CONTENTS

TITLE	E PAG	E		i
CERT	IFICA	\mathbf{TE}		iii
DECL	ARAT	ION BY	THE CANDIDATE	v
COPY	RIGH	T TRAP	NSFER CERTIFICATE	vii
DEDI	CATIC	\mathbf{N}		ix
ACKN	OWL	EDGEM	ENTS	xi
CONT	ENTS			xv
LIST (OF FIG	GURES		xxi
LIST (OF SY	MBOLS		xxv
ABBR	EVIA	FIONS		xxvii
PREF	ACE			xxix
1 IN7	FROD	UCTION	I AND LITERATURE REVIEW	1
1.1	Micro	and Nano	p-Electromechanical Systems and Applications	1
	1.1.1	Micro ai	nd nanomechanical resonators	2
	1.1.2	Quality	factor of mechanical resonators	3
	1.1.3	Energy 1	loss mechanisms in resonators	4
		1.1.3.1	Air damping	4
		1.1.3.2	Internal friction	5
		1.1.3.3	Gas damping	5
		1.1.3.4	Anchor losses	5
		1.1.3.5	Thermoelastic damping	5

	1.2	Classi	cal and Non-Classical Continuum Theories	9	
		1.2.1	Modified couple stress theory	10	
		1.2.2	Nonlocal elasticity theory	11	
	1.3	Some	Beam and Plate Theories	11	
		1.3.1	Euler-Bernoulli beam theory	11	
		1.3.2	Timoshenko beam theory	12	
		1.3.3	Kirchhoff plate theory	13	
	1.4	Therm	noelasticity	14	
		1.4.1	Lord-Shulman (LS) thermoelasticity theory	16	
		1.4.2	Green-Naghdi (GN) thermoelasticity theory $\hfill \ldots \hfill hfill \ldots \hfill \ldots \hfill \ldots \hfillt$	17	
		1.4.3	Dual-phase-lag (DPL) thermoelasticity theory $\ldots \ldots \ldots$	18	
		1.4.4	Three-phase-lag (TPL) thermoelasticity theory	19	
		1.4.5	Thermoelasticity theory with a single delay term $\ldots \ldots \ldots$	19	
		1.4.6	Moore-Gibson-Thompson (MGT) thermoelasticity theory	20	
	1.5	Litera	ture Review	20	
	1.6	Objec	tive of the Thesis	31	
n	тU	FDN <i>IC</i>	THE ASTIC DAMPING ANALYSIS IN MICDO AND NAM	`	
4	111.	IERMOELASTIC DAMPING ANALYSIS IN MICRO AND NANO-			
	BE	AMRI	ESONATORS BASED ON HEAT CONDUCTION MODEL		
	BE. WI	AM RI TH A	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM	33	
	BE WI 2.1	AM RI TH A Analy	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat	33	
	BE 2 WI 2 2.1	AM RI TH A Analy Condu	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	33 33	
	BE 2 WI 2.1	AM RJ TH A Analy Condu 2.1.1	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	33 33 33	
	BE 2 WI 2 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	33 33 33	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	33 33 33 35 36	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	33 33 33 35 36 38	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	 33 33 35 36 38 41 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term	 33 33 35 36 38 41 45 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion nonclusion Nanobeam Resonators Utilizing Entropy Gen-	 33 33 35 36 38 41 45 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion Notestic Damping in Nanobeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term	 33 33 35 36 38 41 45 46 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration 2.2.1	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion noelastic Damping in Nanobeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term Introduction ²	 33 33 35 36 38 41 45 46 46 46 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration 2.2.1 2.2.2	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion noelastic Damping in Nanobeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term Introduction ² Problem formulation	 33 33 35 36 38 41 45 46 46 47 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration 2.2.1 2.2.2 2.2.3	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion noelastic Damping in Nanobeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term Introduction ² Problem formulation	 33 33 35 36 38 41 45 46 46 47 48 	
	BE WI 2.1	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration 2.2.1 2.2.2 2.2.3 2.2.4	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion noelastic Damping in Nanobeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term Introduction ² Problem formulation TED in nanobeam resonators	 33 33 35 36 38 41 45 46 46 47 48 48 	
	 BEA WI7 2.1 	AM RJ TH A Analy Condu 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Therm eration 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	ESONATORS BASED ON HEAT CONDUCTION MODEL SINGLE DELAY TERM sis of the Quality Factor of Microbeam Resonators Based on Heat action Model with a Single Delay Term Introduction ¹ Problem formulation Unified heat conduction equation Solution for thermoelastic damping Numerical results and discussion conclusion nambeam Resonators Utilizing Entropy Gen- n Approach and Heat Conduction Model with a Single Delay Term Introduction ² Problem formulation Solution for harmonic vibration	 33 33 33 35 36 38 41 45 46 46 47 48 48 50 	

