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authors studied the properties of pseudo-differential operators and localization op-
erators using the Fourier transform tool. The localization operator was introduced
by Daubechies [14, 15] in connection with the time frequency analysis. The bound-
edness of localization operators has been studied by He and Wong in [26]. Du and
Wong [16] investigated the trace class of localization operators. Later on, an LP-
boundedness of localization operators associated with the left regular representation

of a locally compact and Hausdroff group was investigated by Wong [78].

Concerning the Hankel transform technique, an LF-boundedness of the localization
operator associated with the integral representation, was investgated by Upadhyay
[66]. More recently, in the year 2020, the boundedness and compactness of the lo-
calization operators, which involve the Hankel transform technique were discussed
by Baccar et al. [3] and Mejjaoli et al. [37].

The complete descriptions about the Watson transform were discussed in the pre-
vious chapters. In 1960, Watson transform on groups was given in the paper of
Goldberg [24]. He defined Watson transform on locally compact group in L?(G)-
space and studied many properties. The characterizations of Watson transform and
Watson convolution were presented by Pathak and Tiwari [47]. In [47], the authors
studied the mapping properties of pseudo-differential operators involving Watson
transform and Watson convolution. The continuous wavelet transform and Bessel-
wavelet transform are generated by convolution and Hankel convolution with the
help of the Fourier transform and Hankel transform technique. In similar way, the
Watson wavelet transform can be constructed with the help of Watson convolution
see [67], which plays an important role to find the properties of L2, -boundedness of
localization operators in the present chapter.

Motivated essentially by the aforementioned investigations by Goldberg [24], Upad-

hyay [66], Wong [27, 78] and other results, the main objective of this chapter is to
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obtain the properties of localization operator and wavelet multipliers involving the

Watson transform associated with the integral representation.

In the present chapter, contents of the work are presented below:
Section 5.1, gives the basic concept, formulae, and useful properties of the Watson
transform. In Section 5.2, the properties of the localization operator associated
with the integral representation are investigated by taking the Watson transform
technique. Section 5.3 is devoted to the L? -boundedness of localization operators
associated with the Watson transform. In Section 5.4, the relation between wavelet
multipliers and localization operators associated with the integral representation
are obtained, and in last Section 5.5, the trace class and Schatten-von Neumann

property associated with wavelet multipliers are found.

5.2 Properties of the localization operator

In this section, by using the theory of the Watson transform, we consider several

properties of localization operators associated with the integral representation.

Let G be a locally compact Hausdorff group on which the left Haar measure is
denoted by m,,.

Suppose also that 7 : G — B(LP (G)), 1 < p < oo is the integral representation of
G on L?, (G), which is defined by

(mgf)(h /f w(h,g,t)dm,(t), g.he€ G for felLb (G), (5.2.1)

where w is the basic function defined in (1.4.7).
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Theorem 5.2.1. Let f € (| L, (G) be such that ||f||z, ) =1. Then

1<p<o

(fomof) = (#F) (9)

and

o = / [(f, o f)Pdmy(8) < (I flIZy ()
G

Proof. From (5.2.1), we have

=(f#5)(9)- (5.2.2)

Using (5.2.2), we get
Cr= [10.mPdmto) = [ 15#7)(0) Pdmafo)
J a
Thus, by Parseval formula (1.4.12) for the Watson transform, we find that

Cr= [ 1w D dm(g) = [ W (DO dmc).
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Using (1.4.14), we have

Cy = / (1o ) P, (g) / (W €)[2dm, (€)
(€ G
/ (WAHEP - [(WF)©)Pdm, (€)
G

< / WP 112 (cydma(€)

G

<My (since [ 1OV H©Pdmo(e) = 1).

G

Therefore, the above expression yields

77777

]

Theorem 5.2.2. Let f be an admissible wavelet for the square integrable represen-

tation w: G — B(LZ, (G)). Then
1
(1) = & G/ (1,70 ) 7 0} €). (5.2.3)

where

Cp = /G (F)(©) dmo(€) < oo.

