6 Anisotropic Bianchi Type-III Cosmologi-

cal Models in f(R,T) Gravity Theory

6.1 Introduction

Over the last decade, the most significant progress in astrophysics and cosmology
is the observational evidence that the present universe is undergoing a phase of ac-
celerated expansion. This late time accelerated expansion of the universe has been
confirmed by high redshift supernovae experiments (Riess et al.(1998), Perlmutter
et al.(1999) and Bennett et al.(2003). Also, observations such as cosmic background
radiation (Spergel et al. 2003) and large scale structure (Tegmark (2004)) provide
an indirect evidence for late time accelerated expansion of the universe. Currently
there are two different approaches to address the cosmic acceleration issue. One
approach is to introduce various scalar fields of matter in Einstein gravity such
as quintessence, phantom fields, tachyon field, Chaplygin gas etc and also cosmic
fluids with anisotropic equation of state (Akarsu et al.(2010)). The other approach

is based on modification of the Einstein-Hilbert action to get alternative theories

The contents of this chapter have been Published in Prespacetime Journal 5(8), 753-757

(2014) and Indian J Physics 87(12), 1283-1287 (2013).
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of gravity such as f(R) gravity (Nojori and Odintsov (2007)), f(7T') gravity (Fer-
raro and Fiorini (2007)), Gauss-Bonnet gravity (Carroll et al.(2005)). Harko et
al.(2011) have introduced another extension of GR, known as f(R,7") modified the-
ory of gravity, where the gravitational Lagrangian is given by an arbitrary function
of the Ricci scalar R and the trace T of the energy-momentum tensor. The authors
suggested that the coupling of matter and geometry leads to a model which de-
pends on a source term representing the variation of the energy-momentum tensor
with respect to the metric. This theory has been recently introduced as modifica-
tions of Einstein’s theory possessing some interesting solutions which are relevant
in cosmology and astrophysics. Adhav (2012) have investigated LRS Bianchi type-I
model in f(R,T) theory of gravity. Houndjo et al.(2013) investigated f(R,T") grav-
ity models to reproduce the four known finite-time future singularities. Sharif and
Zubair (2012) considered two forms of the energy-momentum tensor of dark com-
ponents and demonstrated that the equilibrium description of thermodynamics can
not be achieved at the apparent horizon of Friedmann-Robertson-Walker (FRW)
universe in f(R,T) gravity. Alvarenga et al. (2013) tested some f(R,T) gravity
models through energy conditions. Pasqua et al. (2013) studied a particular model
f(R,T) = pR+ vT which describes a quintessence-like behavior and exhibits tran-
sition from decelerated to accelerated phase.

FRW models, being spatially homogeneous and isotropic in nature, are best fit
for the representation of the large scale structure of the present universe. however,
it is believed that the early universe may not have been exactly uniform. Thus,

the models with anisotropic background are the most suitable to describe the early
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stages of the universe. Bianchi type models are among the simplest models with
anisotropic background. Lorenz-Petzold (1982) have studied exact Bianchi type-I1I
solutions in the presence of electromagnetic field. Shri Ram (1989) has presented
some analytic solutions to Einstein’s field equations with perfect fluid in Bianchi
type III space-time. Singh et al.(1991) studied some Bianchi type-IIT cosmolog-
ical models in Saez Ballester theory of gravitation. Shri Ram and Singh (1992)
investigated cosmological models of Bianchi type-III in presence of stiff matter in
Lyra geometry. Tikekar and Patel (1992) presented Bianchi type-1II cosmologi-
cal models of massive string in the absence and presence of magnetic field. Singh
and Shri Ram (1997) developed a technique to generate new exact Bianchi type-111
cosmological solutions of massive string in the presence of magnetic field. Upad-
haya (2008) explored some magnetized Bianchi type-III massive string cosmological
model in general relativity. Adhav et al.(2009) obtained an exact solution the vac-
uum Brans-Dicke field equations for the metric tensor of spatially homogeneous
anisotropic Bianchi type-III model. Shamir (2011) discussed the plane symmetric
vacuum Bianchi type-III cosmology in f(R) gravity. Reddy et al.(2013) have ob-
tained a dark energy model with the equation of state parameter in f(R,T) gravity
in Bianchi type-III space time in presence of a perfect fluid source.

