Chapter 4

Wavelet multiplier associated with

the Watson transform

4.1 Introduction

Among many integral transforms, the Watson transform is an important tool that
contains a deep mathematical background. The theory of Watson transform was
initiated by Hardy and Titchmarsh [64] in 1948 and they studied many interesting
properties of Watson transform. In 1949, Bochner and Chandrashekharan [7], dis-
cussed the properties of Watson transform and solved the functional equation. In
1960, Goldberg considered the Watson transform on groups in his research paper [24]
and found many interesting results. In 1976, Braaksma and Schuitman [8] observed
some classes and related integral equation for generalized function associated with
the Watson transform.

The Watson transform is an exciting tool and significant in the sense that it is a
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generalization of the Hankel transform, G-transform, H-transform and other inte-
gral transforms. This theory is widely discussed in the book of Schuitman [60],
and Titchmarsh [64]. As per Schuitman [60], the Laplace transform, the Fourier
transform and the Hankel transform are examples of the Watson transforms. The
complete mathematical relation of the Watson transform with the Hankel transform
are given in [33, p. 36].

Using the theory of the Hankel transform, Pandey et al. [40], Upadhyay et al. [43]
and many others discussed the boundedness of pseudo-differential operators associ-
ated with the Bessel operator. Ghobber [22], and Mejjaoli [36] found the properties
of wavelet multipliers with the help of the Hankel transform technique.

Motivated from [16, 22, 26, 34, 36], our main objective of this chapter is to investi-
gate the Watson wavelet multiplier associated with the unitary representation and
discuss its boundedness on LP space. Using the Watson transform theory, we find
Hilbert-Schmidt class, compactness of Watson wavelet multiplier. Some applica-
tions and relationship of Sobolev-type spaces with Watson wavelet multiplier are

also given.
From the above discussions, our present chapter is organized by the following way:

Section 4.1 is introductory, it gives brief history and motivation about this chap-
ter. In Section 4.2, for 1 < p < oo it is shown that the Watson wavelet multiplier
P, ; is bounded linear operator for a suitable choice of the admissible wavelet f in
LY0,00) N L>®(0,00) and symbols o € L*(0,00). Tt is also shown that the Wat-
son wavelet multiplier P, ; are bounded linear operator on LP(0,00), r < p < 7/
associated with the symbol o € L"(0,00) for 1 < r < 2 and admissible wavelet
f € LY0,00) N L%(0,00) N L>®(0,00). In Section 4.3, we have shown that the
Watson wavelet multiplier P, : L?(0,00) — L?(0,00) is a Hilbert-Schmidt oper-

ator and observed its compactness property for the suitable choice of admissible



Chapter 4. Wavelet multiplier associated. .. 83

wavelet associated with the unitary representation. In Section 4.4, the Landau-
Pollak-Slepian operator associated with the unitary representation is introduced
using Watson transform technique. With the Watson wavelet multiplier, Section 4.5
studied Sobolev-type spaces and their various properties. In Section 4.6, the trace

class of Watson wavelet multiplier is obtained.

The space T'(\, 1) consists of all functions ¢ € C>*(0, 00) with the property that

Bu(¢) = sup [tTPP(t)| < oo Vn € Ny (4.1.1)

t>0
p=0,1,2....n
An<c<pun

where A\, u € R* = RU {—o00,00}, A < p.
A complex-valued continuous function o defined on I = (0, 00) is a symbol belongs

to the class T), if and only if there exists a constant C' > 0 such that
lo(y)] < CA+y)™, (4.1.2)

where m is a fixed real number.
Then the pseudo-differential operator A(z, D) associated with the symbol o is de-
fined by

Az, D)f(x) = / T kano)WHdy,  feT(hu).  (413)

where W f is the Watson transform of f and k is the kernel of the Watson transform
given in (1.4.3).
Let 0 € L>(0,00). Then we define a linear operator A(x, D) : L?(0,00) — L?*(0, 00)
by

Az, D)u =W (oWu), uec L*0,00), (4.1.4)

where Wu is the Watson transform of w.

