Chapter 6

Watson wavelet transform:
Convolution product and two

wavelet multipliers

6.1 Introduction

The wavelet transform is of great importance for the analysis of non-stationary sig-
nals and provides the information of time-frequency representation at a time. Many
researchers exploited the theory of the wavelet transform and explored their research
works in the areas of mathematical sciences and engineering. The concept of the
wavelet transform is heavily depended on the theory of convolution and each integral
transform has its own convolution with its rich calculus. Using the theory of convo-
lutions of different integral transforms, many problems of the wavelet transform have
been solved by many mathematicians. Using the convolution theory of the Fourier

transform, Wong [27] discussed the boundedness of wavelet multipliers and signals.
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In 2000, Du and Wong [17] obtained the traces of localization operator on a separa-
ble complex Hilbert space and got many important results. In 2001, Du and Wong
[18] observed the trace formula for wavelet multipliers as a bounded linear operator
in the trace class from L?(R") into L?*(R™) and were able to compute the trace of
n-dimensional Landau-Pollak-Slepian operators. Wong et al. [77] studied the trace
formula for two-wavelet multipliers. In 2002, Wong [78] proved an LP-boundedness
result for the localization operator associated to left regular representations of locally
compact and Hausdorff groups and gave an application of the wavelet multiplier. In
2003, Wong et al. [79] found the resolution of the identity formula for a localization
operator with two admissible wavelets on a separable and complex Hilbert space
and the traces of these operators. Wong et al. [34], examined the boundedness and
compactness of the localization operator on various functional spaces in terms of the
wavelet multiplier. In the same year, Pinsky [52] developed the Heuristic treatment
of the wavelet transform and its inversion formula by exploiting the theory of the

Fourier transform.

For the consideration of the Hankel transform, the theory of Hankel convolution is
introduced by Haimo [25], Hirschmann [28] and many others. Using this theory,
Pathak and Dixit [44] introduced the Bessel wavelet transform and studied many
properties. Motivated from the results of [44, 49], many authors extensively studied
the characterizations of Bessel wavelet transform on certain functional spaces and
applied this theory in Sobolev spaces and other problems of mathematics. Taking the
Hankel transform theory, Pathak et al. [51] considered the Bessel wavelet convolution
product and its properties. Upadhyay et al. [68] found the relation between the

Bessel wavelet convolution product and Hankel convolution.

Motivated from the above results and concepts, our main objective in this chapter is

to study the relation between the Watson wavelet convolution product and Watson



Chapter 6. Watson wavelet transform..... 135

convolution by exploiting the theory of the Watson transform. Later on, we shall
also find the relation between the Watson wavelet convolution product and Watson
two wavelet multipliers involving the Watson transform. Using the same technique
the relation between the trace class of Watson two wavelet multipliers and Watson

wavelet convolution product will be established.

The present chapter is organized by the following way:

Section 6.1 is introductory, which gives the brief history and motivations of the entire
research work. In Section 6.2, the Watson wavelet convolution product is formally
defined, after that we found the relation between the Watson wavelet convolution
product and Watson convolution and its various properties. In Section 6.3, we use
the results of Pinsky [52] and found the Heuristic treatment of the Watson wavelet
transform and its inversion formula by exploiting the theory of the Watson trans-
form. In Section 6.4, taking Watson wavelet transform, two-wavelet multipliers are
introduced and their various properties studied. The relation between the Watson

wavelet convolution product and two-wavelet multipliers are obtained.

With the help of [67], we give the definition of the Watson wavelet for ) € LP(0, 00)
1
Unalw) = Darth(@) = Datb(b,) = —(=, =), (6.1.1)
From (1.4.10), we have

a

Balz) = & /Ooow(é, Z 2 ea)iz, (6.1.2)
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where b > 0 and a > 0.

Using (6.1.2), the Watson wavelet transform is defined by

W (b,a) = (W) (b a) = ($(1), na(t)) (6.1.3)
- / () Tral)dt

_ /Oooas(t)(% /Oow (§£z> P()dz ) di

_ é/ooo /OOO gb(i)w (g £z> D(2)d=dt, (6.1.4)

provided the integral is convergent.