Proof. First of all, by using (5.2.2), we get

J (ust F)(E)(f#0)(§)dm (€)

1 G
— [ (u, my f)(mgf,v)dm, (&) = 3 . 5.2.4
ch/ el A J1G#D O dm.(€) o2
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By Parseval formula of Watson transform (1.4.12), we get

Cf; W (u# f) ()W (f#0)(g)dm,(g)

1
— [ {u, mg f){mgf,0)dm,(§) = 5
Cf! o ) = ) o it

Using (1.4.14), we find that

TWu)(g)|(W£)(9) [ (WD) (g)dm, (g)

! (w, g f)(mo f, v)dm, (&) _G

G fl(Wf)(g)|2| (W F)(9)|*dm, (g)

_ [ W@lWHeI VD)),

‘G/ WH@PWHge ™9

[T,

_G/ whr ™

JVu)(9) (W) g)dm, 9

T g Pdm )

/ (g9)dm.(9), (/|(Wf)(g)|2dmy(g)=1).
¢ G

Again by Parseval formula of Watson transform (1.4.12), we get

1
G [ bt i) = G/ u(E)(€)dm, (¢

=(u,v).
0
Definition 5.2.3. Let ' € L}, (G)N LY (G). Then the localization operator L,y :

Ly (G) — Lb (G) with symbol I' and the admissible wavelet f are defined by

(L) = ~ / F(g){u o )y f, 0} (g), (5.2.5)

Cy
G
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for all u € L2, (G) and v € L?, (G), where (,) defined as

(x,y) = /x(g)@dmy(g) for 1<p< 0. (5.2.6)

Theorem 5.2.4. Let F € L}, (G). Then for 1 < p < oo, the localization operator
Lpy : Lb, (G) — LP (G) is a bounded linear operator and satisfies the following

norm inequality

ILrsllBn, @) < —||F||Lm, @117, @

for allu € L, (G) and v € LE, (G).

Proof. From (5.2.5), we have

1
(Lypu,v)] < — / F(9)] - (s o )] - (o, 0} i, (g)
<z / F ()| ) 0)| - |0 (9) dma ()
< C—f||<u#f>||L,onoy<a>||<f#v>||%oy@ G/ IF(g)|dm, (g)
1
C ||u||Lfn,, )||f||L§’,’,V(G)||U||L$ﬂu(G)||f||L§’,;V(G)||F( )||L1 (G)»

1, 1
where = + = = 1.
eep-l-p/

Therefore, we yields the required result

1
(L, 0)| < lulleg,, 11z olleg, 11 [[E (L, (5.2.7)
Cf my my

my

for all u € L2, (G) and v € L2, (G). O
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Theorem 5.2.5. For 1 < p < oo, the localization operator Ly : L?, (G) — L, (G)

is a bounded linear operator and satisfies the norm inequality

1
| LrsllBes, @) < C—f||F||L%?V(G)||f||%,1

my (G)
for F e L (G) and f € L,, (G).
Proof. (5.2.5), yields
(L) < o JIF@I- [ m )l mfoldmate). (528)
4

For all w € L (G) and v € LP, (G). Then last equation (5.2.8), together with
(5.2.1)

(L, )] < Oifsupw(gn / [, my ] - (o 0) | ()
G

< Oifsupmgn / () (9)(f40) () dmo (g).

G

Since F' € Ly (G), and by using Holder inequality, we have

1 1 1
Lrju,v)| < —-sup|F(g)| - ||udtf||e, - ||f#v]],» where —+ — =1
(L su, v)] c; [ - [t fll s, - [ #0l STy
1
< gfllFll%||f||L;,WIIUIILgW||f||L;m||v||Lg;V

1
< C_fHFHL%?,,||f||%}nu||u||Lfn,,||v||L%V (5.2.9)

for all u € L?, (G) and v € L2, (G). O
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5.3 LF -boundedness of localization operators

In this section, we derive an L? (G)-boundedness of localization operator involving
the Watson transform. Exploiting the Risez-Thorin theorem from [78, p. 2916], we

restate the following result.

