control the resistance of air trapped in the

actuation gaps and those generated by the friction with air for the sides parallel to

the vibration displacement. The dissipation of energy by the actuation gaps dominates
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when it exists. This type of energy loss mechanism can be kept away by packaging the

resonator under vacuum.

1.1.3.2 Internal friction

It occurs by the imperfections in the material such as impurities, broken bonds, or

dangling. This loss mechanism causes energy dissipation in the form of heat and its

contribution depends on the material and fabrication technology of the systems.

1.1.3.3 Gas damping

Moving devices transfer energy to surrounding air or gas through their motion. The

resulting gas damping plays a critical role in some devices, such as accelerometers,

microphones, display mirrors and switches and contributes to the signal to noise ratio.

While it is possible, in principle, to simulate gas damping with a general purpose fluid

dynamics field solver, such a brute-force approach is generally not practical.

1.1.3.4 Anchor losses

Resonator anchors provide the mechanical connection to the rest of the system, as

well as the electrical connections for biasing and sensing of the resonator. Unlike a

free vibration in space, these anchor points also can provide a pathway for energy loss

from the resonator to the surroundings. One important way to improve on the energy

loss through the anchors is to minimize the forces applied to the anchors during the

oscillation cycle.

1.1.3.5 Thermoelastic damping

The thermoelastic effect describes the temperature change that occurs due to the

stretching or contracting of an elastic material. The thermally isolated elastic structure

produces a temperature variation when it suffers pressure or tension. To be precise, the
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temperature of the elastic structure decreases when it is uniformly stretched. The drop

in temperature is balanced by the increase in entropy, which is caused by the stress

(since the process is reversible, the energy remains constant). Similarly, in compres-

sion, the elastic structure heats up. Under such ideal conditions, there is no energy

loss, which implies no thermoelastic damping. However, in the real case, the elastic

structure is always in a more complex normal mode, so there are regions of compres-

sion and extension. Depending on the timescale of the vibration, heat flows from the

warmer parts of the structure to the cooler parts. Since the heat flow is an irreversible

process, this heat flow is associated with the energy loss from the vibrational mode and

the corresponding damping for the resonant mode. These type of energy losses that

arise due to coupling between temperature field and elastic field is called thermoelastic

damping (TED). TED can be reduced by careful design and placement of perforations

in the vibrating devices, but such design can only be done with the help of accurate

TED simulations.

TED is proportional to the energy dissipated due to the thermoelastic effect. The

metric used to measure TED is a dimensionless quantity called the quality factor (Q).

The theory linking bending mode oscillations of a resonating structure to TED is sum-

marized as follows:

Figure 1.1.1: Flow chart depicting the theory behind thermoelastic damping.

However, the total energy dissipation in the resonator can be described as
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TED is one of the most important loss mechanisms for micro and nanobeam res-

onators among all the loss mechanisms. TED is totally based on the thermal and elastic

nature of the body. Many investigations have shown the experimental evidences about

TED as intrinsic losses for the flexural micro and nanobeam resonators. It is impossible

to remove TED completely, however, it can only be reduced by design or fabrication of

suitable resonators. In fact, TED is the keystone that affects the performance of the

vacuum-operated micro and nanobeam resonators. For many resonant modes, TED

determines the limit to the inverse quality factor (Q−1). TED analysis in micro and

nano resonators is therefore an important area of research.

TED problem was first studied by Zener in 1937. According to Zener’s idea, the

bending in the bean cause dilation of the opposite signs to be on the lower and upper

halves. Also, an amount of heat passes through any medium, then the one side of the

medium is compressed and heated and other side is expanded and closed. This means

that the transverse temperature gradient is built up in the existence of finite thermal

expansion. Therefore, a local heat current occurs and causes an increase in the entropy

in the beam and dissipation of energy due to temperature gradient. The characteristic

time τR of the beam is equalized by the temperature across the beam and the flexural

period of the beam is ω−1. Moreover, when

• τR � ω−1, the vibration in the beam is isothermal and less amount of energy is

dissipated.

• τR � ω−1, the adiabatic conditions of beam influence with low dissipation of

energy and similar to low frequency range.

• τR ≈ ω−1, a maximum of internal friction takes place due to out of phase of stress

and strain.
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According to the Zener’s theory, the characteristic time of the beam is defined as

τR (T ) =

(
h

π

)2

χ−1 (T )

where χ = k
ρCv

is thermal diffusivity in which ρ and Cv denote the mass density and the

specific heat at constant volume, respectively. The parameter k is thermal conductivity

and h is the thickness of the beam.

The classical Fourier law of heat conduction was applied in Zener’s theory. There-

fore, there is no flow of heat perpendicular to the surface of the beam. Thus, TED in

terms of inverse quality factor is defined by

Q−1 =
ET0α

2
T

Cv

ωτR
1 + ω2τ 2R

in which αT is thermal expansion coefficient, T0 is reference temperature, and E is

Young’s modulus.

Afterwards, Lifshitz and Roukes (2000) developed the expression of the quality

factor for TED in microbeam. Like Zener’s theory, here also authors made their analysis

on the basis of the classical Fourier law. They mainly analyzed the size-dependent effect

of TED on the quality factor of microbeam resonator made with single-crystal material.

The expression of the inverse quality factor for TED is given here in the form

Q−1 =
ET0α

2
T

Cv

{
6

ξ2
− 6 (sinhξ + sinξ)

ξ3 (coshξ + cosξ)

}
where ξ =

√
ω
2χ
. The suggested model of Lifshitz and Roukes (2000) reveals that there

is a peak of TED that happens at the micrometer scale. It is also observed that when

the height of the beam is more than 100µm or less than nanometer scale, the value of

TED will decrease accordingly.
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1.2 Classical and Non-Classical Continuum Theories

The classical theory of elasticity is primarily a theory for isotropic, linearly elastic ma-

terials subjected to small deformations. The classical elasticity theory is not suitable to

capture the effect of the small size of the microstructures. In addition, it is appropriate

to study the material behavior on a large scale. As the size of the study decreases, the

accuracy by the classical theory diminishes and therefore its expectation of the mate-

rial behavior on the micro and nanoscales does not match with experimental results.