With the help of [67, p. 644], we sce that above integral is convergent for ¢ €
LP(0,00) and ¢ € L%(0, 00)

[(Wyd) (b, a)| < [llpl[)ally < oo

If ¢ and + are in L*(0,00) N L*(0,00), then the following Parseval formula holds:

/0 T (W) () (W) (1)t = / " be)v(e)de. (6.1.5)

From [67, p. 643], the continuous Watson wavelet transform of a function ¢, €

LY(0,00) N L?(0, 00)

Wob)(b) = [ Kb (Vo)) V) ) (6.1.6)

For [ € L?(0,00) and g € L*(0,00), we state the Parseval formula of the Watson

wavelet transform as

/oo /00 (Wwf)(b, Cl)(ng)(bv a)dadb =
0 0

a

Cy(f. 9), (6.1.7)
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where Cy satisfy the admissible condition for ¢ € L?(0, 00), which is given below

Cy = /OOC de. (6.1.8)

w

Remark: The Watson transform is generalization of Hankel transform. Exploiting
the theory of the Hankel transform, Bessel wavelet convolution product was studied

in the paper [44, 67, 68].

6.2 Watson wavelet convolution product

In this section, the Watson wavelet convolution product is introduced and its asso-
ciated results are obtained by exploiting the theory of the Watson transform. We
also find the relation between Watson wavelet convolution product and Watson con-
volution.

For finding the properties of Watson wavelet convolution product, we formally define

Wy (f @ g)(b, a) = (Wy f) (b, a)(Wyg)(b, a). (6.2.1)

Theorem 6.2.1. Let f,g € L'(0,00) N L?(0,00) and (W1)(w) # 0. Then the

Watson wavelet convolution product can be written in the following form:

(f®9)(z) = / " (rea§) )9y} dy,

where

(Tzaf)(y / f(@)Wo(z,y, z)dx
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Wale,y, 2) = /0 ) /0 RO k() (W) (at) (W) (a€) La(t, €, 2)dede.

La(t,6,2) = / k) k(E) Quly, 2)dy.

and

Proof. From (6.1.6), we have

WI(Wy0)(b, a)l(w) = (W) (aw)(W¢)(w).

Putting ¢ = f ® g, in the above expression (6.2.2)

WWy(f ®@ g)(b, a)l(w) = (W) (aw)(W (f © g))(w).

Thus

(W) (aw)(W (f @ g))(w) = W[Wy(f @ g)(b, a)](w).
Using (6.2.1), we have

(W) (aw)(W (f © g))(w) = WI(Wyf)(b, a)(Wyg)(b, a)l(w).

In view of (6.1.6), we get

(W) (aw)W (f @ g)(w)

= W{W W £)(@) (W) (aw)] (b)WH[(Wg) (w) (W) (aw)] (b) }.

(6.2.2)

(6.2.3)
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By the definition of the Watson convolution, we get

(W) (@)W (f @ g)(w)
= WV (W ) (@) (We(aw))#(W g) (w) (Wi (aw)) } (b))
= (W) (w) (W) (aw)# (W g)(w) (W) (aw).

Let F, = (W f)(w)(Wv)(aw) and Gy = (Wg)(w)(W1)(aw). Then we have

(W) (aw)W (f @ g)(w) = (FaftGa)(w)

/ / w(w, € n)déds.

From (1.4.7), we write

(W) (aw)W(f @ g)(w) = (Fa#Ga)(w)

/ow/f:a © ([ nbenmoman ) dean.
/</ Bl d")(/G Eu)s ) )iy

/OO WF,)( (y)k(wy)dy.

Therefore
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By the inversion formula of the Watson transform (1.4.2), we get

teae = [ g ([T R C mk ) b

- [Corawwew ([0 4

- / T WE) ) (WG (4)Qu(y, 2)dy. (6.2.4)

where

_ [T Rw2)kwy) ”
Quly,z) = /O o) () d d (Wy)(aw) # 0.

Therefore, by using value of F, and G, in (6.2.4), we find that

(f ®9)(2)
= [ (] rnveranov o) ([T swomommared)
X Qaly, 2)dy
- [T [Cwvoramoe i ([ ok )
X dtd€

- /ow /OOO(WWO<Ww><a€><Wf><t><Wg>(§>La<t,g,z)dtdg,

where

La(t,6,2) = / k() Qu(y, 2)dy.
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Thus, we have

deae = [ [Toroemoe ([ rese) ([ o)

X a(t, &, z)dtdf
-/ ) / " f@)a)( / ) / " Rk (at) (W) (at) (W) (a6 Lu(L £, 2)

x dtdg) drdy

/ / f(z (x,y, z)dzdy, (6.2.5)

where

Walz,y, 2) = /O ) /0 " ROk (at) (W) at) (W) (a€) La(t, €, 2)dtde.