SO	N THE	RMOEI	LASTICITY THEORY	Ę
3.1	Therm	oelastic	Damping Analysis in Microbeam Resonators Based on	
	Moore	-Gibson-	Thompson Generalized Thermoelasticity Theory	
	3.1.1	Introduc	e^{1}	,
	3.1.2	Governi	ng equations	
	3.1.3	Problem	formulation	
	3.1.4	Initial a	nd boundary conditions	
	3.1.5	Solution	of the problem	
	3.1.6	Numeric	al results and discussion	
	3.1.7	Conclusi	on	
3.2	Small-	Scale Effe	ect on Thermoelastic Vibration of Microbeam Consider-	
	ing Mo	odified Co	ouple Stress Theory and Moore-Gibson-Thompson Ther-	
	moelas	sticity Eq	uation \ldots	
	3.2.1	Introduc	$tion^4$	
	3.2.2	Problem	formulation	
		3.2.2.1	Microbeam resonator and assumptions $\ldots \ldots \ldots$	
		3.2.2.2	The modified couple stress theory	
		3.2.2.3	The MGT thermoelasticity theory	
		3.2.2.4	Equation of motion of microbeam based on MCST $$	
	3.2.3	Solution	for deflection and thermal moment of microbeam $\ . \ .$.	
	3.2.4	Numeric	al results and discussion	
		3.2.4.1	Results validation	
		3.2.4.2	Effect of length-scale parameter	
	3.2.5	Conclusi	on	
3.3	Surfac	e Energy	Effects on Thermoelastic Vibration of Nanomechanical	
	System	ns under M	Moore-Gibson-Thompson Thermoelasticity and Eringen's	
	Nonlo	cal Elasti	city Theories	
	3.3.1	Introduc	ction^5	
	3.3.2	Problem	formulation	
		3.3.2.1	Beam deformation considering surface effects	
		3.3.2.2	The Euler-Bernoulli beam theory	
		3.3.2.3	Nonlocal elasticity theory in an Euler-Bernoulli beam .	

			3.3.2.4	Equations of coupled thermoelasticity based on MGT	
				theory	96
		3.3.3	Solution	for deflection and temperature	97
		3.3.4	Numeric	cal results and discussion	100
			3.3.4.1	Small-scale effects	102
			3.3.4.2	Surface energy effects	103
			3.3.4.3	Effects of aspect ratios of the nanobeam	105
			3.3.4.4	Influence of phase-lag time	106
		3.3.5	Conclus	ion	108
4	SIZ	E-DEF	PENDE	NT THERMOELASTIC DAMPING ANALYSIS	
_	IN	NANC) BEAM	RESONATORS BASED ON ERINGEN'S NON-	
	LO	CAL E	LASTIC	CITY AND MODIFIED COUPLE STRESS THE-	
	OR	IES			111
	4.1	Introd	$uction^6$		111
	4.2	Proble	em formul	lation	113
		4.2.1	TED in	Euler-Bernoulli nanobeam resonators	113
		4.2.2	Coupled	thermoelastic equations based on modified nonlocal cou-	
			ple stres	s (MNCS) theory	114
	4.3	Soluti	on of the	problem	116
		4.3.1	Solution	for temperature field	116
		4.3.2	Solution	for quality factor	117
	4.4	Result	s and dis	cussion	120
		4.4.1	Validati	on of results	121
		4.4.2	Effects of	of nonlocal parameter on TED	122
		4.4.3	Couple	stress effect on TED	123
		4.4.4	Influenc	e of phase-lag parameter	124
	4.5	Conclu	usion		126
5	RE	SPON	SE OF I	DEFLECTION AND THERMAL MOMENT OF	
	TIMOSHENKO MICROBEAMS CONSIDERING MODIFIED COU				
	PLI	e str	ESS TH	EORY AND DUAL-PHASE-LAG HEAT CON-	
	\mathbf{DU}	CTIO	N MOD	EL	129
	5.1	Introd	luction ⁷		129
	5.2	Proble	em formul	lation	131
		5.2.1	Governi	ng equations for Timoshenko microbeam	131
		5.2.2	The DP	L heat conduction model \ldots	134