It is observed that the explanation behind this deviation is the critical effect of the

microstructures.

Several experimental observations indicate that small-scale effect plays a consider-

able role in designing of the micro and nanomechanical systems (Faris et al., 2002; Fleck

et al., 1994; McFarland and Colton, 2005; Stolken and Evans, 1998). Unfortunately,

the classical continuum theory cannot accurately capture the size effect in such systems

due to the lack of length-scale parameter. To remove this weakness, some non-classical

continuum theories, such as couple stress theory (Toupin, 1964), strain gradient theory

(Mindlin and Eshel, 1968; Lam et al., 2003), nonlocal elasticity theory (Eringen and

Edelen, 1972; Eringen, 1983), modified couple stress theory (Yang et al., 2002) etc., have

been proposed. The couple stress theory admits the possibility of asymmetric stress

tensor since shear stress no longer have to be conjugate in order to ensure rotational

equilibrium. The couple stress theory consisting of two or more material parameters is

capable of capturing the small-scale effect in micron scale structures. However, tackling

the problems of microstructures with two or more material length-scale parameters is

challenging. Therefore, modified couple stress theory (MCST) has been proposed in

order to solve corresponding problems by reducing the material length-scale parame-

ters into a single material length-scale parameter. On other hand, nonlocal elasticity

theory proposed by Eringen (1983) has been developed to capture the small-scale effects
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in microstructures at submicron scale. The stress tensor at a point in this theory is

considered to be dependent on strains in a region near that point, which differs from

the stress tensor described in classical (local) continuum theory. It is worth to be

mentioned here that the nonlocal theory considers the long-range interatomic cohesive

force, but not considered as one of the microstructure effects. However, the modified

couple stress theory provides the advantages by proposing an equilibrium condition of

moments of couples: symmetric couple stress tensor and by involving only one ma-

terial length-scale parameter to capture size effects. By considering these conditions,

the strain energy function depends only on the strain and symmetric part of the stress

tensor. These non-classical theories became the center of active research in last few

decades for understanding the behavior of small-scale structures.

In order to capture the size effect in the structures at micron and submicron scales,

we employed solely the modified couple stress theory (MCST) and the nonlocal elasticity

theory as non-classical theories in the current study. Therefore, we have concentrated

only on these two elasticity theories.

1.2.1 Modified couple stress theory

The modified couple stress theory (MCST) developed by Yang et al. (2002) consists of

only one internal material length-scale parameter in order to capture the size effect in

microstructures. According to this theory, the total deformed strain energy (U) for a

linear elastic body occupying the region V is given by

U =
1

2

ˆ
V

(
σijεij +ms

ijχ
s
ij

)
dV

where

ms
ij = 2µl2χsij

In above equations, εij mean the component of strain tensor ε and χsij stands for the
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symmetric part of the rotation gradient tensor χ. The terms σij and ms
ij respectively

are used to denote the component of the stress tensor σ and the component of the

deviatoric part of the couple stress tensor m.

The parameter l appeared in above equation is called as length-scale parameter that

captures the effect of couple stress theory. It is worth noting here that if l = 0, the

MCST reduces to the classical elasticity theory.

1.2.2 Nonlocal elasticity theory

The nonlocal elasticity theory proposed by Eringen’s (Eringen, 1983; Eringen and Ede-

len, 1972) explains that the state of stress at a point inside a body is regarded to be

a function of strains of all points in the neighboring regions of the point. According

to this nonlocal elasticity theory, the constitutive relationship between classical and

nonlocal stresses in differential form is described as follows (Eringen, 1983)

σnlij − (e0a)2∇2σnlij = σlij

where ∇2 is the Laplacian operator. σlij represents the classical (local) stress and

σnlij is the nonlocal stress. The quantity e0a stands for the nonlocality effect or the size

effect, in which e0 and a denote the material constant and interior characteristic length,

respectively.

1.3 Some Beam and Plate Theories

1.3.1 Euler-Bernoulli beam theory

The Euler-Bernoulli beam is named after Leonhard Euler and Daniel Bernoulli, who

made the significant discoveries and gave this useful theory together in 1750. The Euler-

Bernoulli beam theory is also known as the classical or engineer’s beam theory. This
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theory covers the case for the small deflection of the beam subjected to a lateral load.

This theory also explains the linear theory of elasticity, and gives an idea to calculate

the deflection characteristic and supporting load of the beam.

The Euler-Bernoulli beam theory is applied to an analysis of thin beams, and ne-

glects the effects of rotary inertia and shear deformation. When a beam is bent, one

of the faces undergoes tension and the other undergoes compression. Somewhere in

between these faces, there exists an axis, which does not experience any force called

the neutral axis. The neutral axis is considered as a reference as it is easy to define

the bending deformation. Further, in thin beams, one can assume that a line which

is perpendicular to the neutral axis before deformation will remain perpendicular after

the deformation. In other words, the shear strain can be neglected in thin beams. This

assumption makes the analysis simple and is the basis of the Euler-Bernoulli beam

theory.

The equation of motion for the transverse vibration of beams are in the form of

fourth-order partial differential equation with two boundary conditions at each end.

The equation of motion is of the form

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= f (x, t)

where w is the deflection of the beam, I is the bending moment, A is the cross-section

of the beam, and f (x, t) is the transverse load on the beam. It is worth mentioning here

that for free vibration of the beam, the transverse load must be zero, i.e., f (x, t) = 0.