With the help of Wong [34], let 7 : Rt — U(L*(R")) be the unitary representation
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of the multiplicative group R™ = (0, 00) on L?(0, 00) is defined by
(meu)(z) = k(z€u(z)  2,§ € (0,00), (4.1.5)
for all functions u in L?(0, 00), where U(L?*(0,00)) is the group of all unitary oper-

ators on L*(0, c0).

Let o € L'(0,00)NL>*(0,00) and f € L?*(0,00)NL>*(0,00). Then for u,v € T(\, i),
we give the definition of localization operator P,y with the help of the unitary

representation (4.1.5)

(Rﬁwv%=zmaﬁﬂwﬂdﬂﬁﬁvﬂé £ € (0,00), (4.1.6)

where (,) represents

qyw:Amﬂwmw@ for all f,g € L3(0, 00). (4.17)

Remark: P, ; initially defined on T'(\, u), can be extended to a bounded linear
operator on L%*(0,00). From [47] it can be easily shown that P, is a continuous

linear operator from T'(A, i) to T'(A, p).

Lemma 4.1.1. For u,v, f € L?(0,00), we obtain the following relations:

(u, me f) = W(uf)(€) (4.1.8)

and

(mef,v) = W(fo)(E). (4.1.9)
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Proof. Since

(u, mef) = / " w@) D@

By (4.1.5), we get

(, mef) = / " w(@) RO f@)da
W (uf)(9).

In a similar way, we prove the following:

(mefrv) = / " re ) )5y dy
= /O N k(y&) f(y)o(y)dy

W(fo)(€)-

]

Lemma 4.1.2. Let f € L*(0,00) N L>*(0,00), and || f|lo = 1. Then for functions

u,v € T(\, ), we have

/0 " fume S (e o) dE = {uf, fO). (4.1.10)

Proof. Using Lemma 4.1.1, we have

| et = [T wapew e
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By (4.1.7) and the Parseval relation of the Watson transform (1.4.12), the above

yields
]Q (u e f) (me o 0)d = (uf, f7).

]
Lemma 4.1.3. Let f € L*>(0,00) and v € L'(0,0), then
W f)lee < Cllulh ]|l (4.1.11)
Proof. Using (1.4.1), we have
W (f)(x)] = | / F(a€) (uf)(€)de]
</ k()| - | (uf)(©)]de
<0/ &) 1£(6)lde
< Csuplf(€)] / £)\de
< I llellul.
]

Theorem 4.1.4. Let o € L>(0,00), f € L*(0,00) N L*>(0,00), and u,v € T'(\, p),

such that || f||lo = 1. Then we have
(P, ju,v) = (fA(z, D) fu,v). (4.1.12)
Proof. Using (4.1.6), we have

(Rm%v%=Ax0@NwﬂdN%ﬁvM§ £ € (0,00).
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By Lemma 4.1.1

(P 0) = / " o ©W (uf) OW (Fo)(€)d.

From (1.4.1), we get

(Pague) = [~ otewiuie ([ o) dg
- ( I k<x5>a<s>w<uf><s>ds) () (@)
— [ W W) @)

By the inner product definition (4.1.7), we obtain

(Pou,v) =(fW o (&)W (uf)), v)

=((fA(z, D) f)u,v).

Remark: From Theorem 4.1.4, it is proved that a bounded linear operator F; ; :
L*(0,00) — L?(0,00) and fA(x, D)f : L?*(0,00) — L?*(0,00) are unitarily equiva-
lent, hence we denote fA(x, D)f as P, ;. Here f plays the role of admissible wavelet
in the localization operator P, ; then the localization operator P, ; is the Watson
wavelet multiplier associated with the unitary representation 7 : RT — U(L*(R™))
of the multiplicative group R* = (0, 00).

A function f € L*(0,00) which satisfies || |l = 1 and

/OOO|<f,7r§f>|2d§ < 00 (4.1.13)
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is called an admissible wavelet of 7 : R* — U(L*(R™)). Now we denote

Cf=/ooo|<fmaf>\2d€ (4.1.14)
- [C1] e @l

From (4.1.5), the above can be written as

Cr=[T1 ] st s
= /OOO | /OOO k(x€) f2(x)dz|de.