Theorem 5.3.1. Let (X, 1) be a measure space and (Y,v) a o-finite measure space.
Let T be a linear transformation with domain D consisting of all p-simple functions
[ on X such that p{x € X : f(z) # 0} < oo and such that range of T is contained
in the set of all v-measurable functions on Y. Suppose that oy, as, b1, B2 are real

numbers in [0,1] and there exist positive constants My and My such that

ITHll 7650y < Ml Nl ey ) FED G=1.2 (5.3.1)

Then for 0<6 <1
= (]. — ‘9)0&1 + ‘90&2 (532)

B=(1-0)p+05. (5.3.3)

We have

T Fl s oy < ML MG (|| s (5.3.4)

I(X)"

Theorem 5.3.2. Let F' € L, (G),1<r <ocand fe ()| LP (G). Then there
1<p<oco
exists a unique localization operator Ly : LP, (G) — LP (G) such that

my

1
(Legur) = & [ P im,o)m,0) (5.3.5)
Moreover,
%
T2 P ||f||Lpl My o MIE, @l o)
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Proof. Let T,,f = Lpsu, for v € D, where T, be the linear transformation with

domain D consisting of all simple functions on G with property that

v{ge G: F(g) # 0} < 0.

Then from Theorem 5.2.4 and Theorem 5.2.5, we get

T F (12, @) = I LEsull e, @)

1
< a||f||L€nV(G)||f||Lg;W(G)||u||Lg,,,(G)||F L (G)- (5.3.6)
and
ITuF |z, ) = I Lrgullzn, @)
1
< C_f||F||L7°n°l,(G)||f||%71nu(G)”u||Lfn,,(G)af eD. (5.3.7)

With a view to applying the Reisz-Thorin interpolation theorem, we let

Oé]zl,OQ:O and ,81:/82:%.

L

Let a = % then 6 = % where 7’ is the conjugate index of r. Hence a = %, b ==.
p

From (5.3.6) and (5.3.7), we obtain

| Lrsull e, @) = ITuF |, (@) (5.3.8)
1 1 1 %
< C_fo”zfnu(G)||f||££,iu(c)||f||£%w(0)

X Flly,, @ llullze, @)

for all w € D. Since D is dense in L? (G) . So the proof is completed.
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5.4 Wavelet multipliers

Here, in this section, we consider the relationship between localization operators and

wavelet multipliers associated with
7:RY - B(L’(R")) 1<p<oc
is the integral representation on LP(R"), which is defined by

(g f) (R /f w(h, g, t)dt, (5.4.1)

for g, h € (0,00) for f € LP(0,00).

Theorem 5.4.1. Let f € () LP(0,00) be such that ||f||;20.00) = 1. Then, we

1<p<oo
have

Cy = / (£ Pdg = 1113

Proof. Using (5.4.1), we get

cr= [ ([ feute.g.2a) do

In view of (1.4.7), we have

Cp = /0 OOK f, /0 T ) ( /0 h k(xt)k(gt)k(zt)dt> dz>

Thus by definition of the Watson transform (1.4.1), we find that

Cf=/ / </ F(2)k(2t) dz) (t)k(gt)dt>‘2dg.

2

dg.
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Therefore, we obtain

Cs= [ (s [ kaomanov o) dg

:/OOO‘/OOO (@) </Oook(a:t)k(gt)(Wf)(t)dt> dx

Again applying (1.4.1), we get

o= [T] [T ranovae ([ sanswie) df ag
=[] [ saoovnw e dg
= [ Wi P

= W fll2.

2

dg.

Now, by using the Parseval formula of the Watson transform (1.4.12), we have

Cy = I/1l2- (5.4.2)

With the help of [78, p. 2913], we define wavelet multiplier involving Watson trans-

form.

