7 Spatially Homogeneous Cosmological Mod-

els in f(R,T) Gravity Theory

7.1 Introduction

General relativistic cosmological models provide a framework for the investigation of
evolution of the universe. Present cosmology is based on the Friedmann-Robertson-
walker(FRW) model. In this model, the universe is completely homogeneous and
isotropic which is in good agreement with the observational data about the large
scale structure of the universe. The adequacy of a FRW model for describing the
present state of the universe is no basis for expecting that it is equally suitable for
describing the early stages of evolution of the universe. There are theoretical argu-
ments (Misner (1968), Chimento (2004)) and recent experimental data of the cos-
mic microwave background radiation which support the existence of an anisotropic
phase that approaches an isotropic one (Land and Maguejo (2005)). This stipulates
search for anisotropic cosmologically acceptable models of the universe at least in

its early stages of evolution.

The content of this chapter has been published in Electronic Journal of Theoretical

Physics 12(32), 58-68 (2014).
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7.1. Introduction

It is believed that the early universe evolved through some phase transitions
thereby yielding a vacuum energy density which is at present is at least 118 orders of
magnitudes smaller than in plank time (Weinberg (1989)). Such a discrepancy be-
tween theoretical expectations and empirical observations constitutes a fundamental
problem in the interface uniting astrophysics, particles physics and cosmology is the
cosmological constant problem. The recent cosmological observations obtained by
type la supernova (Riess et al. (1998),(1999), Perlmutter et al. (1999), Tonry et al.
(2003)), large scale structure (Tegmark et al. (2004), Seljak ct al. (2005), Percival
et al. (2007), Kamatsu et al. (2009)), baryon oscillation (Eisenstein et al. (2005))
and weak lens (Jain and Tayler (2003)) have suggested that the expansion of the
universe is accelerating. These observations seem to change the entire picture of
our matter filled universe. It has been observed that a fluid known as dark energy
with large negative pressure is responsible for this acceleration. Many dark energy
models have been proposed to explain the cosmic accelerated expansion (Copeland
et al. (2006)). The cosmological constant A, responsible for cosmic accelerated
expansion, is the simplest candidate of dark energy (Sahni and Starobinsky (2000),
Padmnabhan (2003)).

In recent years, there has been a lot of interest in alternative theories of gravi-
tation (Brans and Dicke (1961), Canuto et al. (1977), Saez and Ballester (1985)).
In view of the late time acceleration of the universe and the existence of the dark
matter and dark energy, very recently, modified theories of gravity have been devel-
oped. Noteworthy amongst them are f(R) theory of gravity formulated by Nojiri

and Odintsov (2003) and f(R,T) theory of gravity proposed by Harko et al. (2011).
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7.2.  The Metric and Field Equations

Harko et al.(2011) developed a generalized f(R,T) gravity theory where the
gravitational Lagrangian is given in terms of any arbitrary function of the Ricci
scalar R and the trace 1" of the energy-momentum tensor 7;; and obtained field
equations in metric formalism from FEinstein- Hilbert type variational principle.
They have presented several models corresponding to three explicit forms of the
function f(R,T).

In this chapter, we investigate a general Bianchi space-time model filled with a
perfect fluid in f(R,T) gravity theory. Exact solutions of the field equations are ob-
tained explicitly by choosing the average factor a(t) = v/t"ef, where n is a positive
constant. The chapter is organized as follows: In Sec.(7.2), we present the space-
time metric and the field equations for a perfect fluid distribution in f(R,T') gravity
theory for the particular form of f(R,T) = R + 2AT, where A is a constant. We
obtain a new class of exact solutions of the field equations in Sec.(7.3). In Sec.(7.4),
we discuss some physical and dynamical properties of the model. In Sec.(7.5), we
study the stability of the solution by invoking a cosmological perturbative approach.

Finally, conclusions are summarized in the last Sec.(7.6).