1.3.2 Timoshenko beam theory

Early in the 20th century, Stephen Timoshenko developed a theory about the beam

named as Timoshenko beam theory. This theory of beam allows the analysis of the

shear deformation and bending effects of thick beams. The resulting equation of the

Timoshenko beam theory is of fourth order and there is a second order partial derivative
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as the Euler-Bernoulli beam theory.

In Timoshenko beam theory, the neutral axis is considered as a reference as it is

easy to define the bending deformation. In thick beam, there exists a considerably shear

strain, which should not neglected. Timoshenko beam theory holds a general nonzero

shear strain and obtains the governing equations of bending. The equation of motion

for Timoshenko beam of uniform length is given by

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

kG

)
∂4w

∂x2∂t2
+
ρ2I

kG

∂4w

∂t4
= f (x, t)

where G denotes the shear modulus. The terms in above equation can be identified

as follows: The first two terms are the same as those of the Euler–Bernoulli theory.

The third term, −ρI(∂4w/∂x2∂t2), denotes the effect of rotary inertia. The last two

terms, involving kG in the denominators, represent the influence of shear deformation.

The Timoshenko beam model is suitable for describing the behavior of thick beams,

sandwich composite beams, or beams subjected to high-frequency excitation when the

wavelength approaches the thickness of the beam.

1.3.3 Kirchhoff plate theory

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is

used to determine the stresses and deformations in thin plates subjected to external

forces and moments. This theory is an extension of Euler-Bernoulli beam theory and

was developed in 1888 by Love (Love, 1888) using assumptions proposed by Kirch-

hoff. The theory assumes that a mid-surface plane can be used to represent a three-

dimensional plate in two-dimensional form.

The following kinematic assumptions are made in this theory:

• Straight lines normal to the mid-surface remain straight after deformation

• Straight lines normal to the mid-surface remain normal to the mid-surface after
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deformation

• The thickness of the plate does not change during a deformation.

The governing equations simplify considerably for isotropic and homogeneous plates for

which the in-plane deformations can be neglected. In that case we are left with one

equation of the following form

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂z4

)
+ 2ρh

∂2w

∂t2
+ f (x, y, t) = 0

where D is the bending stiffness of the plate and f (x, y, t) is load on the plate. For a

uniform plate of thickness 2h

D =
2h3E

3 (1− ν2)

in which ν denotes the Poisson ratio.

1.4 Thermoelasticity

Thermoelasticity is a branch of science that describes the behaviour of elastic bodies

under the impact of non-uniform temperature and mechanical fields. Thermoelastic-

ity is concerned with the effect of heat on elastic deformable bodies and vice-versa.

Deformation refers to any changes in the shape and size of a body due to an applied

force or change in temperature. When a load is applied to a body, it deforms. Before

deformation, an internal force opposes the deformation and that applied force per unit

area is called stress. A deformation differing with time leads a change in temperature

field which produces strain in the body. Thus, the internal energy of the body becomes

a function of the deformation and temperature. Thermoelasticity theory therefore de-

scribes the mutual interactions of mechanical strain and temperatures fields of the body.

It relates two different and independently developed branch of sciences which are the

theory of heat conduction and the theory of elasticity.
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In various disciplines of science and technology, thermoelasticity theory has gained

considerable interest from engineers and researchers due to its innumerous applications

to multiple fields. Thermal stress analysis is significant in a variety of structural issues,

such as high-speed plane manufacturing, designing of space vehicle, rocket and jet

engine etc, nuclear reactor design, and so on. The thermoelasticity theory is also

finding increasing use in a variety of engineering issues, such as developing material

parts that can withstand abrupt thermal and mechanical loads and function at high

temperatures.

The classical thermoelasticity theory has been widely used to study the thermal and

elastic coupling involved in various thermoelastic problems. The classical uncoupled

theory of thermoelasticity suffers from the drawback that the elastic changes have no

effect on the temperature and vice-versa, and this theory also suffers from infinite

speed of thermal signals. These are two drawbacks of this theory. To remove these

drawbacks, Biot (1956) proposed a theory which was based on the ground of irreversible

thermodynamics. This theory gives us an effective model to study the coupling effects

of thermal and elastic fields. Also, this theory removes the first drawback inherent

in the classical uncoupled theory. But, the paradox of infinite speed of thermal signal

remains inherent in Biot’s theory. Moreover, this inherent paradox is mainly due to heat

transport equation, which is based on the classical Fourier law of thermal conduction

and of parabolic type partial differential equation. However, the equation of motion is

wave type.

Several efforts are being made for a long time to remove the drawbacks inherent in

the classical coupled thermoelasticity theory developed by Biot. Accordingly, several

non-conventional thermoelasticity theories came into existence. In this theory, the

parabolic type heat conduction equations are replaced by the hyperbolic type equations,

and admit wave-like thermal disturbance propagating with finite speed. The wave-like

thermal signal is called as “second sound”. The thermoelasticity theory that allows
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wave-like thermal signal is known as “thermoelasticity theory with second sound” or

“generalized thermoelasticity theory”.

Due to progress in laser pulse, nuclear reactors, particle accelerators, etc. that can

provide heat pulses with a speedy time range, scientists pay appreciable curiosity to-

wards the generalized theory of thermoelasticity. The development of these generalized

theories are mainly based on the following three different approaches:

• Incorporating the concept of phase-lags/thermal relaxation parameters for consti-

tutive variables in the Fourier law of heat conduction.

• Considering the effects of higher order terms of constitutive field variables in the

formulation of the governing equations.

• Developing alternative formulation of the coupled theory by introducing new con-

stitutive field variables in the derivation of governing equations.