Definition 5.4.2. Let 0 € L'(0,00) N L>(0, 00). Then the wavelet multiplier P, ; :
LP(0,00) — LP(0,00) associated with symbol ¢ and the admissible wavelet f is

defined by
(Py ) (z) = / o (9){u, 1o ) (o f) (@) dg. (5.4.3)
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Theorem 5.4.3. Leto € L"(0,00),1 <r <ooand f € (] LP(0,00). Then there

1<p<0
exists a unique localization operator L,y : LP(0,00) — LP(0,00) such that

(Loyu,v) = Cif / " (g sy ) (my ) dg

Moreover,

(Lot 0) = 1 80 (W (FWV o)W (WalW £)(9)]) ).

Proof. Now for o € L"(0,00),1 < r < oo and u,v € T'(\, ), we have

(Logu) = g [ @) f) mof oo (5.4.4

Since

(mo /)2 / F(tyle,g.1)

Using (1.4.7), we find that

(mof)(x) = /OOC f(t) (/OOO k(a:t’)k(gt’)k(tt’)dt’) dt

_ /O h ( /0 h f(t)k(tt’)dt) (et k(gt')dt'.

By definition of Watson transform (1.4.1), we get

Wkt (gt )t

oo

k(at')k(gt") (W f)(t')dt

(Mg f) () =

J
J

=W (kg )W N)(1)) (). (5.4.5)
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From (5.4.4) and (5.4.5), we have

(Lo gusv) = Cif / " o (g)(u, W k(g (W 1))

< (W (k(gt") (W F)(#)). v)dg
_ 1 / o(g) (W) (£, k(g (W )(£))

x (k(gt (W), (Wo)(t))dg.

By (5.4.2), we obtain

(Lo, 0) = 10 / " (g W (WalW ) (g)W (W fWo)(g)dg

= (| £1172 0.0 (o)W (WUl [)(9), W (W FW0)(9))
= 12 0y (W o ()W (W £) (g)], WoW )
= || £l 0oy (FW [0 ()W (WUl £) (g)], W)

— Al 0 (W oW (WaW [)(9)]) s 0). (546)

The above relation (5.4.6) indicates that the localization operator gets converted
into a wavelet multiplier and pseudo-differential operators. Thus, when p=2, (5.4.6)
shows that the localization operator L, ; : L*(0, 00) — L*(0, 00) is unitary equivalent

to Wavelet multiplier P, ; : L?(0,00) — L?(0, 00). O

5.5 Application of localization operators.

In this section, we study the trace class and Schatten-von Neumann classes. We
find the trace class of localization operators with the help of some useful results of

the book [55, p. 211], by Reed and Simon.
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Proposition 5.5.1. Let A : X — X be a bounded linear operator in Sy and let
{¢r : k=1,2,3...} be any orthonormal basis for Hilbert space X. Then the series
> e (A, ¢r) is absolutely convergent and the sum is independent of the choice of
the orthonormal basis {¢r : k =1,2,3...}.

Remark: In view of the above Proposition, we can define the trace tr(A) of any

linear operator A : X — X in S; by
tr(A) = Z(Aﬁbk, D) (5.5.1)

k=1

Theorem 5.5.2. Let F € L}, (G) and || f||53 = 1. Then the trace class of localization

operator is estimated by
1
r(Leg)] < A [ 1F@)ldmato) (55.2)
rJa

Proof. Let {¢1} be a sequence of orthonormal basis for X. Then, by using formula

(5.2.5) and (5.5.1), and the Fubini’s theorem, we have

8

tr(Leyg)| = ‘Z<LFf¢k7¢k>’

8||

- ;C— | F@ 6, 0wt 00 dm, )
S - C_/ @kaﬂgf <7Tgf ¢k>dmu( )‘
< Z / 9){ S, T f) (o £, Dr) [dima,(g). (5.5.3)

Exploiting the results of [54, p. 402], we get

tr(Ley)| < Cif /G F(9)| ([, fI12)dm, (9). (5.5.4)
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From (5.4.1), we get

my f113 = / |y ) () Pm ()

= [1(f vt oo

dm,, ().