7.2 The Metric and Field Equations

We consider the diagonal form of the metric of general class of Bianchi type cosmo-

logical models given by

ds* = dt* — A%dx® — B*e **dy* — C%e " d2>. (7.1)
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7.2.  The Metric and Field Equations

The metric (7.1) corresponds to a Bianchi type-IIT model for m = 0, type-V model
for m = 1, type-VIy model for m = —1 and type- VI, model for all other m = h—1.
The field equations in f(R,T) theory of gravity for the function f(R,T) =
R+ 2f(T), when the matter source is perfect fluid, is given by Eq.(6.2).
Choosing comoving coordinates, for particular choice of the function f(7) =
AT, where A is a constant, the field equations (6.2), for the metric (7.1), can be

explicitly written as:

AB BC CA m2+m+1

BB oA yE = Ap — (87 + 3)\)p, (7.2)
g+g+§—g—%=(8w+w)p—kp, (7.3)

% g % — Z—z = (87 + 3\)p — Ap, (7.4)

= ng%—%:(&rJrS/\)p—)\p, (75)
i B o

Equations (7.2)-(7.6) are nonlinear differential equations with five unknowns A, B,
C, p and p.

The average scale factor a(t) is defined by

W=

a(t) = (ABC)s. (7.7)
Now, we take the following ansatz for the average scale factor as
a(t) = vVitret, (7.8)

n being a positive constant. Pradhan and Amirhashchi (2011) and Saha et al. (2012)

examined this form of the scale factor to study accelerating dark energy models in

119



7.2.  The Metric and Field Equations

Bianchi type—V space-time and a two-fluid scenario for dark energy models in an
FRW universe respectively. Pradhan (2013) assumed this form of a(t) to discuss
some features of Bianchi type-V Iy models in the presence of a perfect fluid that
has an anisotropic equation of state parameter in general relativity. This choice of
average scale factor yields a time- dependent deceleration parameter such that be-
fore the DE era, the corresponding solution gives the inflation and radiation/matter
dominated era, with subsequent transition from deceleration to acceleration. For
n = 0, this choice of scale factor gives an exponential law of variation for the scale
factor. The choice (7.8) of the average scale factor is physically acceptable. From

Egs.(1.34) and (7.8), the time-dependent ¢(t) is obtained as
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Figure 7.1: The plot of deceleration parameter ¢ vs. cosmic time ¢

From Eq.(7.9), it is clear that ¢ > 0 for t < v/2n —n and ¢ < 0 for t > v/2n — n.
For 0 < n < 2, the model is evolving from deceleration phase to acceleration
phase. Recent observations of SNe Ia have shown that the present universe is
accelerating and ¢ lies in the range —1 < ¢ < 0. Thus, the model has accelerated
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7.3.  Cosmological Solutions

expansion at present epoch which in consistent with recent observations of Type
la supernova. Figure (7.1) depicts the deceleration parameter ¢ versus time which
gives the behavior of ¢ from decelerating to accelerating phase for different values

of n.

7.3 Cosmological Solutions

We now obtain physically realistic cosmological models to describe the decelerating
and accelerating phases of the universe. We assume that as = V' where b be any
constant number. Then, from Eqs.(7.6), (7.7) and (7.8), we obtain the explicit

solutions of A, B and C as follows:

3(1+mb—b)
A= (t"eh) 2mi (7.10)
it 3(1+2m7;b;2mb)
B = (t"e")” z2m (7.11)

C = (t"e)?. (7.12)

Thus, the metric (7.1) can be written in the form

3(14+mb—b) 3(1+m—b—2mb)

ds® = dt* — (t"e') " i da? — (t"e') T e 2 dy? — (t"eh)e TP dR%. (7.13)

In the next section, we discuss the physical and kinematical behaviors of the model

(7.13).