	5.3	Solution of the problem	138
	5.4	Results and discussion	140
	5.5	Conclusion	148
6	TH	ERMOELASTIC DAMPING ANALYSIS FOR SIZE-DEPENDE	NT
	MI	CROPLATE RESONATORS UTILIZING MODIFIED COUPLE	
	STI	RESS THEORY AND THREE-PHASE-LAG HEAT CONDUC-	
	TIC	ON MODEL	151
	6.1	$Introduction^8 $	151
	6.2	Formulation	152
		6.2.1 The TPL heat conduction model	153
	6.3	Solution of the problem	158
	6.4	Results and discussion	162
	6.5	Conclusion	172
7	\mathbf{SUI}	MMARY OF THE THESIS AND FUTURE SCOPE	174
	7.1	Summary	174
	7.2	Future Scope	180
BI	BLI	OGRAPHY	182
PUBLICATIONS AND CONFERENCES 204			

LIST OF FIGURES

1.1.1	Flow chart depicting the theory behind thermoelastic damping	6
2.1.1 2.1.2	Deformation of an Euler-Bernoulli beam	35
	for aspect ratio 30.	43
2.1.3	TED versus h for aspect ratios 25 and 30 under TPL, GN-III, LS, and present models	44
2.1.4	Effect of time delay parameter on TED versus normalized frequency for	11
	fixed aspect ratio 25	45
2.2.1	Variation of Q^{-1}/Δ_E versus non-dimensional frequency ξ for fixed $k^* = 90$	
2.2.2	and aspect ratio (a) $L/h = 25$ and (b) $L/h = 30$.	54
2.2.2	Variation of Q^{-1}/Δ_E versus non-dimensional frequency ξ for fixed $k^* = 156$ and aspect ratio (a) $L/h = 25$ and (b) $L/h = 30. \dots \dots \dots \dots$	55
2.2.3	Variation of Q^{-1}/Δ_E versus non-dimensional frequency ξ for fixed $k^* =$	
0.0.4	200 and aspect ratio (a) $L/h = 25$ and (b) $L/h = 30$	55
2.2.4	Variation of Q^{-1}/Δ_E versus beam thickness h for (a) $k^* = 90, (b)$ $k^* = 156$, and (c) $k^* = 200.$	56
3.1.1	Simply supported microbeam subjected to a uniform load initially applied	
	on the upper surface of the beam	62
3.1.2	Variation of dimensionless deflection with respect to the dimensionless time	
	for middle point of the beam. \ldots	70
3.1.3	Variation of the deflection difference $(\phi_0 - \phi)$ with respect to the dimen-	
	sionless time for middle point of the beam	70
3.1.4	Variation of the dimensionless thermal moment with respect to the dimen-	
	sionless time for the middle point of the beam.	71
3.1.5	Variation of the dimensionless deflection with respect to dimensionless time	
	for varying dimensionless parameter $k'_0 (k'_0 \gg 1, k'_0 = 1, k'_0 \ll 1)$	71
3.1.6	Variation of the dimensionless thermal moment with respect to dimension-	
	less time for varying dimensionless parameter k'_0 ($k'_0 \gg 1$, $k'_0 = 1$, $k'_0 \ll 1$).	72

3.1.7	Variation of the dimensionless deflection with respect to dimensionless time
	for different values of applied load on the upper surface of the beam 72
3.1.8	Variation of the dimensionless deflection with respect to dimensionless time
	for different values of the beam length
3.1.9	Variation of the dimensionless thermal moment with respect to dimension-
	less time for different values of the applied load on the upper surface of
	the beam
3.1.10	Variation of the dimensionless thermal moment with respect to dimension-
	less time for different values of the beam thickness
3.1.11	Variation of the dimensionless thermal moment with respect to dimension-
	less time for dierent values of the beam length
3.1.12	Effects of phase-lags on the dimensionless thermal moment with respect
	to the dimensionless time of the beam
3.2.1	Variation of deflection and thermal moment versus time under classical
	theory and MCST
3.2.2	Variation of deflection and thermal moment under MGT, GN-III, and LS
	models
3.2.3	Variation of deflection and thermal moment versus time for different values
	of length-scale parameter
3.3.1	Simply supported nonlocal Euler-Bernoulli nanobeam with uniform load
	on the upper surface
3.3.2	Responses of deflection and temperature versus time
3.3.3	Responses of deflection and temperature versus time
3.3.4	Effects of nonlocal parameter on deflection and temperature versus time. $.\ 103$
3.3.5	Effects of surface residual tension and surface elastic modulus on deflection
	versus time
3.3.6	Effects of surface residual tension and surface elastic modulus on temper-
	ature versus time. \ldots
3.3.7	Effects of aspect ratios on deflection versus time
3.3.8	Effects of aspect ratios on temperature versus time
3.3.9	Effects of phase-lag time on deflection and temperature versus time 107
4.4.1	Variation of TED (Q^{-1}/Δ_E) under MNCS, nonlocal elasticity, MCST,
	and classical theories
4.4.2	Effects of nonlocal parameter on TED by fixing material length-scale pa-
4.4.2	rameter as constant
4.4.3	Effects of material length-scale parameter on TED by fixing nonlocal pa-
	rameter as constant
4.4.4	Effects of phase-lag time on TED under MNCS theory