Using (1.4.7), we have

natlg = [ | [ 0 ([ Heeraonteeyim, ) dm (o) am o
-1/ ( I dmyt)k(scf)k(gé)dm(f)lzdmu(x)

Moreover, by using (1.4.1), we get

st = [ ([ ook v n@maie) ) 'am,
= | W ke 0V 1)(€) @) P ).

Applying Parseval relation of watson transform (1.4.12), we find that

mof112 < [k(g8) /G (W F)(©)Pdm, (€)
<A /G (W F)(E)Pdm, (€)

< A'NIfllz- (5.5.5)
Using (5.5.4) and (5.5.5), we obtained the required results

, 1
rieg) < A /G IF(g)ldm, (9).
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Proposition 5.5.3. Let F € L'(G) N L*(G), then for m= 1,2,5....we have
|t7'( ?«lf)| < K/(tr(LF,f))m- (5.5.6)

Proof. Since Lpy: X — X is in trace class S; and the adjoint of Lpy: X — X is

Lpg: X — X from [76, p. 80], by using (5.5.1), we have

WK

|t7’(L?,f)| = (Lg 1 9r ¢k>‘

k=1

[
M]3

(Lrjgor, Ly, on) ’
k=1

=X [ P on st L 61)dmuto)

k=1

<3 [ [Ptz o imato)

Therefore, by applying the Cauchy-Schwarz inequality, we get

SIS /G F@)| - lowll - lm f1] - (L3 7 fy dldma(g). (5.5.7)
k=1

We now evaluate ‘<L}137]717rgf, ¢k>| for m=1,23...

Case 1. When m=2, we have

(Logmof,o0)] < / F@)| - (om0 )] 11 7 )| (9)
G
< /G F(@)] - 17y £1F] 6] dm (9)
< / F(g)] - 1 £1P] ]| dm (9)
< sup|mo |l / F(g)[dm, (g). (5.5.8)
G
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Case 2. When m=3, we have

(L3 o f, d)| = [(Lrgmgf, Lp 0|

< /G F@)|- o my )] - (o f L ;66 |dima (g)
< / F@)) - [(mof, mof)| - WL rgmof. é)]dm (g).

Using (5.5.8), we have

(3 mat. ] < [ 1FG) - P ( / |F<g>|‘||wgf||3||¢k||dm,,<g>) dmo(9)
<[ ( / |F<g>|-|F<g>|-||wgf||5||¢k||dmy<g)) dmy(9)
< supllmy £1P |16l ( / |F<g>|dmy<g>) . (5.5.9)

In a similar manner, with m replaced by m-1, we find that

(LE e )| = (Lrgmef. LE 20|

m—1
<sulln, el ([ IF@lim@) . 6510
G
Using (5.5.10),(5.5.9),(5.5.8) in (5.5.7), we get
tr(LE )| < K'(tr(Leg))™

]

Theorem 5.5.4. Let F be a non negative function in L,, (G). Then, for p=1,2,3. ..

[ LEglls, < K'tr(Lry).
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Proof. Let {1y} be an orthonormal basis in X and let a Schatten-von Neumann

class of localization operator is given by

[e%e) 1/P
IILrslls, = <Z <L%7f¢k,wk>>

k=1

= (tr(Lh,) """

Then, by Proposition [5.5.3], we get the required result

|ILpyslls, < K'tr(Lpy).

5.6 Conclusions

Localization operators and wavelet multipliers are known to play constructive roles
in the problems of image processing and signal processing by exploiting the theory
of many different integral transforms. In the present chapter, we have studied the
various properties of localization operators associated with the integral representa-
tion involving the Watson transform. Among other results, we found the relation
between localization operators and wavelet multipliers. From the monumental works
by Schuitman [60] and Titchmarsh [64], we observe that the results involving the
Watson transform are more general than the Laplace transform, the Fourier trans-
form, the Hankel transform and other integral transforms. We are also introduced
the properties of the trace class and the Schatten-von Neumann class for localization

operators which are considered here.

Kokok