Therefore, (6.2.5) yields the required result

(f @) / / £ ()9 ()Wl y, =)dady

=/O<Tzaf><><> .

]

Theorem 6.2.2. Let f,g € L'(0,00) N L?(0,00). Then the Watson convolution

product can be written in the following form.:

Ey - [W(f @ g)lw)
- [" [ ovnomwaeue.ns ([ TR iies ) o

(6.2.6)
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where
v a

Ey z/mmda.

Proof. From (6.1.6), we have

WI(Wy0)(b, a)l(w) = (W) (aw)(W¢)(w). (6.2.7)

Putting ¢ = f ® g, in the above expression

WWy(f @ g)(b, a)l(w) = (W) (aw) (W (f & g))(w). (6.2.8)

Thus

(W) (aw)(W(f © g))(w) = WWy(f @ g)(b, a)](w). (6.2.9)
Using (6.2.1), we have

(W) (aw)(W(f @ g))(w) = WI(Weyf)(b, a)(Wyg)(b, a)](w). (6.2.10)

In view of (6.1.6), we get

(W) (aw)W(f @ g)(w)

= W{W (W £)(w) (W) (aw)] ()W [(Wg) (w) (W) (aw)] (b)}. (6.2.11)

By the definition of Watson convolution, we get

(W) (@)W (f © g)(w)
= WV H{(W ) (w)(Wih(aw))# (W g) (w) (We(aw)) } (b))
= (W) (w) (W) (aw)#(Wg) (w) (W) (aw).
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Let F, = (W f)(w)(W¢)(aw) and G, = (Wg)(w)(W1))(aw). Then we have

(W) (aw)W (f @ g)(w) = (Fa#Ga)(w) (6.2.12)
/ / w(w, &, n)dEdn. (6.2.13)

Putting the value of F, and G, in (6.2.13), the R.H.S of the above expression will
be

(Fu4G.) / / (W 1) (@) V) (an) (W g) (w) (W) (a€ (. €, m)ded
(6.2.14)
Therefore using (6.2.12) and (6.2.14)
/ S ww(aw)

/ // (W ) (@) (W) (an)(Wg) (w )(Ww)(aé)w(w,é,n)dgdn>

a

Thus, we can write

WS ®g)(w) / T We)aw)

a
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This implies

Ey-W(f@g)w)

_ / ) ( / ) / S f)(wxwm(w)w(w,5,n><ww><an>(<ww><as>d5dn) =3

where

B, = /OO V)aw) (6.2.15)

O

Theorem 6.2.3. Let ) € L?(0,00) be the basis wavelet and satisfies the admissibility

condition
00 W 2
c, :/0 Mda‘ (6.2.16)
Then
/°° |(W¢)(awL(W¢)(aﬁ)|da <Cy. (6.2.17)
0
Proof. Let

[, [ WV yten)

a al/2ql/2

By applying the Holder’s inequality, we get

W) a) W) anl (= (W)@ N = (e, V7
/ </ A )

a (al/?)? (al/?)?

Therefore, we have

[, ¢ oy

a
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]
Theorem 6.2.4. Let f,g € L*(0,00), then we have
W (f ® g)(w) = C,(Wf#Wg)(w). (6.2.18)
Proof. Let
| @weg < [T <—(Wfl)/§a")da”2) (Wji)/ﬁ“g) 1”) -
0 0
If we put an = u and aé = v, then we get
oo da [ [ (W) (u)du'/? (W) (v) dv'/?
/o (WQP)(CW)(WW(@S); —/O <(u/77)1/2 i/ ) <(U/§)1/2 3 > '
Taking u = v, we have
> a a _ > dul/? (W) (u) w2
| e - | ( ><(u)1/2d )
N 0
— (6.2.19)

Using (6.2.19) in (6.2.6), we obtained

Ey - W(f@9)]
/ / V)t €) ([T 2 ) nde
0. [ / (W 1)) (W g) €, m, E)nde

= Dy (W) #(Wg))(w).
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Thus

W ® g)(w) = g—;<Wf#Wg><w>

= (W f#Wg)(w),

where O:Z) = g—i ]