7.4 Physical and Geometrical Behaviors of the Model

The Hubble parameters H,, H, and H, have values given by

3(1 — b+ mb) n
o=y (1 + ?) , (7.14)
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7.4. Physical and Geometrical Behaviors of the Model

3(1+m —b—2mb) n
H, = 14— 1

Y 2(m + 2) ( t ) ’ (7.15)

3b n
H.=5 (1+7). 7.16
5 (1t (7.16)

The average Hubble’s parameter H has the value given by
H—1(1+@) (7.17)
2 t)’ '

The dynamical scalars o, # and anisotropy parameter A,, are given by

o2 — 3[18m?2b?* + 18mb* — 12m?b — 12mb + 2m? + 18b* + 2m — 12b + 2] (1 + 9)2

8(m + 2)2 t
(7.18)
3 n
h—2° (1 —) , 7.19
2 - t ( )
A= 2[9m?b* + 9mb* — 6m?b — 6mb + m* + 9b* + m — 6b + 1]. (7.20)
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Figure 7.2: The plot of shear scalar o vs. cosmic time ¢t for m=1.5, n= 0.5, b=1.5

The energy density and isotropic pressure of the model are given as

1 3
8(A2 + 67\ + 872) [4t2(m +2)

P = 2{3(7’L + t)z(AAl — 87TA2 — 3)\142)
+2nA(m?b + mb — m* — 3m — 2b — 2)}

+{(87 + 3A\)(m* + m + 1) — mA}(e't") ™ (7.21)

M]
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7.4. Physical and Geometrical Behaviors of the Model
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Figure 7.3: The plot of matter densityp vs. cosmic time ¢ for m=1.5, b=1.5, n=0.5

and A = 0.05

1 3
8(AZ + 6w\ + 872) | 4t2(m + 2)

p= 5 {3(71 + t)2(87TA1 + 3)\141 - /\AQ)

+(16n7 + 6nA)(m?*b + mb — m* — 3m — 2b — 2)}

—3(1+mb—b)

(8T + 2)\) — (m? + 1)A}(ett")w] (7.22)

where A; = 3b*(m? +m+1) —3b(m? +m) + (m*+2m+1) and Ay = —3b*(m* +

m+1)+2b(m?*+m+1)+ (1 +m) are constants.

presurre (p)
(6]

\ | n n 0 P . " .
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
cosmic time (t)

Figure 7.4: The plot of pressure p vs. cosmic time ¢ for m=1.5, b=1.5, n=0.5 and

A=0.05

123



7.4. Physical and Geometrical Behaviors of the Model

The scalar curvature R for the model is given by

9(n +t)* 2 2, 12 2

—3(14+mb->b

3
(1+m—b—2mb)+b(m+2)(2—mb—2b+m)}—t—?—(m2+m+1)(t"et) 7 (7.23)
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Figure 7.5: The plot of Ricci scaler R vs. cosmic time ¢ for m=1.5, b=1.5, n=0.5

and A=0.05

From the above results, we observe that the spatial volume is zero at t = 0
and it increases with the increase of t. The expansion scalar is infinite at ¢ = 0.
These show that the universe starts evolving with zero volume at ¢ = 0 and expands
with cosmic time ¢. All the three directional Hubble’s parameters and the average
Hubble parameter diverge at ¢ = 0. These indicate that the model has a point-
type singularity at ¢ = 0. From Figures (7.2), (7.3) and (7.4), we observe that the
physical parameters o, p and p diverge at t = 0. As t — oo, the scale factors and
volume become infinite where p and p approach to zero and expansion scalar 6 and
shear scalar o obtain constant value. Since the anisotropy parameter A,, is constant
throughout the passage of time, the model is anisotropic for all time. We also see
from fig.(7.5), scaler curvature R is positive throughout the whole evolution of the
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7.4. Physical and Geometrical Behaviors of the Model

universe and R — 0 as t = oo and R — oo when ¢ — 0 showing initial singularity
at t = 0. It is interesting to note that for the model with n = 0, we get ¢ = —1,
indicating that the universe is accelerating.