The generalized thermoelasticity theories which are used in the current thesis are

given below:

1.4.1 Lord-Shulman (LS) thermoelasticity theory

Lord and Shulman (1967) have proposed a generalized thermoelastic model suggesting

the finite speed of heat propagation. This theory is also known as the extended ther-

moelasticity theory. The first modification in the Fourier’s heat conduction theory has

been suggested by Cattaneo (1958) and Vernotte (1958; 1961) by introducing the heat

flux rate term in Fourier’s law with a time relaxation parameter. Lord and Shulman

(1967) have applied this modified Fourier’s law of heat conduction (Catteneo-Vernotte

law) and derived the first generalized coupled theory of thermoelasticity. The heat con-

duction law based on the LS thermoelasticity theory for the homogeneous and isotropic

medium can be given as

q (r, t) + τq q̇ (r, t) = − [k∇T (r, t)]
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where T is temperature, k is thermal conductivity of the material, q is heat flux vector,

and r is position vector. Here, the constant τq has a definite physical meaning and

shows the time lag to set up the steady state heat conduction in a material volume

when a temperature gradient is instantly imposed on the material. This time lag is

known as the thermal relaxation time of the material.

A physical meaning of the above equation had been explained by Chester (1963).

He suggested the value of relaxation time τq through the experimental work given as

τq =
3k

ρCvϕ2
s

where ϕs is the speed of ordinary sound. However, there is no theoretical model available

to determine the relaxation time (Shiomi and Maruyama, 2006). The heat conduction

equation of this theory is wave-type, and have finite speed of propagation of heat and

elastic wave. According to this hyperbolic type differential equation, the thermal signals

propagate with finite speed ϕT given as

ϕT =

√
k

ρCvτq
, τq 6= 0

1.4.2 Green-Naghdi (GN) thermoelasticity theory

In the 1990s, Green and Naghdi (1991; 1992; 1993) have followed a completely different

approach to develop an alternative version of thermoelasticity theory. They modified

Fourier’s law by introducing a new constitutive variable in the theory of heat conduction,

and developed their new thermoelasticity theory that is divided into three parts. These

parts now referred to as the thermoelasticity theories of type I, II, and III. The linearized

version of type-I model is identical with coupled theory of thermoelasticity, possessing

the paradox of infinite speed of heat propagation. The type-II shows that there is

no dissipation of thermal energy in the body because the internal rate of production
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of entropy is considered to be identically zero here. This model allows undamped

thermoelastic waves in the thermoelastic body. Therefore, this model is known as the

theory of thermoelasticity without energy dissipation. The type-III model includes the

previous two models as special cases, shows dissipation of energy in general, and involves

damped thermoelastic waves. In this model, the constitutive equations are obtained by

starting reduced energy equation, where the thermal displacement gradient, in addition

to the temperature gradient, is among the constitutive variables. For this model, the

proposed heat conduction equation is of the form

q (r, t) = − [k∇T (r, t) + k∗∇υ (r, t)]

where υ is termed as thermal displacement that satisfies the relation υ̇ = T .

1.4.3 Dual-phase-lag (DPL) thermoelasticity theory

In order to consider the microscopic effects in ultra fast process of heat transport

phenomenon, a new heat conduction model has been proposed by Tzou (1995a, 1995b).

They attempted the Fourier law of heat conduction by introducing two time phase-lags,

one for the heat flux vector and the other for the temperature gradient and called their

theory as dual phase-lag (DPL) heat conduction theory. It is worth to note that while

the classical Fourier law of thermal conduction is macroscopic in both space and time,

and single-phase-lag model is microscopic in time, the DPL model is microscopic in

both space and time.

In DPL model, the Fourier law is replaced by an approximation of the form

q (r, t+ τq) = −k∇T (r, t+ τT )

This equation implies that the conductive temperature gradient at a point r at time

t + τT results in a heat flux at the same point at time t + τq. The delay time τT is
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interpreted as that caused by the microstructural interactions such as phonon scattering

or phonon-electron interactions, and is called the phase-lag of the temperature gradient.

The other time delay term τq is interpreted as the relaxation time due to the fast

transient effect of thermal inertia, and is called as the phase-lag of the heat flux. These

two phase-lag are small and positive (Tzou, 1997). This DPL heat conduction theory

has been extended to dual phase-lag thermoelasticity theory by Chandrasekharaiah

(1998) who modified the basic governing equations of Biot’s theory and employed the

DPL heat conduction theory (Tzou, 1995a; 1995b).

1.4.4 Three-phase-lag (TPL) thermoelasticity theory

Roychoudhuri (2007) has further generalized the concept of phase-lag to Green-Naghdi

thermoelasticity theory by incorporating three different phase-lag parameters in the

constitutive relation for heat conduction given by Green and Naghdi (GN-III model).

One additional phase-lag parameter is incorporated here for the gradient of thermal

displacement, along with the incorporation of phase-lag parameters for the heat flux as

well as temperature gradient terms. The modified heat conduction law corresponding

to the TPL theory for the homogeneous and isotropic medium is expressed by

q (r, t+ τq) = − [k∇T (r, t+ τT ) + k∗∇υ (r, t+ τυ)]

where τυ is the thermal gradient vector. The TPL model plays a very important role

in the problems related to nuclear boiling, exothermic catalytic reactions, phonon scat-

tering, phonon-electron interactions, etc.

1.4.5 Thermoelasticity theory with a single delay term

Quintanilla (2011) has proposed some modifications to the three-phase-lag (TPL) model,

and studied the well-posedness and spatial behavior of this newly proposed model. In
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his new formulation, the parameters are assumed to be τq = τT and τ0 = τq − τυ > 0.

Now, the TPL model is reduced to a heat conduction model with a single delay term,

τ0 > 0. the proposed constitutive relation by Quintanilla (2011) is of the form

q (r, t) = − [k∇T (r, t) + k∗∇υ (r, t− τ0)]

where the new parameter τ0 is called as time delay parameter.