In this chapter, we study spatially homogeneous and anisotropic Bianchi type-
III cosmological models with perfect fluid within the framework of f(R,T) theory of
gravity. In Sec.(6.2), we present the metric and field equations. We obtain exact so-
lutions to the field equations by two methods in Sec.(6.3). Finally, some concluding

remarks are given in Sec.(6.4).
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6.2 The Metric and Field Equations

We consider the spatially homogeneous and anisotropic Bianchi type-III metric in
the form

ds® = dt* — A*(t)dz® — e ™ B*(t)dy® — C*(t)d~* (6.1)

where A, B and C' are cosmic scale factors and m is a positive constant.
The field equations in f(R,T) theory of gravity for function f(R,T) = R +

2f(T), when the matter source is a perfect fluid, are given by (Harko et al.(2011))
1
Rij = 5 Rgyy = 8Ty + 2] (T) Ty + [2p)'(T) + [(T)] gy (6.2)

For a perfect fluid source energy momentum tensor T;; is given by (1.26).
In comoving coordinates, the field equations (6.2) with particular choice of the

function f(T') = AT, where \ is a constant, for the metric (6.1) are obtained as

follows:
B C BC
5t6 T e = (87 +3\)p — Ap, (6.3)
A C AC
1t et ap = BT +H3Np =, (6.4)
A B AB m?

Z+§+E_F:(8W+3/\)p_/\p7 (65)

AB AC  BC m?

Bract e - @3N+, (6.6)
A B

Integration of Eq.(6.7) provides B = ¢ A, where ¢; is a constant of integration.

Without loss of generality, we take ¢; = 1, so that

B=A. (6.8)



6.2. The Metric and Field Equations

Using Eq.(6.8), the field equations (6.3)-(6.6) reduce to

Z+5+—A = (87T+3>\)p—)\p,
24 A2 m?
2t g T BT,
A2 24C m?
ye + ac s — (8T 4+ 3X)p+ Ap.

For the metric (6.1) dynamical parameters are given by
V =d’=AC.

The expansion scalar 6 and shear scalar o2 arc given by

,_1(4_cY
> ~3\a" ¢

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

For any physically relevant cosmological model, the Hubble parameter and the

deceleration parameter are the most important observational quantities. Berman

(1983) and Berman and Gomide (1988) proposed a law of variation of Hubble

parameter in FRW model that yields a constant value of the deceleration parameter

leading to viable forms of the scale factor, one of power law form and other of

exponential form. Recently, several author (Singh and Kumar(2006) , Singh et al

(2008), Singh (2009a, 2009b), Singh and Beesham (2010), Sharif and Zubair (2012a,

2012b)) have generalized these assumptions in anisotropic model and have taken

the constant value of deceleration parameter and derived decelerating/accelerating

models of expanding universe.
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6.3 Solutions of Field Equations

In this section, we obtain exact solutions of the Eqs.(6.9)-(6.11) for physically real-

istic cosmological models.

6.3.1 Solution by Special Law of Variation of Hubble Param-
eter

Since f(R,T) gravity theory is concerned about the accelerated phase of the uni-
verse, we consider ¢ as a negative constant. Then solution of Eq.(1.34) can be
written as

a=(at+ B)T (6.15)

where o # 0 and (3 are constants of integration. This equation implies the condition
of accelerated expansion as 1 4+ ¢ > 0 In order to solve the non-linear differential
equations (6.9)-(6.11), Reddy et al. (2012) have assumed that the expansion scalar
in the model is proportional to shear scalar, which implies A = C",n # 1. Instead
of assuming the above condition, here we assume the relationship between the scale
factor C' and the spatial volume V of the form C' = V® (Chaubey and Shukla
(2012)), where b is a constant. Using this form of C' in Eq.(6.12) and Eq.(6.15), we

obtain the solutions for A and C as follows:
3(1=b)