In view of (1.4.1), we get

* 2
cr= [T Iwirerae
Now by the Parseval formula of the Watson transform (1.4.12), we have

Cr = IIfl2- (4.1.15)

4.2 Boundedness of wavelet multipliers

This section discuss the boundedness of the Watson wavelet multiplier P, ; on
LP(0,00), for 1 < p < oo, for a suitable choice of the admissible wavelet associ-

ated with the unitary representation.
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The Watson wavelet multiplier P, ; for o € L'(0,00) and f € L'(0,00) N L*(0, c0)

is defined by

(Fopu)(x) = Cif /OOO o (&) {u, me ) (me f)(x)dE, . & € (0, 00), (4.2.1)

for all u € L'(0,00) and (,) denotes the
(f,9) / f(x)g(x)dx, where f,g are measurable function.

Theorem 4.2.1. Let 0 € L'(0,00) and f € L'(0,00)NL>(0,00). Then the Watson

wavelet multiplier P, ¢ : L'(0,00) — L'(0,00) is a bounded linear operator and

1
1Pl B2 (0,00)) < C—fK||0||1||f||1||f||oo7 (4.2.2)

where || ||pri0,00)) @S the norm in the Banach space B(L'(0,00)) of all bounded

linear operators from L'(0,00) into L*(0,00).

Proof. Using (4.2.1), we have

Now, we have

| P}y = /| / €)(u, me f) (me f) (x)dé|da

/ (/ | W, e f) - I(Waf)(x)ldé) da.

Q|
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In view of (4.1.5), the above yields

1P < & [ ) ( JACGRET Ik(xf)f(:cﬂdé) dr

Taking Lemma 4.1.1, we obtain

1 o0 o
P2l < - / (/ |a<§>|-|W<uf><5>|-|k<x5>f<x>|d§>dx.

Since k(z€) is a kernel of Watson transform so it is bounded by some constant K

on I = (0,00).

1Pailh < g sw W@l [ ([T lote) s

£€(0,00)

1
< & KW @hlslollall A
i

From Lemma 4.1.3, the above yields
1
1P sulls < C_fK||u||1||f||oo||0||1||f||1- (4.2.3)

Hence, the required result is

1
| Pl B2t 0,00)) < C—fK||f||oo||0||1||f||1~

]

Theorem 4.2.2. Let 0 € L'(0,00), and f € L'(0,00) N L>=(0,00) then P, :

L>°(0,00) — L>*(0,00) is a bounded linear operator such that

1
||Pa,f||B(L°°(0,oo)) < @K||U||1||f||1||f||oo~ (4'2»4)
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Proof. From (4.2.1), we have

(Pygu) () = Cif / " (6 (uy me ) (me f) () de.

Then
1P, ul = |Cif / o (€) (u, me f) (e f) ().

From (4.1.5), we get

Pl < & ( GRS Ik(xf)f(xﬂdé)
! K( 0(O)] - [ me ) - |f<x>|d§).
f 0

<

Q

By Lemma 4.1.1

Py ] < CifK ( / o) Wh) ()] If(:r)ld£> .

Therefore, we have

||Pa,fu||wsciff< - (/ o (&)W (uf)(e >|d§)

2€(0,00)

< CifKIIflloollW(Uf)lloollalll-

Using Lemma 4.1.3, we get

1
1P, sulloe < 7Kl FlloollulloolL £l ]l
i

Thus

1o, 7l Bz=0,00) K[ flllle ] flloo-
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]

Theorem 4.2.3. Let f € L*(0,00) N L*(0,00) and o € L*(0,00), then P, :
L*(0,00) — L%*(0,00) is a bounded linear operator and can be find by the following

norm

1
1Po.s | B(22(0.00)) < C—fK||O||2||f||2||f||oo- (4.2.5)

Proof. From (4.2.1), we have

1

(Pos)(@) = - / " (€ (uy e f) (e ) ().

Hence

1Prgilly = [ 1P o)
:/0 / (u, me f) (me f) () d€| *d.