1.4.6 Moore-Gibson-Thompson (MGT) thermoelasticity theory

Recently, Quintanilla (2019) has proposed a new thermoelasticity theory named as

Moore-Gibson-Thompson (MGT) thermoelasticity theory. In fact, this new proposed

thermoelastic model is the generalization of Lord-Shulman (LS) model and Green-

Naghdi (GN-III) model. The new heat conduction model in this theory has been taken

in the following form:

q (r, t) + τq q̇ (r, t) = − [k∇T (r, t) + k∗∇υ (r, t)]

1.5 Literature Review

For the first time, the energy dissipation mechanism in microstructures caused by TED

was observed by Zener (1937, 1938). He formulated an expression of TED in terms of

the quality factor for a beam by applying the classical Fourier heat conduction equation.

The Zener’s theory works well for simple beams and has been experimentally verified by

Candler (2003). Later on, Zener (1938) gave an experimental evidence about thermoe-

lastic internal friction closely related to energy dissipation. Afterwards, Berry (1955)

presented an experiment in view of Zener’s theory for a brass material. The exact

expression for the attenuation coefficients of thermoelastic vibrations was presented by

Landau and Lifshitz (1959). However, they did not give a conscientious solution and
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derivation of the governing equations. An analysis about the thermally induced vibra-

tions of the beams and plates was approximated by Boley (1972). Manolis and Beskos

(1980) examined the effect of axial loads and damping on the vibration of the beams

by neglecting the coupling effect between stress and temperature fields. Further, the

vibration of the beam with step heat flux at the surface was analyzed by Massalas and

Kalpakidis (1983) disregarding the inertial term to make the analysis simpler. Crawley

and Van Schoor (1987) published an article on investigation of material damping taking

the aluminum and metal matrix composites. Roszhardt (1990) analyzed TED in single

crystal silicon micro resonators at the room temperature. Bishop and Kinra (1992)

studied about the measurements of the flexural damping. Later on, Kinra and Milligan

(1994) exhibited an analysis regarding the second law of thermoelastic damping. Burns

et al. (1995) uncovered the pressure sensor of the scaled-cavity resonant microbeam.

Givoli and Rand (1995) studied the effect of thermoelastic coupling in a rod and ob-

served that the nature of dynamic response of the structure varies significantly as the

frequency of the thermal loading of the rod is near the critical frequency. Hosaka et al.

(1995) have shown the damping characteristics of microbeam oscillators. Mihailovich

and MacDonald (1995) measured the mechanical loss of different micro-scaled-sized

vacuum operated single crystal silicon resonators and recognized the dominant loss

mechanism of the resonators. According to their examination, doping impurity losses,

surface related losses, and support related losses are three possible sources of mechan-

ical loss in the resonators. Cleland and Roukes (1996) studied about the fabrication

of high frequency nano-sized mechanical resonators from the silicon crystal. Carr and

Craighead (1997) also investigated the fabrication technique of nanoelectromechani-

cal devices in single crystal silicon. Cleland and Roukes (1999) disclosed the external

control of dissipation in a nanometer radio frequency mechanical resonators. The in-

vestigation of TED in silicon nitrate micro resonators was reported by Yasumura et al.

(1999).
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Lifshitz and Roukes (2000) extended the Zener’s work and obtained exact solution

of TED in terms of the quality factor utilizing the classical Fourier law of thermal

conduction. They demonstrated the size-dependency of resonators and observed that

the quality factor of resonators decreases even when they are built up from pure single

crystal materials. Harrington et al. (2000) studied about the mechanical dissipation

of micro-scaled single crystal gallium arsenide resonators that vibrate in torsion and

flexural modes. They analyzed that the resonance frequency changes with the change in

temperature. Kenny (2001) presented a review article on the study of nanometer-scale

force sensing with MEMS devices. Copper and Pilkey (2002) provided a thermoelas-

tic solution technique for beams with arbitrary quasi-static temperature distributions

that create large transverse normal and shear stresses. This technique calculates the

stress resultants and centroid displacements along a beam. Zhang et al. (2002) ana-

lyzed the effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS

mass sensor. Srikar and Senturia (2002) presented the closed-form expressions of TED

to estimate an upper bound on the attainable quality factors of polycrystalline beam

resonators with thickness much larger than the average grain size. Guo and Rogerson

(2003) investigated the effect of thermoelastic coupling on a micro-machined resonator

and observed that the frequency shift ratio caused by thermoelastic coupling is of the

order of 10−3, which is much larger than that of air damping. Zhang et al. (2003) gave

analytical results that show air damping generally shifts the resonant frequency down-

ward and degrades the quality factor, and that this effect increases as the dimension of

the beam decreases. Duwel et al. (2003) presented the experimental study of TED in

MEMS gyros, sensors, and actuators. Hao et al. (2003) gave an analytical model for

support loss in clamped–free and clamped–clamped micromachined beam resonators

with in-plane flexural vibrations. Wang et al. (2003) studied about the mechanical

energy losses in micromachined silicon structures and observed that surface effects will

become increasingly more important as the sizes of micromechanical devices continue
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to decrease. Datskos et al. (2004) examined the performance of micro cantilevers as

uncooled infrared detectors with optical readout. Nayfeh and Younis (2004) derived

analytical expressions for the quality factors of microplates with the help of perturba-

tion method under electrostatic loading and residual stresses in terms of its structural

mode shapes. Vengallatore (2005) studied thermoelastic damping in symmetric, three-

layered, laminated, micromechanical Euler–Bernoulli beams using an analytical frame-

work developed by Bishop and Kinra (1992). Norris and Photiadis (2005) analyzed

TED in thin plates and uncovered that the thermal relaxation loss is inhomogeneous

and depends upon the local state of vibrating flexure, specifically, the principal curva-

tures at a given point on the plate. Khisaeva and Ostoja-Starzewski (2006) examined

