Chapter 1

Introduction

The theory of pseudo-differential operators is one of the most important tools in
modern mathematics. It has found important applications in many mathemati-
cal developments. Utilizing the theory of the Fourier transform, pseudo-differential
operators played an important role in studying problems in quantum mechanics,
numerical analysis, functional analysis, and other areas of mathematics. This op-
erator is the generalization of partial differential operators. Many authors studied
the various properties of pseudo-differential operators by exploiting certain inte-
gral transform techniques and found many important observations. The calculus of
pseudo-differential operators was originated by Kohn and Nirenberg [32] in 1965 and
Hormander [29] did a significant contribution in the enhancement of this aforesaid
theory and made well-structured calculus. Later on, Fefferman [19], Shubin [61],
Taylor [63], Treves [65], Wong [75] and others established proper structures for the
development of pseudo-differential operators and studied many properties by using

the theory of the Fourier transform.

The spectral theory of a class of pseudo-differential operators was introduced by
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Schechter [58], in 1970. Catchpole [10], Wong [72-74] and Weder [70], made im-
portant contributions about the spectral properties of a class of pseudo-differential
operators by exploiting the theory of the Fourier transform. Wong [74] studied the
spectrum and essential spectrum in LP(R") of strongly Carleman pseudo-differential
operators by taking a symbol of class 57, 0 < p <1 and examined that both the
aforesaid spectrums coincided with the symbol under the given range for p # 2. Ab-
solute continuity of spectra of pseudo-differential operators was also found by Wong
in [74]. However, the problem of finding eigen value is notoriously difficult due to

the difficulties in proving convergence and L?-boundedness.

The Hankel transform played an important role for finding the solution of cylin-
drical boundary value problems. Exploiting the theory of the Hankel transform,
several results of pseudo-differential operators associated with certain class of sym-
bols involving the Bessel operator were done by many authors [39-43, 48]. The
pseudo-differential operators associated with the symbol class H™ and H{j* were de-
fined by Pathak and Pandey [39], in 1995. It was shown that pseudo-differential
operators associated with a symbol belonging to these classes are the continuous
linear mapping of the Zemanian space H, into itself. Later on, Pathak and Pandey
[40], in 1997 found the characterization of pseudo-differential operators in Sobolev
type space G;F associated with the help of distributional Hankel transform. In the
same year, the properties of pseudo-differential operators associated with a homoge-
neous symbol by taking the Hankel transform technique were found by Pathak and
Upadhyay [41].

Many authors have defined wavelet transforms associated with different integral
transforms. From [44], Pathak et al. studied continuous and discrete Bessel wavelet

transform by using the theory of Hankel convolution. In [68], Upadhyay et al. found
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the connection between the Bessel wavelet convolution product and Hankel convo-

lution product involving Hankel transform technique.

Energized by the theory of the Fourier transform and the Hankel transform, Pseudo-
differential operators can also be built from the other integral transforms. Using the
Watson transformation theory, Pathak and Tiwari discussed the characterizations
of pseudo-differential operators in [47].

Time-frequency analysis has rapidly evolved in the last two decades, as a result of
the success of the Fourier transforms and wavelet transforms. Localization operators
get their name in 1988 when Daubechies first used them as a mathematical tool
to localize a signal on the time-frequency plane. Elena et al. [12] evaluated as a
class of pseudo-differential operators known as time-frequency localization operators,
Antiwick operators, Gabor-Toeplitz operators, or wave packets. In [2], among others,
Baccar et al. proved that a class of pseudo-differential operators has been named
as time-frequency analysis of localization operators, which depends on the symbol
o and two window functions g; and g,.

Using the theory of localization operators, different works have been done by many
authors by exploiting the various integral transform tools. Daubechies [14, 15], Elena
[12, 13] discussed the theory of localization operators to study the class of bounded
linear operators in signal analysis. Wong et al. [27, 34, 78], Upadhyay [66] examined
the boundedness of the localization operator on various functional spaces in terms of
the wavelet multiplier. From [27, p. 440], we see that pseudo-differential operators
and wavelet multipliers are unitarily equivalent and since they are self-adjoint so

they have the same spectrum.

With the help of the above results and concepts, Our main interest in this thesis

is to study the characterizations of the Lf —spectra of pseudo-differential operators
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associated with the Bessel operator in Chapter 2 and also some applications re-
lated to the essential spectrum of pseudo-differential operators involving the Hankel
transform in the Sobolev space, and in the heat equation are given. Chapter 3 exam-
ines the boundedness and compactness of the Hankel wavelet multiplier, as well as
many other properties associated with the unitary representation. In chapter 4, an
LP-boundedness, compactness and Hilbert-Schmidt class of the wavelet multiplier
associated with the Watson transform are investigated and its various properties
studied. The Landau-Pollak Slepian operator associated with the Watson transform
is discussed as an application of the wavelet multiplier. The relation between the
Watson wavelet multiplier and Sobolev-type space is given and the trace class of
the Watson wavelet multiplier is examined. Chapter 5 will be provided the various
properties of localization operators related to wavelet multipliers based on the theory
of the Watson transform. In Chapter 6, utilizing the theory of the Watson trans-
form and Watson convolution, we explore the Watson wavelet convolution product
and its related properties. The relation between the Watson Wavelet convolution
product and Watson convolution is also computed. Watson wavelet transform and
its inversion formula are analyzed heuristically. The Watson two-wavelet multipliers

and their trace class are derived from the Watson wavelet convolution product.