Lemma 6.2.5. Let f,g € L'(0,00)NL?(0,00) and W f,Wg € L*(0,00) N L*(0, 00),

then we have the following relation
(f @ g)(w) = Cy(fg)(w)  ae
Proof. From above Theorem 6.2.4, we have
W(f @ g)(w) = Cy(W f#Wg)(w). (6.2.20)

Taking inverse Watson transform on both sides in (6.2.20), we get

W W (f @ g)(w)) = W CL (W f#Wg)(w))
= C,W (W f#Wg)(w))

= CuWH (W f) ()W (Wg)(w').
Therefore,

(f®g)(w) = C;,(fg)(w) a.e. (6.2.21)
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Theorem 6.2.6. Let f € LP(0,00), g € L¥(0,00) then for 1 < p,p’ < oo and

¢ € LU(0,00) N LI (0,00) such that 1 + & =1 and : + =1
Wellf @ 9)(b,a)] < 11111l llg1lal 1] (6.2.22)
Proof. Using (6.2.1), we have
Walf © 9)(b,a) = (Wu.f) (b, @) (Wog) (b, 0).
Using (6.1.6), we get
Walf @ g)(b.a) = W (W ) @) W) (a@w)) ()W (Wg) )W) (aw) ) (b)

Applying convolution formula (1.4.14)

Wu(f ® g)(b,a) = W (W (f#)(b)) (0)W ™ (W (g#¢) (b))
= [(f#9) (0)]|(g#¢) (b)]
< [ f1lplle 1l 1gllal 1o

Theorem 6.2.7. Let f € L*(0,00), g € L*(0,00) then

e dadb
/0 /0 W«p(f@g)(b,a)c; < If[l2llgll2- (6.2.23)

Proof. Using (6.2.1), we have

[ wreaea=E = [ [T arnmaovee.0 T2
0 0 0 0

a
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Using (6.1.7), we obtained

(AWAmWQU@mxa@m”bzcmugw

a

By using Cauchy-Schwartz inequality, we get the required result

a

R dadb
A A Wy(f @ g)(b,a) == < Cyll[lallg]>

O
Theorem 6.2.8. Let f,g € L'(0,00) N L?(0,00), then we have
W (f @ g)lla < Cyll fI1]lgll2- (6.2.24)
Proof. Using Theorem 6.2.4, we have
IW(f @ 9)lla = CyllW f#Wgll2
< CllW f11IWglls
< Cyll fllllgll-
O

Theorem 6.2.9. Let k,(w) = (Wg,)(w) forn € N and ¢(w) = (W f)(w) satisfy the
following conditions:

1. kp(w) >0,0 <w< o0,

2. [ kn(w)dw =1,w0=0,1,2.....

8. lim [ kp(w)dw =0, for each § > 0.

n—oo

4. ¢p(w) € L*(0,00).
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5. ¢ s continuous at wy.

Then

lim W (f ® g,)(wo) = C,(W f)(wo), where C}, defined in theorem (6.2.4).
n—oo

Proof. From (6.2.18), we write

W(f @ gn)(wo) = Cy(W f#W gn) (wo)

= O} ($#h) (w0). (6.2.25)

Let

I = (¢#kn)(wo) — ¢(wo)
/ / e (2)w (w0, w, ) dwda. (6.2.26)

Since ¢ is continuous at wyp, then for given € > 0, there is a § > 0 so small that

|b(w) — d(wp)| < € for |w — wy| < 4.

Let

L = / / d(wo) ]k (x)w(wo, w, x)dwdz (6.2.27)
and

I :/5 /0 [p(w) — P(wo)]kn(z)w(wo, w, x)dwdz. (6.2.28)
Now

L] < / / 16(w) — (o) ()0, w, ) oz

<ol [ ( / oy 2)d ) (o)

= 2||¢||Oo/5 k,(x)dx, since (/0 w(wo, w, T)dw = 1) .
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Taking limit n — oo in the last expression and using (3.), we get lim I, = 0.
n—oo

Now we have

| < / / () ()0, 0, ) ooz

// () w(wo, w, ) dwdz
<[ <w0,m>dw)kn<@dx

s
< e/ kn(z)dz < e.
0

Therefore, hm ||I || <e. Since € is arbitrary, we have lim I = 0.
n—o0

From (6.2.25), we have

Tim W(f @ gn)(wo) = lim Cy(¢#kn)(wo)
= Cy(wo)

= Cy(Wf)(wo).