5.2.1	Geometry of Timoshenko microbeam (a) loading and the introduced co- ordinate system (b) cross-section of microbeam
5.4.1	Response of normalized midspan deflection of microbeam w.r.t. dimensionless time considering classical theory and MCST for fixed $l/h = 0.3$. 142
5.4.2	Response of normalized midspan deflection of microbeam w.r.t. dimensionless time considering MCST for LS, DPL, and Fourier heat conduction models for fixed $l/h = 0.3.$
5.4.3	Response of normalized midspan thermal moment of microbeam w.r.t. dimensionless time considering classical theory and MCST for fixed $l/h = 0.3144$
5.4.4	Response of normalized midspan thermal moment of microbeam w.r.t. dimensionless time considering MCST for LS, DPL, and Fourier heat conduction models for fixed $l/h = 0.3$
5.4.5	Response of normalized midspan deflection of microbeam w.r.t. dimen- sionless time considering MCST for varying aspect ratios (a) $l/h(l/h = 0, 0.4, 1)$ and (b) $l/h(l/h = 0.5, 1, 2)$
5.4.6	Response of normalized midspan thermal moment of microbeam w.r.t. di- mensionless time considering MCST for varying aspect ratios (a) $l/h(l/h = 0, 0.3, 0.6)$ and (b) $l/h(l/h = 0, 5, 1, 2)$
5.4.7	Response of normalized midspan deflection of microbeam w.r.t. dimension- less time considering MCST for varying aspect ratio $L/h(L/h = 4, 6, 10)$ and for fixed $l/h = 0.3. \ldots 146$
5.4.8	Response of normalized midspan thermal moment of microbeam w.r.t. dimensionless time considering MCST for varying aspect ratio $L/h(L/h =$ 4, 6, 10) and for fixed (a) $l/h = 0$, (b) $l/h = 0.3$, (c) $l/h = 0.6$
5.4.9	Effect of phase-lags on the normalized midspan thermal moment of microbeam w.r.t. dimensionless time considering MCST for fixed $l/h = 0.3$. 147
6.2.1	Schematic diagram of a rectangular microplate
6.4.1	Behavior of normalized frequency shift $([Re(\omega) - \omega_0] / \omega_0 \Delta_E)$ as a function of dimensionless variable ξ
6.4.2	Behavior of normalized frequency shift $([Re(\omega) - \omega_0] / \omega_0 \Delta_E)$ and normal- ized attenuation $(Im(\omega) / \omega_0 \Delta_E)$ as a function of dimensionless variable
6.4.3	Variation of TED in microplate resonator with different values of $\frac{l}{h}$ as a function of the dimensionless variable ξ for first mode $(m = 1, n = 1)$ 165
6.4.4	Variation of TED in microplate resonator with different values of $\frac{b}{h}$ as a function of the dimensionless variable ξ for first mode $(m = 1, n = 1)$ 165

6.4.5	Variation of TED in microplate resonator with different values of $\frac{L}{h}$ as a
	function of the dimensionless variable ξ for first mode $(m=1,n=1).$ 166
6.4.6	Variation of TED as a function of dimensionless variable ξ for different val-
	ues of phase-lag parameters in case of simply supported (SSSS) boundary
	condition for first mode $(m = 1, n = 1)$
6.4.7	Variation of TED as a function of dimensionless variable ξ for different val-
	ues of phase-lag parameters in case of clamped-clamped (CCCC) boundary
	condition for first mode $(m = 1, n = 1)$
6.4.8	Variation of TED in microplate resonator with different values of $\frac{l}{h}$ as a
	function of the thickness h for first mode
6.4.9	Variation of TED in microplate resonator with different values of b as a
	function of the thickness h for first mode. $\dots \dots \dots$
6.4.10	Variation of TED in microplate resonator with different values of L as a
	function of the thickness h for first mode
6.4.11	Variation of TED in microplate resonator with $l = 1 \mu m$ as a function of
	the thickness h for simply supported and clamped edges of the microplate
	for first mode
6.4.12	Variation of TED in microplate resonator with different values of the mi-
	croplate thickness h as a function of the length scale parameter l for first
	mode