A= (at+ B)207a), (6.16)

C = (at + B)THo. (6.17)
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Hence, by a suitable choice of the coordinates and constants, the metric of the

solutions (6.16) and (6.17) can be written in the form
3(1-b) -
ds® = dt* —t o {dx® + e ™ dy?} — £0%0 22, (6.18)

For the model (6.18), the kinematical parameters are obtained as follows:

Volume : V = tﬁ, (6.19)
. 3
Expansion scalar : § = 3H = ———— (6.20)
(14 q)t
3 /1-3b\"1
R
Shear scalar : 0% = 1 <1—+q> 2 (6.21)
1
Anisotropy parameter : A, = 5(1 — 3b)>. (6.22)
The energy density and pressure for the model (6.18) are obtained as
= ! 31 -b) {247 + 4\ + 727mb + 36Ab + 4)q}
P N (84302 [4(1 1 g2 1
81 + 2\ )m?
—%1 , (6.23)
t O+q)

1 1-
[ 3(1—b) {407 — 727 — 327wq + 12X — 12M\q — 24\b}

D= 8r 1302 — A2 |4(1 + g2

8T + 2X\)m?
—%l (6.24)

t 0+9)

For a physically realistic model we take b < 1. We observe that the spatial
volume V' is zero at ¢ = 0. Therefore, the model starts evolving with a big-bang
type singularity at ¢ = 0. At this epoch 6, H, o, p and p all have infinite values.
These parameters are decreasing functions of time. As t — oo, the physical and
kinematical parameters all tend to zero while scalar volume increases with time,
which shows the late time acceleration of the universe. Since lim; .o, § # 0, the
model does not approach isotropy throughout the evolution of the universe.
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6.3.2 Solutions by Generating Techniques

In this section, we derive algorithms for generating new solutions of field equations
given by Eqgs.(6.9)-(6.11) for Bianchi type-III space time in f(R,T) gravity theory
by using the procedure similar to that of Hajj-Boutros (1986), Ram (1989), Singh
and Ram (1995).

From Egs.(6.9) and (6.10), we obtain

____;__:0, (6.25)

A C
R=7, §=2 (6.26)

Using Eq.(6.26)) into Eq. (6.25), we get

. . m
R+2R2—S—52—RS—F=0. (6.27)

Eq.(6.27) can be regarded as A Ricatti equation in S or R. If we regard Eq.(6.27)

as a Ricatti equation in S, we linecarize it by the change of function

1
S =5+ X (628)

where Sj is a particular solution of Eq.(6.27), so that

2

S’0+S§+RSO—R—2R2+%=O. (6.29)

Substituting Eq.(6.28) in Eq.(6.27), then using Eq.(6.29) and integrating the result-

ing differential equation, we obtain

dt
X = AC} {/A—(J§+k1} (6.30)
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where k; is an integration constant. Finally, from Eqgs.(6.27) and (6.30), we obtain
the new scale factor C' given by

di
€= Coe /AC2{ i+k}
0 AC? 1

+ ky (6.31)

where ks is another constant of integration. Thus, for the couple [A, Cyl, Eq.(6.31)
allows us to obtain the new couple [A, C] where A stays invariable.
If we treat Eq.(6.27) as a Ricatti equation in R, then using the same procedure

as above, we obtain the formula

dt
A= Apexp /2Ag ot
S G+ ks

+ky (6.32)

to generate a new couple [A, C] starting from the known couple [Ag, C] where C
stays invariable, and k3 and k, are integration constants.