6.3 Heuristic treatment of the Watson wavelet
transform

In this section, we discussed the heuristic treatment of the Watson wavelet transform

and investigated inversion formula of Watson wavelet transform.

Theorem 6.3.1. Let (W, f)(b,a) be the Watson wavelet transform and (W, f)(b, a)

be the adjoint Watson wavelet transform on a function f € L*(0,00) with respect to
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the wavelet v € L*(0,00). Then
< da
f= / WiWof—, (6.3.1)

0 a
where f(t) = k(t§).
Proof. Watson wavelet transform is given by

W) ba) = [ Fe)natiar
0

From (6.1.2), we find

(Wd)(b,a) = /0 T G /O T <§ 2 z) @(z)dz) dt. (6.3.2)

Putting f(t) = k(t£) in (6.3.2), we get

On choosing é = u, we obtained

(Wy) (b, a) = 2/000 </Ooo k(Eua)w <§u z) @(z)dz> du x a
d

- ( [ ewap ﬁu) u> B(2)dz

_ / k(b Yk(Eza)(2)dz

= k() (W)(af). (6.3.4)
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Now taking adjoint operator of Watson wavelet transform and using (6.3.4), we get

(WIW,0)(t) = / <Ww><b 0o (t)db

0

= (Wy) af ( )E(z)dz> db  (6.3.5)
=W w><a£>/0 G Ooow (§2z> k(bé)db) 0(2)dz.

If we substitute g = v, then

Q|
N
8

S
/\

v =i [ j’w(v,g, ) Mawga x do) T:)a:
= TT)(@) [ hite)k(zat):
— ) TTIIaS) [ hai)d:
= k(&) (W) (a€) (W) (ak)
k()| (W) ()

<

/—\

\_/
o8
N

Therefore

| wiwie) k(1) / (W) (ae) 2.
0
Thus we have
Jo (W Wye) (1) 4
f( ) (tS) fO W'QZ) aé |2da

By imposing the normalization [;° [(W)(a&)[*% = 1, we obtain the Watson wavelet

representation
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O
Theorem 6.3.2. Suppose that ¢ is a continuum Watson wavelet with
ay= [TROE G
0 w
Then for any f € L?(0,00), we have the inversion formula
dbda
o= [ [ ovnt.apnm®: (6.3.6)
dbda
E—“Jlfl‘nl%‘_“”/e<a<Ab<B(VV Db a)na() a
where S(e, A, B)f = ﬁ<a<Ab<B(W¢f)(b a)pq( )dbda
Proof. Let
If = S(e, A, B)fll2 = sup [{f —S(e, A, B)f. g)l. (6.3.7)

llglla=1

Applying Fubini’s theorem, we have

dbda

st Lo = [ o ( /KKAKB(Wwf)(b,a)wb,a(x)

- /e<a<4b<3 Wuf)(b.a) ( /0 ) §(w)¢b,a(x)da;)

L 0T

)dx
a

dbda
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Using Cauchy-Schwartz inequality, we have
|<f - S(€7A>B)f7g>|
— dbda
-/ Wo )b ) o) (b, )0
(e<a<Ab<B)e a
dbda\"? [ [ [ dbda\ "'
-(/ weneoP=e ) ([T [T iveeare)
(e<a<Ab<B)e a o Jo a
Then by using (6.1.7), we get
|<f - S(E7A7B)fvg>|
dbda\ /*
-(/ V)02 ) gl (635)
(e<a<A,b<B)c a

where € — 0 and A, B — o0, the region of integration decreases to empty set.

Hence the last integral tends to zero by the dominated convergence theorem. This

gives that

15(e; A, B) f = [l = 0.