TED in nanomechanical resonators using the generalized thermoelasticity theory with

one relaxation time. Sun et al. (2006) established the governing equations of coupled

thermoelastic problems based on the generalized thermoelastic theory with one relax-

ation time by using both the finite sine Fourier transformation method combined with

Laplace transformation. Wong et al. (2006) analyzed TED of the in-plane vibration

of thin silicon rings. Fang et al. (2007) published a review article on the advances

in TED in micro and nanomechanical resonators. Pratap et al. (2007) studied about

the squeeze film effects in MEMS and discussed the development of squeeze film flow

modelling, tracking its routes to the air damped vibrating system studies in the early

twentieth century. Hao (2008) investigated TED in the contour-mode vibrations of

micro and nanoelectromechanical circular thin plate resonators. Prabhakar and Ven-

gallatore (2008) evaluated TED in micromechanical resonators and gave an exact theory

for TED with two dimensional heat conduction that enables a detailed evaluation of the

accuracy of the quasi one dimensional theories. Wilson-Rae (2008) analyzed the dissi-

pation mechanism that arises in nanomechanical beam structures due to the tunneling

of mesoscopic phonons between the beam and its supports. Guo et al. (2009) inves-

tigated the coupled thermoelastic vibration characteristics of the axially moving beam
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and derived the equation of motion based on the equilibrium equation and the thermal

conduction equation involving deformation term. Chandorkar et al. (2009) presented a

formulation of TED based on entropy generation that accounts for heat transfer in three

dimensions and obtained analytical closed form solutions for energy loss estimation in a

variety of resonating structures. Sun and Saka (2010) analyzed TED in microscale plate

resonators under different environmental temperature, plate dimensions and boundary

conditions. Tunvir et al. (2010) studied the effects of hollow geometry on thermoe-

lastic dissipation of tubular beam resonators of circular cross-section and derived the

expression for the quality factor. Kim et al. (2010) investigated the quality factor for

TED in rotating thin rings with in-plane vibration. Xu-Xia and Zhong-Min (2010) an-

alyzed the thermoelastic coupling vibration characteristics of the axially moving beam

with frictional contact. Sharma (2011) obtained the analytical expressions for TED

and frequency shift of flexural vibrations in a transversely isotropic thermoelastic beam

based on Euler–Bernoulli theory. Sharma and Grover (2011) derived the closed form

expressions for the transverse vibrations of a homogeneous isotropic, thermoelastic thin

beam with voids based on Euler–Bernoulli theory. They analyzed the effects of voids,

relaxation times, thermomechanical coupling, surface conditions and beam dimensions

on energy dissipation induced by TED in MEMS/NEMS resonators under clamped

and simply supported conditions. Vahdat and Rezazadeh (2011) revealed the effects of

residual and axial stresses on TED in microbeam resonators. In their study, a Galerkin

based finite element formulation has been used to analyze TED for the first mode of

vibration of the micro-beam resonator with both ends clamped and isothermal. Li et

al. (2012) presented an analytical model for the TED in the fully clamped and simply

supported rectangular microplates and obtained the quality factor by calculating the

energy dissipated per cycle of vibration over the volume of the microplate. Guo et

al. (2012) analyzed the TED in micro and nanomechanical resonators based on gen-

eralized thermoelasticity theory with dual-phase-lagging effect. Tunvir et al. (2012)
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studied thermoelastic dissipation of micro and nanobeams of elliptical, triangular or

arbitrary rectangular cross-section with accurate satisfaction of the surface thermal

condition. Guo (2013) investigated thermoelastc dissipation of microbeam resonators

in the framework of generalized thermoelasticity theory. Fang et al. (2013) presented

an analytical solution for TED in the axisymmetric vibration of circular microplate res-

onators with two dimensional heat conduction equation. Subsequently, Sun et al. (2014)

presented an analytical solution for TED in the axisymmetric vibration of laminated

trilayered circular plate resonators. Guo et al. (2014) investigated TED in circular

microplate resonators in the context of dual-phase-lag thermoelasticity theory. Tai et

al. (2014) evaluated TED in torsion microresonators with coupling effect between tor-

sion and bending. Fang and Li (2015) presented a simple analytical model for TED in

microrings with two dimensional heat conduction over thermoelastic temperature gradi-

ents along the radial thickness and the circumferential direction. Ale and Mohammadi

(2015) determined the effect of TED in nonlinear beam model of MEMS resonators by

differential quadrature method. Youssef and Alghamdi (2015) also investigated TED

in nanomechanical resonators based on two-temperature generalized thermoelasticity

theory. Zenkour (2016) gave a thermoelastic model of TED for free vibration of a

microbeam resting on pasternak’s foundation via the Green-Naghdi thermoelasticity

theory without energy dissipation. Zuo et al. (2016) investigated TED in bilayered mi-

croplate resonators and developed an analytical model in the form of an infinite series

for TED in the bilayered fully clamped rectangular and circular microplates. Guo et al.

(2016) evaluated TED in microbeam resonators using the generalized thermoelasticity

theory based on the dual-phase-lag model. Zenkour (2017) used a model of nonlocal

thermoelasticity theory of Green and Naghdi without energy dissipation to consider

the vibration behavior of a nanomachined resonator. Fang et al. (2017) computed

TED in the rectangular microplates with three dimensional heat conduction theory. Li

et al. (2017) investigated TED in free vibrating functionally graded material (FGM)
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microbeams with rectangular cross-sections by assuming the material properties to be

varied continuously in the thickness direction. Alghamdi (2017) presented analytical

expressions for deflection, temperature change, and frequency shifts for thermoelastic

vibration of microbeam resonators with voids in the frame work of dual-phase-lag hat

conduction equation. Grover and Seth (2018) established the analytical expressions for

TED and frequency shift of coupled dual-phase-lag generalized visco-thermoelastic thin

beam under clamped and simply supported boundary conditions. Kumar et al. (2018)

obtained a closed-form solution of TED for microbeam resonators under generalized

thermoelasticity theory with three-phase-lag effect. Li et al. (2018) analyzed TED in

functionally graded circular microplates based on classical plate theory and one-way

coupled heat conduction equation. Parayil et al. (2018) presented a general model to

accurately capture TED in Timoshenko beams with mid-plane stretching nonlinearity.