By Lemma 4.1.1 and (4.1.5), we get

|1P, pull; = /O / (&) (k(z€) f(x)) dE|dx

<[ (a I Ia(é“)l-IW(uf)(é“)I-Ik(fcﬁ)l-lf(x)ldf)zda:

<w [ (Cif/()oola@n W) 1 >|d§)
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Using Fubini’s theorem, we have
bl

1By gull? < Ci?K’ | s ( JAGE IW(Uf)(£)|d€>2d:c
< Ci?K' / ) P ( / o) IW(Uf)(€)|d€)2

= C%%K’Hflli (/Ooc |o(E)] - IW(Uf)(f)Idf)Q-

By Holder’s inequality, we get

1
1P pull2 < C_fK||f||2||0||2||W<uf)”2-

Take Parseval relation of the Watson transform (1.4.12), the above can be written

as

L.
1Po.rullz = - Kl fll2llollzllwfl2
!

1
< K| flallolallela] £l
f

Therefore, we obtain

1
1P £l B(L2(0,00)) < C—fK||f||2||0||2||f||oo-

We can now state and prove a theorem on Lp-boundedness of Watson wavelet mul-

tiplier with the help of Risez-Thorin theorem from [78, p. 2916].

Theorem 4.2.4. Let (X, u) be a measure space and (Y,v) be a o-finite measure
space. Let T be a linear transformation with domain D consisting of all p-simple

functions f on X such that u{x € X : f(x) # 0} < oo and such that range of T is
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contained in the set of all v-measurable functions on Y. Suppose that oy, as, B, Ba

are real numbers in [0, 1] and there exist positive constant My and My such that
||Tf||L1//3j(y) < Mj”fHLl/aj(X)' f €D J= 1,2 (4-2-6)

Then for 0<6 <1

a=(1-0)a + bay (4.2.7)
B=(1-0)p+05. (4.2.8)

We have
||Tf||L1/ﬁj(y) < ]\/111_9]\/129||f||L1/aj(X), (4.2.9)

Theorem 4.2.5. Let f € L'(0,00) N L%(0,00) N L*°(0,00) such that ||f|ls = 1. Let
o € L"(0,00) for 1 < r < 2, then there exists a unique bounded linear operator
P, LP(0,00) — LP(0,00) for all p € [r, 7] where r is conjugate index of r’such
that

1Pl mzoosey < Kol lol3™ 117 112" 1 e (4.2.10)
Proof. By interpolation of the Theorem 4.2.1 and Theorem 4.2.2, we get a unique
bounded linear operator P, s : LP(0,00) — LP(0,00) for 1 < p < oo.

1

1
For taking the suitable choice of a; = 1, ay = 1/2, — = p and — = p.
1 2

By (4.2.7) and (4.2.8) we find that a = (1 — 0)ay + 0as = 1 — 2 and 8 = (1 —

0)(1/p) + 6(1/p).
Now suppose o = 1/r this implies 1/r =1—-6/2and 1 —1/r' =1—-60/2 0or 0 = 2/r".

This implies

1Pt Berro00y < K((lollill £l Flls) "0 Fll2llel2] floo)?

= K(llollll A o) 2 (Ul E llllo 2 £1ls0) >
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Therefore, we get the required result

1-2/7" 2/r! 1-2/r' 2/r!
1P sl Beeo0.00n < KNl a3 1A NI 1 lloo-

4.3 Hilbert-Schmidt operator and compactness

In this section, we investigate the Watson wavelet multiplier P, ; associated with
unitary representation in the Hilbert-Schmidt class and obtain its compactness prop-

erty.

Theorem 4.3.1. Let f € L*(0,00) N L>®(0,00), Then P, : L*(0,00) — L*(0,0)

15 a Hilbert-schmidt operator such that

1Posll5, < lollzllolhll FIBIFII-
for all o € L'(0,00) N L*(0, 00).

Proof. Let o € L'(0,00) N L?(0,00) and {fx : k¥ € N} be an orthonormal basis in
L?*(0,00). Then
S NPosfill3 = (Posfr Pophe)- (4.3.1)
k k

Using (4.1.6), we have

(P ) = / " o0 s m ) e, 0)dC. (432)
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Therefore from (4.3.1), we obtain

S IPnsiil =3 / Ol e f) (me s Pog fo)dC
_Z/ O, me ) Po pc f fr)dC.