]
Theorem 6.3.3. Suppose that 1 is a continuum Watson wavelet with < 1,9 >, =1
and
(W
CM:/ [V e - o, (6.3.9)
0 £
Then

o) o] W b,a 2
A!ALL%%_lm%:wﬁN%
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Proof. From (6.1.6), we have

o0

/ (W ) (b, a) (W) (b, a)db

0

= [ (W DT ) 0 (W T @) 01

(6.3.10)

Using Parseval formula of Watson wavelet transform (1.4.12)

[ [ Wi Wag)ba) ,

aQs

L[ W) () W) )W) (aw)

a23

[ [ T e

Take f = g, we get

//w|W¢fb“ ddb—/ / ) )( UEDICOI

Putting au = & in the second term of the above expression, we get

//""I%f )(b.0) ddb_/ [Fiovn ( ><s>|d5) P

=C’¢},s/ (W ) (u) [Pu** du
0

= CysllfIl5.
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6.4 Two wavelet multipliers

With the help of [62, 77], two wavelet multipliers are introduced and expressed it in
term of Watson wavelet convolution product by exploiting the theory of the Watson
transform.

From [62], let 7 : RY — U(L?*(0,00)) be the unitary representation of the multi-

plicative group R* on L?(0, c0) is defined by
(meu)(z) = k(xu(z)  x,€ € (0,00), (6.4.1)

for all functions u in L2(0, 00), where U(L?(0,00)) is the group of all unitary oper-
ators on L*(0, c0).

Then the Watson two wavelet multipliers associated with the unitary representation
is given as

(Prguptt) () = / " o (€)u, med) () (@) e (6.4.2)

Theorem 6.4.1. If o(¢) € L'(0,00) and ¢,v € L'(0,00) N L>®(0,00). Then the

Watson two wavelet multipliers can be expressed in the following form:

(Pog ) () = C%w(:n)W‘l[a(g)W(u ® 0)(©)](x), ue L(0,00). (6.4.3)

Proof. Using (6.4.2), we have

(Prgopr) () = / " (€ e (et () e
- / " o(©) ( / ) U(n)(ﬂgqb)(n)dn) (mew) () e.
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From (6.4.1), we get

(Prgwe) = [~ ot ([ Krotmutman) kavioi
= [ oWtk s
i) [ W)W (uo)(€)de
U)W €W () )] (2).

With help of Lemma 6.2.5, we have

1
P =
( Ua(f)ﬂpu) (:L.) CZ/)

(W(@W o (W (u® ¢)(©)]) ().

]

Theorem 6.4.2. Let 0 € L'(0,00), and ¢,v € L'(0,00) N L?(0,00). Then the two

wavelet multipliers Py 4. : L'(0,00) = L'(0,00) is

1 _
|| Pl | B(L1(0,00)) < ﬁ|l0||oo||¢>||2||1/1||2‘
i’

Proof. From (6.4.3), we have

1 Prgulli = [[(@)W ™ [o(E)W (o) (€)] (2)]r-

Using Lemma 6.2.5, we get

1Py gptl]s = Cil,ﬂnzp(as)vv—l [0 (WS ® u)(€)] ()]
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Applying Holder’s inequality, we obtained

[1Popuulh < e ol [o(OW (P @ u)(&)] [l

By applying the Parseval relation (1.4.12) of the Watson transform, we have

1 Poppull < e el ©W (6 @ w)(E)lls

< C, 6 lallo 1ol W (6 @ w) ..

Again applying Parseval formula (1.4.12), we get

1B s.wulls < e e lellolocl | 2 e

Using Theorem 6.2.8, we get the required result

1 _
1PosullBroon < Grllollsl¢ll2l|6]]2.
P

]

Theorem 6.4.3. Let o € L'(0,00), and ¢, € L'(0,00) N L>*(0,00). Then the two

wavelet multipliers P4y : L*(0,00) — L?(0,00) is estimated by
B s0llBz20.00) < ||¢||oc||0||oo||¢||1

Proof. From (6.4.3), we have

1 Pogpulle = [[9(@)W ™ [o(§)W (¢u) (€)] (2)]]2.
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Using Lemma 6.2.5, we get
1 B _
1P spullz = —,||w(x>w Ho@W(e@u)(©)] (@)l
= C' [l [(OW (& @ u)(€)] (2)]]2.
By Parseval relation (1.4.12), we have
|1 Po.g ]2 < e Ao (W (6 @ u) O]
< C, ||¢||oo||0||oo||W(¢® u)ll2-
Again applying Parseval formula (1.4.12), we get
1Poowull2 < & e [6lecl 0l 16 ® ullz
P
Using Theorem 6.2.8, we get the required results
1 B0l B(220.00)) ||¢||oo||0||oo||<b||1
O

From Wong [77, p. 499], we recall the following fact which are very useful to find

the trace class of Watson two wavelet multipliers.