Reddy et al. (2012) have presented a solutions of field equations given by
Eqs.(6.9)-(6.11) representing Bianchi type-III cosmological model with perfect fluid
source in f(R,T) gravity theory with the help of a special law of variation of
Hubble’s parameter, proposed by Berman (1983), which yields a constant value
of deceleration parameter. It may be noted that most of the well known models
in general relativity and scalar-tensor theories of gravitation including inflationary
models have constant deceleration parameter. Assuming ¢ as a negative constant,
since f(R,T) gravity theory is about accelerated expansion of the universe, metric

of their solutions with negative deceleration parameter ¢ is given by
ds? = dt? — T [dz? + e~ 2™ dy?] — ¢ 422, (6.33)

This model is physically significant for discussion on the early stages of evolution

of the universe.
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We now use metric (6.33) to generate new solutions of field equations by ap-

plying the generating algorithms given by Eqs. (6.31) and (6.32).

6.3.2.1 Model I

To apply Eq.(6.31), we take
A = tTFGEF) | Oy = tTFaED (6.34)

Then performing integrations in Eq.(6.31), we obtain

(2n+1)g—(n+2)

C = Kt 0roCn+n) (6.35)

where K is log ko and k; is set to zero. Therefore, metric of the new solution can

be written as

2(2n+1)g—2(n+2)

ds? = dt? — tTTaGD [da® + e 2" dy®] —t~ TraeeiD dz?, (6.36)

The metric given by Eq.(6.36) represents a Bianchi type-I1I perfect fluid model in
f(R,T) gravity theory with following physical and kinematical prameters:

Spatial volume V' of the model (6.36) is given by

{@n+1)(A+q)+3(n—-1)}

V=t Gtomt) (6.37)

We observe that spatial volume is zero at ¢ = 0 if n > 1. Clearly the volume
increases as time increases and ultimately becomes infinite at late time. Therefore
for physical reality of the model (31), we must have n > 1. The deceleration

parameter ¢; in this model is given by

32n +1)(1+q)
3n—1)+ 2n+ 1(1+q)

g =—1+ (6.38)
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The second term on right hand side is always greater than unity since it fulfills
the requirements n > 1 and 1 + ¢ > 0. This model decelerates in a standard way
which is not in accordance with present day scenario of accelerating universe. It
may be noted that Bianchi models represent cosmos in its early stage of evolution.
However, in spite of fact that the universe, in this case, decelerates in a standard
way, it should accelerate in finite time due to cosmic recollapse where the universe
in turns inflates "decelerates and then accelerates".

Hubble parameter H, expansion scalar 6 , shear scalar o and anisotropic pa-

rameter A, are given by

Cn+1)(1+q)+3(n—1)
(1+q)(2n+1)
_1(2-4¢\"1
“ _3<1+q> 2 (6.40)
1802 + {(2n+ 1)g— (n+2)12 = 3{6n+ (2n+ 1)g — (n + 2)}?2
{6n+(2n+1)g— (n+2)}?

1
0 =3H = . (6.39)

a !
3
(6.41)

Thus, the model is expanding, shearing and anisotropic for all time.

The physical parameter, energy density p and pressure p have values given by

1 3n
- 8nm — 2n\ + 14\ + 32
g A2 — (81 + 3X)? {(1+q)2(2n+1)2t2{( nm — 2n\ + + 327)
81 + 2\)m?
+(32n7 + 1604 + 167 + 80)q} — M] . (6.42)
AGEReTEay

1 3n
8m+3A)2 =A% [ (1+¢)*(2n+1)

p= ( 2tz{(éLOmT + 14n\ — 167 — 10))

(87 + 2\)m?

t +a)(@n+1)

—(32nm + 16nA + 167 + 8\)q} — } . (6.43)

We observe that this model has a big-bang type singularity at ¢t = 0 since n > 1.
The kinematical parameters H, 6 and o diverge at initial epoch while they vanish

112

= constant.



6.3. Solutions of Field Equations

for large values of t. Energy density and pressure diverge at initial epoch and they

2

o2 1 (2—9)%(2n+1)?
= 3 D A3 1)7& 0, the model does

tend to zero for large time. Also, lim; .,

not tend to isotropy for large ¢ .