For the physical acceptability of the solutions, firstly it is required that the
velocity of the sound v, = 3—/’; should be less than velocity of light c¢. As we are
working in the gravitational units with unit speed of light, the velocity of sound

must exist within the range 0 < vy < 1. Here the speed of sound is obtained as
Vg = ——= (7.24)

where

P(t) = 18(8TA; +3XA; — AAy) (n* +nt) + (16n7 +6nX) (m*b+mb—m?* —3m —2b—2)

b—b)

+12(nt? + %) (m + 2)(1 + mb — b){m(87 + 2\) — (m* + 1))\}(t"et)% (7.25)

and
Q(t) = 18(A\A; — 81 Ay — 3AAy)(n? + nt) + 12nA\(m?b + mb — m?* — 3m — 2b — 2)

H12(n82 %) (m+2) (1+mb—b) {m(8m+3A\) (m2+m+1)—mA} (7e!) iz, (7.26)
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Figure 7.6: Plot of sound velocity v, vs. t for m=1.5, b=1.5, n=0.5 and A=0.05

It is clear from fig. (7.6) that vs < 1 throughout the evolution of the universe.
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7.4. Physical and Geometrical Behaviors of the Model

Secondly, the weak energy (WEC), dominant energy (DEC) and strong energy
(SEC) conditions: (i) p > 0, and p+p >0, (ii) p > 0and p—p > 0 and (i)

p+3p>0and p+ p > 0 should be satisfied identically.

20

"
o

p-p

L T T T
[ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
cosmic time (t)

Figure 7.8: Plot of DEC vs. time ¢t for m=1.5, b=1.5, n=0.5 and A=0.05
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Figure 7.9: Plot of SEC vs. time t for m=1.5, b=1.5, n=0.5 and A=0.05
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7.5.  Stability of the model

From figures (7.3), (7.7) , (7.8) and (7.9), it can be seen that these energy condi-
tions are identically satisfied throughout the evolution of universe. From the above
discussion we find that our model is physically consistent with the present day

observations.

7.5 Stability of the model

We now check the stability of the solution by metric perturbation method (Chen
and Kao (2001)) by the same procedure as done in chapter 5, Sec.(5.5).

The background volume scalar Vg of the model (7.13) is given by
Vg=tzez. (7.27)
Substituting the value of Vg in Eq.(5.47) and integrating, we obtain

I —3n -3 1 3t
ob; = cit%e% Wittaker M <_n —n >

- — 7.28
4 7 4 + 27 2 (7.28)
where ¢; is a constant of integration. Therefore, the actual fluctuations, for each

expansion factor da; = ap,db;, are given by

(7.29)

—-3n —3n 1 3t
4 7 4 2°2 )

da; = Cit%e% Wittaker M <— — 4+

From Eq.(7.29), we observe that for n > 1, da; approaches zero. Consequently, the

background solution is stable against the perturbation of the graviton field.

7.6 Conclusions

In this chapter, we have studied a general spatially homogeneous and anisotropic
Bianchi space-time model in f(R,T) theory of gravity in the presence of a per-
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7.6. Conclusions

fect fluid source having initial singularity at ¢ = 0. Einstein’s field equations have
been solved by choosing the average scale factor a(t) = Vtret, which yields a time-
dependent deceleration parameter. The derived model represents expanding, shear-
ing and non-rotating universe which does not tend isotropy for all large time . We
have discussed the physical and geometrical behaviors of the cosmological model.
The variation of the physical parameters have been shown graphically. It is shown
that model starts expanding from a decelerating phase to an accelerating phase. By
cosmological perturbation method, we have shown that our model is stable. Also,
the cosmological model is physically acceptable in concordance with the fulfillment
of energy conditions WEC, DEC and SEC. The cosmological solution presented
in this chapter may be useful for better understanding the characteristics in the

evolution of the universe within the framework of f(R,T") theory of gravitation.
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