From [34, p. 1014] and [54, p. 409], we get

SO 1B fill2 = / o(C) Py e fo e f)iC.
k 0

Exploiting (4.3.2), we have

SRl = [ o0 [ ottt mhm s me ). (433)

From (4.3.3) and Fubini theorem, we get

S nstili = [ O [ owlred maf)an)ag

In view of (4.1.5), we have
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From (1.4.8), we obtain

DB el = / / (| / / w(Cn.€de) f(o) )iz )

X dn> d¢

o [Com(| [ ([ Heosoreris)ucne

X dn> dc.

)

Taking (1.4.1), the above expression yields

Siesti= [ o0 [ o (| [ wu@imi@ecn.ouf)

X dn) dc.

Thus, by (1.4.10) we find

Sttt = [ o [ (WG F)an)ac

If we take (W (f(z)f(2))(¢,n))* = G'(¢,n), then above expression yields

A / (0 / " SmIE(Cmldn)dc.



Chapter 4. Wavelet multiplier associated. .. 98

Using (1.4.11), we have
S 1Py filE = / " (O HE(C)de
< / 0() (@ #IG N (O)ldC
< [loll2 ]l (o #IG )2
< [lolzllll 1 [1|G"]1l2
< llollallolI[W (£ () ()]l
< lolalloll 1 [IW(f () ()12

Using Parseval formula of Watson transform (1.4.12), we have

D P s fill3 < llollallollall £ () f )13
k

< [l £ I35

This implies P, ; : L*(0,00) — L?(0, 00) is a Hilbert-Schmidt operator. O

Theorem 4.3.2. Let 0 € L'(0,00), and f € L'(0,00) N L>®(0,00). Then P,; :

LY(0,00) — LY(0,00) is a compact operator.

Proof. From Theorem 4.2.1, the bounded linear operator P, ; : L*(0,00) — L'(0, o0)

satisfies

K

1P sl Bz (0,00)) < Ff||0||1||f||1||f||oc- (4.3.4)

Consider {u;} be a sequence of functions in L'(0,00) such that ||u;|| < 1, then
(4.3.4) gives

K
1o pulln < _f||uj||1||U||1||f||1||f||oc~
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For ||u;|| <1, the above yields
K :
1o, pusll < gf||0||1||f||1||f||oo for j=1,2,3... (4.3.5)

Hence the above shows that {P, fu;} is uniformly bounded in L'(0, co).

Now, consider the function f € C§°(0,00), which is compactly supported then the
function (mef)(x) = k(x€)f(x), (where k is the kernel of Watson transform) is
uniformly continuous.

Thus V € > 0, 3 6 > 0 such that for all x and y in supp(f) with |z — y| < J, we get

|(mef) (@) = (me f)(y)] < e (4.3.6)

Hence for all j=1,2,3...and with the help of (4.2.1), we have

|(FPo,u;) (%) —( 0.5 3) (Y)]

21 / )ty me ) (e f) () — / €) (. me ) (e f) () ]|
2 / g mef) (me ) (@) — (me )(w)) de]

—0 IO(S)I (s, me f)] - (e f) (@) — (e f) (y)|dE.
fJo

Using (4.3.6), we find that

|(Po.u) () = (Popu)(y)] < e

< e—sup| u;, me f) |/ &)|d¢€.
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Exploiting (4.1.5), we get

|(Po.pu;) () = (P pu;)(y)] < Ecifﬂujlllllflloo /OOC |o()]dE

1
< Ec—fllujlllllflloollfflll-

For ||u;]| <1, we get

1
< e— .
< gl

So { P, su;}$2, is equicontinuous on (0, c0).

This implies that for every compact subset K of (0,00), the Ascoli-Arzela theorem
shows that the Watson wavelet multiplier { % yu;}52, has a subsequence that con-
verges uniformly on K.

Thus by Cantor diagonal procedure we can find a subsequence {u;, } of {u;}52, such
that {P, ju;, }7, converges to pointwise to a function on (0, c0). Using (4.3.5) and
by applying Lebesgue dominated convergence theorem, the sequence { P, ru;, }52, is

converges in L'(0, 00).