6.3.2.2 Model II

We now apply Eq.(6.34) to generate new couple [A, C] starting with [Ag, C] where
Ay = t<1+q>3(3n+1>7 C = t(1+q>?2n+1>_ (6_44)

Then, performing integrations of Eq. (6.34) and putting k3 = 0 and M = log kx4,
we obtain

(2n+1)g+4(1—n)

A = Mt 20F9@En+D | (6.45)

With a suitable choice of the coordinates and M = 1, metric of the solution can be
written in following form

(2n+1)g+4(1—n)

ds? = di? —t (raenin {da? + e 2T dy?} — (T 42, (6.46)

For the model (6.46), spatial volume V' is given by

(2n+1)(g=2)+9

V =t GroGerD (6.47)

which is zero at ¢ = 0 if 0 < n < 1. The volume scalar is expanding function of
time and ultimately becomes infinite with late time.

Deceleration parameter go of this model is given by

3(2n +1)(1+ q)
2n+1)(1+q)—6(n—1)

G =—1+ (6.48)

where 0 < n < 1and 14+¢ > 0. The second term on right hand side is always greater

than unity since it fulfills the requirements 0 < n < 1 and 1+ ¢ > 0. Therefore,
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this model is expanding with decelerating expansion rate.

The expressions for kinematical parameters H, 6, o and A,, are found as

2n+1)g—(“4n—-"T)1

O3 = ey v (649
, 1 (2-¢\"1
-t <m) =, (6.50)
_L[{@nt D +40 —n)? + 18— 6{(2n+ g+l —m) +3)7) _ .
Am_3[ 2{(2n + 1)g + 4(1 — n) + 3}? = Constant.
(6.51)

For model (6.46), the energy density and pressure are obtained as

! {4(1 —) =20 Va0 100+ 20 — smn)

PN 8302 | (149220 + 122

87+ 2\)m?

t d+r9@ntD

1 {4(1 —n)+ (2n+ 1)q{(167T +2X — 14n\ — 40n7)

P an2— x| (11 q2@2n+ 122

+q(4nm — X\ = 2n\ — 27m)} — (6.53)

4(1—n)+(2n+1)q
t (14+q)(2n+1)

(87 + 2/\)m2]

o2 _ 1 (2-7(2n+1)?

Also, limy 00 fr = ) # 0 . This model has a big-bang type singularity

12 2n+1)q—(4n—7

at t = 0 for 0 < n < 1. Kinematical and physical behaviors of the model are same

as that of model I.

6.4 Conclusions

In this chapter we have studied an anisotropic Bianchi type - III cosmological model
filled with a perfect fluid in f(R,T) theory of gravity. In Sec.(6.3.1), we have ob-

tained the solutions of field equations by applying the special law of variation of
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Hubble parameter that yields a negative constant value of the deceleration param-
eter. It is observed that the model has a big-bang singularity at ¢ = 0 and shows
a late time accelerated expansion of the universe for large time. All the kinemat-
ical and physical parameters diverge at the initial singularity and ultimately tend
to zero for large time. The anisotropy in the model of the universe is maintained
throughout the evolution of the universe. This model and its properties throw a
better understanding of the accelerated expansion of the universe.

In Sec.(6.3.2), we have derived new algorithms for generating new solutions of
the field equations for Bianchi type III space-time filled with perfect fluid in f(R,T")
gravity theory. Starting with the solution due to Reddy et al. (2012), we have pre-
sented two new classes of cosmological models which have point-like singularities
at initial time ¢ = 0. At this initial epoch, all the physical parameters p, p, 0, o
and H diverge and are decreasing functions of time, which ultimately approach to
zero for large time. Thus, the models essentially give empty space for large time.
Since anisotropic parameter A,, is constant, anisotropy in the models is maintained

throughout the passage of time.
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