Zhou et al. (2019) derived the analytical TED models for rectangular cross-sectional

micro and nano ring resonators with heat conduction along the radial thickness direction

and the circumferential direction in the context of non-Fourier theory of single-phase-

lag model. Kumar and Kumar (2019) studied TED in microbeam resonators based

on three-phase-lag thermoelastic model and derived the expressions for deflection and

thermal moment by using the integral transform technique. Chen et al. (2019) formu-

lated an analytical model for evaluating TED in micromechanical resonators based on

the thermal energy method, in which thermal conduction in both thickness and axial

directions are considered. Recently, Zhou et al. (2020) developed an analytical formula

of TED in micro and nanobeam resonators with circular cross-section by adopting the

non-Fourier theory of dual-phase-lag model. Li and Ma (2020) presented a theoretical

investigation on the response of free vibration in microplates of functionally graded

material (FGM) and investigated TED of the plate resonator. Yang et al. (2020) pre-

sented an analytical TED model based on the two dimensional heat conduction in the

thickness and length directions in a bilayer microbeam with a rectangular cross-section.
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Alghamdi (2020) analyzed the vibration of a visco-thermoelastic nanobeam of silicon

nitride based on dual-phase-lag heat conduction model subjected to ramp-type thermal

loading. Selim (2020) investigated the propagation of the longitudinal waves in a single-

walled carbon nanotube considering the effects of TED. Abouelregal and Marin (2020a)

studied about the size-dependent thermoelastic vibrations of nanobeams subjected to

harmonic excitation and rectified sine wave heating. Youssef et al. (2021a) analyzed

vibration of thermoelastic silicon nitride nanobeam based on Green-Naghdi theorem

of type-II subjected to mechanical damage and ramp-type heat. Further, Youssef et

al. (2021b) constructed the numerical analysis for thermoelastic homogeneous isotropic

microbeams by using a generalized viscothermoelasticity theory with one relaxation

time with variable thermal conductivity in the context of damage mechanics definition.

Alharthi (2021) constructed a novel model by applying fractional order strain the-

ory that introduces a thermal analysis of a thermoelastic, isotropic, and homogeneous

nanobeam. Kaur and Singh (2021) studied TED in transversely isotropic thin circular

Kirchhoff–Love plate and formulated mathematical model for time-harmonic displace-

ment and temperature fields due to the Green and Naghdi theory of thermoelasticity of

type III. Yang et al. (2021) gave a generalized methodology for TED in axisymmetric

vibration of circular plate resonators covered by multiple partial coatings.

Above mentioned literature review is based on classical continuum theory. Con-

sidering small-scale effects observed in micro and nanostructures, some studies have

been reported in recent years where the authors employed the non-classical continuum

theories like, couple stress theory, modified couple stress theory, nonlocal elasticity

theory, strain gradient elasticity theory. Anthoine (2000) solved the problem of the

pure bending of a circular cylinder within the linear couple- stress theory. Park and

Gao (2006) developed a new model for bending of Euler-Bernoulli beam using modified

couple stress theory by employing a variational formulation based on the principle of

minimum total potential energy. Gao and Park (2007) provided a variational formu-
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lation for a simplified strain gradient elasticity theory by using the principle of mini-

mum total potential energy and its application to a pressurized thick-walled cylinder

problem. Maranganti and Sharma (2007) studied about nonlocal elasticity considering

surface energy effects and provided a detailed analysis for length-scales at which classi-

cal elasticity breaks down for various materials. Kong et al. (2008) solved the dynamic

problems of Bernoulli–Euler microbeams analytically on the basis of modified couple

stress theory considering simply supported and cantilever boundary conditions. Ma et

al. (2008) developed a microstructure-dependent Timoshenko beam model using a vari-

ational formulation based on modified couple stress theory and Hamilton’s principle.

This new model contains a material length-scale parameter and can capture the size

effect, unlike the classical Timoshenko beam theory. Park and Gao (2008) presented

a variational formulation based on the principle of minimum total potential energy for

the modified couple stress theory proposed by Yang et al. (2002), which leads to the

simultaneous determination of the equilibrium equations and the boundary conditions.

Kong et al. (2009) analyzed the static and dynamic behavior of Euler-Bernoulli mi-

crobeams utilizing the strain gradient elasticity theory. Tsiatas (2009) developed a new

Kirchhoff plate model for the static analysis of isotropic microplates with arbitrary

shape based on modified couple stress theory. The proposed model is capable of han-

dling plates with complex geometries and boundary conditions. Asghari et al. (2010)

investigated the size-dependent static and vibration behavior of microbeams made of

functionally graded materials (FGMs) on the basis of modified couple stress theory in

the elastic range. Wang et al. (2010) gave a formulation of a microscale Timoshenko

beam model based on strain gradient elasticity theory, and derived the governing equa-

tions of motion and boundary conditions on the basis of Hamilton principle. Şimşek