From the above conclusions, this finds that P, s : L*(0,00) — L'(0, 00) is compact.
Let ¢ € L'(0,00) N L>(0,00) and {¢;}32, be a sequence of functions in C3°(0, 00)

such that 1; — ¢ in L'(0,00) as j — oo. By (4.3.4), we get

1o = Popasllt < 1 flloolls = ¢lhllofly =0

as j — 00.
Therefore P, ; : L'(0,00) — L'(0,00) is compact provided that the support of o is

compact. 0
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Theorem 4.3.3. For 1 < p < oo and for any o € L'(0,00) and ¢ € L'(0,00) N

L>(0,00). Then P, : L?(0,00) = LP(0,00) is a compact operator.

Proof. Exploiting the interpolation Theorem 4.2.4 on Theorem 4.3.2, we get the

required result. O

4.4 Applications of the Watson wavelet multiplier

In this section, the Landau-Pollak Slepian operator is described using Watson trans-
form technique. With the help of this, it is shown that the Landau-Pollak Slepian
operator associated with the unitary representation 7 : Rt — U(L?*(R")) arising in

signal analysis is a Watson wavelet multiplier.

Definition 4.4.1. Let C; > 0 and C3 > 0. Then the linear operators Pg, :

L?*(0,00) — L*(0,00) and Qg, : L?(0,00) — L?(0,00) are defined by

N 0<¢<Cy

W (o, £)(C) = (141)
0 ¢ >0y
and
x 0 X CQ
Qe =4 T 0= (1.4.2)
0 T > Cg

for all functions f in L%(0,00).

Theorem 4.4.2. Pg, : L?(0,00) — L?*(0,00) and Q¢, : L*(0,00) — L*(0,00) are

self-adjoint.
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Proof. By Parseval relation of the Watson transform (1.4.12), we have

(Poy [, 9) 120,000 = (W (Per ), W) 12(0,00)

/ W (Po, £)(O W) (C)d.

With the help of (4.4.1), we get

(P = [ VOO
- /B WD R0
- [ Wi W g
= (Wf, W(Pg,g)).

Exploiting (1.4.12), we have

(Poyf, 9) 12(0,00) = (f5 Py 9) £2(0,00) - (4.4.3)

This implies that Pg, : L?(0,00) — L?(0,00) is a self-adjoint operator.

Similarily

<Q02f7 >L20<>o :/ (chf)( )g( )dl’
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From (4.4.2), we have

(Qcof, 9)12(0,00) = f(z)g(x)dx

B,
= [ [fl2)Qc,g(x)
Bo,
= / f(#)Qc,
0
= (f,Qc,9)- (4.4.4)
This implies that Qc, : L*(0,00) — L?(0,00) is a self-adjoint operator. O

Theorem 4.4.3. Pg, : L*(0,00) — L*(0,00) and Qc, : L*(0,00) — L*(0,00) are

projection.

Proof. Since Pg, : L*(0,00) — L*(0,00) is a self-adjoint, so we have

<Pé’1f7g> = <P6'1f7 PClg>‘

and by Parseval relation of the Watson transform (1.4.12), we get

(PE, f.9) = (W (Pe,f), W (Pe,9))

/ W PCl (PCI )(C)dC

Taking (4.4.1), we have

(P2, f.g) = /B W AT ()¢

_ / T WP O

= <W(PC1f)7 Wg>

= <P6'1fvg>
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for all f,g € L*(0,00).
This implies that PZ = Pc,, hence we say that Pg, : L*(0,00) — L?(0,00) is a

projection.

Also, since Q¢, : L*(0,00) — L*(0,00) is a self-adjoint, we have

<Q%2fvg> = <QC2f7 QC2g>
=i£<0@nuwéam@Mm

Using (4.4.2), we get

(@t = [ fgla)ds
=Aﬂ@ﬁmwwm
= <Q02f7 g>

for all f,g € L*(0,0).
This implies that QF, = Qc,, hence we say that Qc, : L*(0,00) — L*(0,00) is a

projection. 0
Thus Pp,Qc, Pe, : L?(0,00) — L?(0, 00) is a bounded linear operator which is known
as the generalized Landau-Pollak Slepian operator.