Theorem 6.4.4. Let o € L'(0,00) and ¢, 1) be any functions in L*(0,00) such that

|gll2 = 1 = |[¢|]2. Then the two Watson wavelet multiplier P, 4, : L*(0,00) —

L*(0,00) is in trace class.

t7(Pop)] <K/ §)|dE.

(6.4.4)
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Proof. Let {¢;} be a sequence of orthonormal basis for L?(0, 00). Then, we have

[ee]
tr(Pogssd)| = | D (Poouh Or)-
k=1

From (6.4.2), we get

Mg

|tr(Pogw0x)| = |

1

/0 " (€, med) (me, b}
(©)

IA
M 7

o~

1

By using the definition of inner product, we have

|t (FPo.g01)| < i/ooc |0/(€)(x, ed) (D, meth) | dE
k=1
Using the useful result of [54, p. 402]
(ool < [ 10(€) e mealde.
Applying Cauchy-Schwarz inequality, we get

tr(Pros)] < / (€ lllmedlalmewllade
0
< K1|9llal1¥llz / lo(€)]de
0

< 00.

Thus, we yields the required results

11 (P |<K/ )|de.

|/0 o (§) (P, med) (met), Pr) d§|.
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Theorem 6.4.5. Let 0 € L'(0,00), and ¢ and v be any functions in L*(0,00) N
L>(0,00) such that ||p||la = 1 = ||¢]]2. Then the trace class of Watson two wavelet

multiplier can be expressed in term of Watson wavelet convolution product.

(Prossin) = Z o [ romesaervea©r 649

Proof. Let {¢}} be a sequence of orthonormal basis for L?(0, 00). Then, by using

the Fubini’s theorem, we have

tr(Pogwdr) = > (PogyOr, Or)

=1
/090 o (§)( Dk, Te D) (Mer), Pr)dE
| oo meo)

k

M8 ||M8 ||M8

P, TeP) (MW, Pr)d.

=
Il

Using the definition of the inner product, we have

Prs) Z / €)(6n, me0) (B, TV,

From (6.4.1), we find that

(Proy) =3 / T o OW (6:0) (W (i) €)de.
k=1

Using Lemma 6.2.5, we express the trace class in term of the Watson wavelet con-

volution product

Prgwtn) =3 = / ()W (. © )TV (de D).
k=1 0
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Theorem 6.4.6. Let 0 € L'(0,00), and ¢ and v be any functions in L*(0,00) N
L>(0,00) such that ||p||la = 1 = ||¥]]2. Then the trace class of Watson two wavelet

multiplier is in Sy.

[tr( a¢w¢k|<zc,/ W(opr @ Q)W (¢ @ ¢y,)|dE < 0.

Proof. With the help of (6.4.5), we find that

Mg
Q-

tr(Proti)l < S = suplW (e @ 6)(€)] / W or @ 0)|de

>
Il
—_

A
[M]¢
Q[

,||¢k®¢||1 / 0 (&)W (Be @ D)]de

>
Il
—

L 16¢ ® 6llsupl W & 9| / €)|de

>
Il
—

VAN
M M
- Q=

O—:buqskmn ||¢k®w||1/m|a<a>|dg.

Using Lemma (6.2.5) and applying Holder inequality, we get

tr( a¢w¢k|<2 7l1oxol s el / o(€)|de
J— S d
< 116]1aPl2 / o(€)de
0 d
< 116111l / 0(€)|de
d )
< / 0(6)]de < oo
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6.5 Conclusions

From the works of Pathak [49], Schuitman [60] and Titchmarsh [64] the author con-
cluded that the Watson transform contains strong mathematical background and
rich calculus. The results of the Watson transform are interesting and from [33, 60]
it is observed that Fourier transform, Laplace transform, and Hankel transform are
examples of the Watson transform. Various mathematical relations of Watson trans-
form with Laplace transform, Hankel transform and Fourier transform are given in
[33]. This work provides an integral representation of the Watson wavelet convo-
lution product and shows the relationship between the Watson wavelet convolution
product and Watson convolution. A heuristic treatment of the inversion formula of
the Watson wavelet transform is developed, and its estimation is expressed in terms
of the Sobolev type space. This theory is used to derive estimations of two wavelet
multipliers associated with the Watson transform. Later on, the author was able to
find the connection between the Watson wavelet convolution product and the trace

class of two wavelet multipliers.
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