(2010) proposed analytical and numerical solution procedures for vibration of an em-

bedded microbeam under action of a moving microparticle based on modified couple

stress theory within the framework of Euler–Bernoulli beam theory. Ke and Wang
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(2011) determined the size effect on dynamic stability of microbeams made of function-

ally graded materials (FGMs) based on modified couple stress theory and Timoshenko

beam theory. Jomehzadeh et al. (2011) studied about the size-dependent vibration

analysis of microplates based on modified couple stress theory. Najafi et al. (2012)

evaluated TED and derived the expression of the quality factor in an electrostatically

deflected microbeam resonator based on modified couple stress theory and hyperbolic

heat conduction model. Ke et al. (2012) developed a Mindlin microplate model based

on modified couple stress theory for the free vibration analysis of microplates. Natghi

et al. (2012) have shown the effect of shear deformations of functionally graded mi-

crobeams based on modified couple stress theory. Rashvand et al. (2013) revealed the

analysis on the size-dependent behavior of a capacitive circular microplate considering

the variable length-scale parameter in view of modified couple stress theory. Ghayesh

et al. (2013) investigated the nonlinear forced vibrations of a microbeam employing the

strain gradient elasticity theory. Taati et al. (2014) presented an explicit formulation

for coupled thermoelasticity addressing a Timoshenko microbeam based on strain gra-

dient and non-Fourier heat conduction theories. Mohammad-Abadi and Daneshmehr

(2014) studied about the buckling analysis of three different microbeam models; Euler–

Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory utilizing

modified couple stress theory. Rezazadeh et al. (2015a) proposed a TED model for a

nonlocal nanobeam resonator based on GN-III theory and nonlocal elasticity theory.

Further, Rezazadeh et al. (2015b) presented a detailed analysis of bias DC voltage

effect on TED ratio in short nanobeam resonators based on nonlocal elasticity theory

and dual-phase-lagging heat conduction model. Khanchehgardan et al. (2015) revealed

the effect of mass diffusion on the damping ratio in microbeam resonators based on

modified couple stress theory and the Euler-Bernoulli beam assumptions. Kakhki et al.

(2016) established an analytical method to study on TED and dynamic behavior of mi-

crobeam resonators using modified coupled stress theory and the generalized theory of
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thermoelasticity with one relaxation time. Razavilar et al. (2016) investigated TED in

rectangular microplate resonator using modified couple stress theory under plane stress

condition. Yu et al. (2017) studied on the size-dependent damping of a nanobeam

using nonlocal thermoelasticity and nonlocal elasticity theories which is an extension of

Zener, Lifshitz, and Roukes’ damping model. Kumar and Devi (2017) discussed about

the response of thermoelastic functionally graded beam due to ramp type heating in

modified couple stress with dual-phase-lag model. Hosseini (2018) reported a size-

dependent analytical solution for nonlocal coupled thermoelasticity analysis in a heat

affected MEMS/NEMS beam resonator based on Green–Naghdi theory. Borjalilou and

Asghari (2018) analyzed small-scale effect of plates with TED utilizing modified cou-

ple stress theory and dual-phase-lag heat conduction model. Bostani and Mohammadi

(2018) investigated TED in microbeam resonators in view of modified strain gradient

elasticity theory and generalized thermoelasticity theory with one relaxation time. Bor-

jalilou et al. (2019) also investigated TED in microbeams considering modified couple

stress theory and dual-phase-lag heat conduction model. Borjalilou and Asghari (2019)

revealed the analysis of TED in microbeams based on size-dependent strain gradient

theory and generalized thermoelasticity theory with dual-phase-lag effects. Kumar

et al. (2019) studied vibration in thermoelastic thin beam based on modified couple

stress theory with three-phase-lag thermoelastic diffusion model subjected to thermal

and chemical potential sources. Further investigations on TED in micro/nanobeam

and plate resonators can also be found in the work recently reported by Hamidi et

al. (2020), Abouelregal and Marin (2020b), Awrejcewicz et al. (2020), Borjalilou and

Asghari (2021), Devi and Kumar (2020), Zhou and Li (2021), Zhao et al. (2021), Ge

et al. (2021) and Shi et al. (2021).
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1.6 Objective of the Thesis

The main objective of the present thesis is to study TED in vibrating micro and

nanomechanical resonators under the impact of some recently developed generalized

thermoelasticity theories. It also attempts to investigate the size-dependent vibrations

of mechanical resonators considering MCST and Eringen’s nonlocal elasticity theory. In

order to analyze TED, beams and plates are considered as micro and nanomechanical

resonators. The present investigations contain basically two main parts: analysis of

TED by deriving the formula of the quality factor for beams and plates, and analysis of

dynamic behavior of beams by finding analytical solution for deflection, temperature,

and thermal moment.

The performance of the mechanical resonators is highly dependent on TED. The

less value of TED offers better performance of the resonators. Therefore, the attempt

is made for the analysis and minimization of TED in micro and nanobeam/plate res-

onators by deriving the expression of the inverse quality factor. The equations of motion

are first derived and analytically solved by following frequency approach as well as en-

tropy generation approach methods. Experimentally, it has been observed that TED

is size-dependent. Therefore, in order to capture the size effect, MCST and Eringen’s

nonlocal elasticity theory are used in the current work. To understand the impact of

thermal and elastic fields on TED, the generalized thermoelasticity theories are taken

into account. Moreover, the effects of non-classical continuum theories and generalized

thermoelasticity theories on TED are analyzed in detail.

This thesis also attempts to illustrate the dynamic behavior of thermoelastic micro

and nanobeam resonators utilizing MCST and nonlocal elasticity theory in the frame-

work of generalized thermoelasticity theories. In order to analyze the thermoelastic

vibrations of beams, Euler-Bernoulli beam and Timoshenko beam models are adopted

here. The equations of motion are first derived, and then analytically solved for simply
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supported beams using finite Fourier sine transform together with Laplace transform

methods. The analytical solutions are obtained for deflection, temperature, and ther-

mal moment by considering the case when a uniform load is applied to the upper surface

of the beam. The effect of phase-lag time associated with generalized heat conduction

equations on deflection, temperature, and thermal moment of beam are investigated.

Further, the surface effects due to the curvature generated by the bending of the beam

are also analyzed in the present work. Moreover, the impacts of small-scale parameter,

phase-lag time, length, thickness, and surface of the beam on the vibrational responses

of deflection, temperature, and thermal moment over time are thoroughly analyzed.
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