Theorem 4.4.4. Let f € L*(0,00) which is defined by

; 0<z< Cl
flz) = p(Be,) (4.4.5)

0 $>Cl
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where u(Be,) is the length of Be,. Let o be the characteristic function on Bg,,

1 0< <0y
o(¢) = (4.4.6)
0 ¢ >0y

then the Landau Pollak Slepian operator Po,Qc,Pc, : L?(0,00) — L*(0,00) is uni-

tarily equivalent to a scalar multiple of the Watson wavelet multiplier fA(xz, D) f :
L?*(0,00) — L*(0, 00).

Proof. By (4.4.5), and f € L?(0,00) N L>(0,00) such that

B = [ 1)
= B /B &
=1.
Theorem 4.1.4, gives
(A D)) = [ o0 mef) e f o) (447

Using (4.4.5), we get

(w,mef) = / " k(aC)u(e) fx)da

x. (4.4.8)

— —#(130 )/B k(x)u(z)d.

From definition (4.4.1), we have
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W(Pe, W (u))(z) = - (4.4.9)

function u in T'(\, ), where W1 is the inverse Watson transform of u.

Hence, (4.4.8) and (4.4.9) yields

1 -1 w))(x)ax.
) = s /B MW (o ¥ ) )
— L (P w)(©) forall we T(Ap). (4.4.10)
/L(BCH)

Since Pg, is a self adjoint and (4.4.6), (4.4.7) and (4.4.10) gives

(54w DY) =~ [ 0P ) (O P T
el MG UG QUL
- [ @e e ) T O
=W ;Cl) (Qcy Poy (W), (Poy (W 10))).

With the help of the Theorem (4.4.2), we get

((FAG.D) Puo) = - !

((Pe,QeyPo, (W), (W)

<WPC1 QCzPCl W_lua U>

for all u,v € T'(A, w).

Thus the Landau-Pollak Slepian operator Pg, Qc, Pe, is unitary equivalent to (fA(z, D) f)

Watson wavelet multiplier. O
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4.5 Watson Wavelet multiplier in Sobolev-type

space

In this section, the Watson wavelet multiplier is used to construct a Sobolev-type

space using the Watson transform technique.

Theorem 4.5.1. If 0,(¢) = (14 ¢?)™*2? € L'(0,00), fort > 0 and f € L*(0,00) N

L*®(0,00). Then the Watson wavelet multiplier
(Poy.gu)(z) = /0 " Q) me ) (e f) @S, € € (0,0) (4.5.1)
can be expressed in the following form:
(Pou)(@) = f(2)W o QW (uf)(Q)](z), u € L0, 00). (4.5.2)

Proof. Using (4.5.1), we have

(Po, yu)(x) = /OOO a¢(C)(u, me f) (me f)(x)dC, ¢ € (0, 00).

From (4.1.5) and (4.1.7), we get

(Pagil(a) = [ ox0) ([ wtmiaenman ) (s orac
— [ o) ([ rmorsmutnin) reo) o
— [ oW Ok o
1) [ haQ (W (O
@)W [ OW (@O ().
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]

Definition 4.5.2. If O,; denotes the linear space of all smooth functions 6(x) de-
fined on I = (0, 00) such that for each non-negative integer v, there is a non-negative

integer n, for which

|(1+ 2% ™ (27 'D,)"0(z)| < 0o (4.5.3)
for all z € I, then 0(x) is called multiplier in T'(\, p).

Theorem 4.5.3. Let ¢ € Oy and o € T(A\, ). Then ¢3p € T(\, ).

Proof. The above theorem can be easily proved in [50]. O

Theorem 4.5.4. Let ¢ € T(\, ). Then Wo € T(1 — pu, 1 — N).

Proof. The proof is obvious, see [50]. O

Theorem 4.5.5. Let o, € L'(0,00) and ¢ € O,, and ¢ € T(\, u), Then we have to

prove that
Wi(g)(x) = W o (QOW ()] () € T(A, p). (4.5.4)

Proof. Now, we have

M DLW (60 ()] = e DLV o W (60) (O] )]
_ DL ( I k(scoat(owwwodc) |
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Using (1.4.3), we get

|2 Dy (We(¢90) ()]

=y [T ([T R0 s ) mtow 0

e ([T D60 s ) st 0
e /Ooo (/f: K (8)(O)*(=s)(—=s — 1).(—s — I + l)x_s_lds)

x o (QOW (¢9)(C)C|
= |(—s)(—s—1)....(—s—l+1)$_s_lfﬂc+l/0 </C_m K(s)(C)‘SdS>
x 0 (W (¢v)(C)dC].

Put s = ¢+ wu, we get

c—Hoo
|2 DL (W (o)) (2)] < Asl|x_“‘|/ (/ K(c+ zu)|du>

X< |7 (W (@) ()|

c—Hoo
< ASID/ </ c+z’u)|du>

< 1o (OW (B)(O)ldC]
< Ay D' supl¢ W ($0)(C)| / 020l dC.

< Ay D' supl¢W (60)(0)] / (14 ¢ dc.

Thus for ¢ > 0 and ¢y € T'(\, 1) we get the required result

|2 Dy (We(d) ()] < oo
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With the help of all above Theorems given in this section and from [40], we find a

Watson wavelet multiplier on the Sobolev space GZ’Q.

Theorem 4.5.6. Let Py, § is a Watson wavelet multiplier on LP(I) and f € Oy,

which satisfies the norm inequality
(1 +2%) 2 f(2)]]s < Cp for t>0. (4.5.5)
Then for u € L'(0,00), F,, s can be estimated by the

1Po sulls < Cslloe( QW (uf) (O le2- (4.5.6)

Proof. From Theorem 4.5.1, we have

IPausils = (T OW W @Ol oo
— </O°O (1 + %)~ f () (1 + $2)tW—1[Ut(C)W(Uf)(C)](atﬂdg:)

00 1/2
< I+ 2247 (@) s ( [as x?)tw-l[ot@)vv(uf)(cﬂ(x)|2d:c)

1/2

<c ( [ia+ x?)tw-l[at<<>w<uf><c>1<x>|2dx)
< Cllol OW () (Ol

4.6 Trace class of the Watson wavelet multiplier

This Section introduces the trace class associated with Watson transform and with
the help of Wong [76, p. 14], it is shown that the Watson wavelet multiplier is in

trace class 9.
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Proposition 4.6.1. Let A: X — X be a bounded linear operator on a Hilbert space
X and let {¢ : k = 1,2,3...} be any orthonormal basis for X. Then the series
> e (A, or) is absolutely convergent and the sum is independent of the choice of
the orthonormal basis {¢r : k =1,2,3...}.

In view of the Proposition 4.6.1, we can define the trace class S; of any linear

operator A : X — X on a Hilbert space X by

= (Adk. di). (4.6.1)
k=1

Theorem 4.6.2. Let o € L'(0,00). Then the trace class of Watson wavelet multi-

plier P,y : L*(0,00) — L*(0,00) is satisfied the following inequality

tr(Poy)| < K- / &)|de. (4.6.2)

Proof. Let {¢.} be a sequence of orthonormal basis for L?(0,00). Then, using

(4.6.1) we have
[tr(Pop i)l = | > (Posbi 61|,
k=1
From (4.1.6), we get

tr(Py 60| = | /0 o (€, e f) (e f ) ]|

IA
Fjgﬁmg
\ = S|"

/0 T (E){(n, e f ) (Gnr e f ]

B
Il
—

With the help of [54, p. 409], we get

tr(Pyyé0)] < — / e |Pde.
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Using (4.1.5), we get

tr(Prgbe)] < / 0(6)] - k() £ () Pde
<K—I|f||2 / 0/(€)]de (4.6.3)

< 00.

4.7 Conclusions

Keeping a view of past, recent, and future researches on the wavelet multipliers ex-
ploiting by Fourier, and other integral transforms, the contribution of the Authors
is the characterization of the Watson wavelet multiplier associated with the unitary
representation. This aforesaid theory is heavily correlated with the LP-boundedness,
Hilbert-Schmidt classes, compactness, trace classes, and Sobolev spaces. Like other
integral transforms, Watson transform has a nice mathematical background, and the
associated wavelet multiplier is expressed in the form of Pseudo-differential opera-
tors. This theory is significant in the problems of signal processing and many areas

of mathematics.

KKk