Now, from Betancor [4], Braksma [8], Wing [71], Pathak [45, 49], Schechter [58, 59],
Titchmarsh [64], Wong [27, 34, 72-74, 76, 80], and Zemanian [83], we are giving
some important definitions, formulae and properties in form of sections that will be

used in the subsequent chapters.
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1.1 Fourier transform

In this section, we will discuss various definitions, formulae, and properties of the
Fourier transform, which are the basis for other subsequent chapters in this thesis,

as follows:
The Fourier transform of a function f € L'(R") is defined by

1

f(w) = (2%)%

/ e~ 1) £(t)dt. (1.1.1)

If f € L*(R") and f € L*(R™), then the inverse Fourier transform of f is given by

1
(2#)%

f(t) = /n ) fw)dw,  ae. (1.1.2)

where (t,w) = tiwy + tows + ... + tpn.
Fourier transform in L?(R")-space

The Fourier transform of f € L*(R") is defined by

N

o) = Lim. 1 ~i(tw)
fo) = gt g [ st (1.13)

and the corresponding inversion formula of the Fourier transform is defined by

N A
)= ity [ e e (114

(1.1.4) defines convergence in L*(R") and is called the limit in the mean(l.i.m.).

Properties of Fourier transform
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1. Let f,g € L'(R™), then the convolution of f and g is defined by
(Fxo)@) = | flx=y)gly)dy (1.1.5)
2. Let f,g € L*(R™), then the Parseval formula of the Fourier transform is
<]Eag>L2(R") = (f, 9) L2rn)- (1.1.6)
3. If f =g, then (1.1.6)

1l 2eny = (1f 1 22 n), (1.1.7)

where the inner product in L?(IR") space is defined by

() = [ F)T0L (1.18)
4. Let f € LY(R") and g € LP(R") for 1 < p < oo. Then for almost every z € R",
1 * glly < {1 1h1lgllp- (1.1.9)

5. Let f € LP(R") and g € LY(R") for 1 < p,q < r < oo, then

[LF = glle < (1115l Lgla; (1.1.10)

Where%: +=—1.

Q=

1
p

6. Let f,g € L*(R™), then

(f * 9)(w) < 21)% f(w)g(w). (1.1.11)
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7. Let f € L'(R™), then

A

(a) f is continuous on R".

~

(b) lim f(w)=0.

|w|—o0

(¢) f; — fin LYR™) implies fj — f uniformly on R".

1.2 Spectal theory of pseudo-differential opera-

tors

In this section, various definitions and properties of the pseudo-differential operator
associated with the Fourier transform which are useful for our further investigations

are discussed:

Definition 1.2.1. .(R"), is the set of all infinitely differentiable functions ¢ defined

on R”, such that for all multi-indices o and

Ya,8(¢) = sup [2*(D?9)(z)| < oo, (1.2.1)

zER™

then the space .(R") is called Schwartz test function space.

Definition 1.2.2. A complex-valued continuous function o defined on R” is called
a symbol S™ if there exist a constant C' > 0 and m € (—o0,00) such that |o(£)| <

C(1+ &)™ for all £ € R™

If o is a symbol, then the pseudo-differential operator T, is defined by

(T,6)(x) = / o (BO)dE, 6 e SR (12.2)

n

where ¢(€) denotes the Fourier transform of ¢.
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Definition 1.2.3. A symbol ¢ is said to be strongly Carleman, if there is a positive
number b such that
1

- - —b as . L.
@ = o™ GEES (1.2:3)

Definition 1.2.4. Let X # {0} be a complex normed space and T' € B(X )(bounded

linear operator on X). A number A € C is said to be a regular value of T if

1. T'— X\ is one-to-one.
2. (T — XI)~! is defined on X, and

3. (T — XI)~! is bounded.

where C is the set of all complex number and [ is the identity operator from X into
X. The set of all regular value of T is denoted by p(T), is called the resolvent set
of T.

The spectrum » (7T') of T is defined to be the set of complement of p(T") in C.

Definition 1.2.5. The essential spectrum ) (7)) of the operator T, : ./ (R") —
Z(R™) is defined to be the set of all complex number A, if there is a sequence
(xy) of elements of D(T,), where D is the dense domain of the operator T, such

that ||z,|| = 1, ||(T, — M )z,|| — 0 and (z,) has no convergent subsequence, then

rey  (T,).

The minimal and maximal pseudo-differential operators
Let X and Y be complex Banach space with norms denoted by || ||x and || |y
respectively. We are concerned with linear operators A mapping a dense subspace

of X, usually denoted by D(A) into Y. We call D(A) the domain of the operator A.

Definition 1.2.6. Let X and Y be Banach space, then an operator A is said to be
closed if for any sequence < xj > of vectors in D(A) such that z;, — = in X and

Az — yin Y as k — oo, we have x € D(A) and Az = y.
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Definition 1.2.7. The operator A is said to be closable if for any sequence < xp >

of vectors in D(A) such that z;, — 0 in X and Azxy — y as kK — oo, we have y = 0.

Definition 1.2.8. Let o0 € S. Then for 1 < p < 00, the pseudo-differential operator
T, : LS(R") — .Z(R") is closable in LP(R™). The closure in LP(R"), 1 < p < oo, of
T, : L (R") — /(R") is denoted by T, and called the minimal pseudo-differential

operator.

Definition 1.2.9. Let u and f be functions in LP(R"), 1 < p < co. We say that u
lies in D(T, 1) and T, u = f iff (u,TF¢) = (f,¢), ¢ in .¥, where T is the formal

adjoint of T,.

Definition 1.2.10. 7, is the largest closed extension of 7, having .# contained
in the domain of its adjoint. In other words, if B is any closed extension of T, such

that .7 C D(B?"), then T, is an extension of B called the maximal operator of T,.

Properties of Pseudo-differential operator

1. Let o be a symbol. Then T, maps Schwartz space .7 (R") into .7 (R") itself.

2. Let 0 € S° Then T,, initially defined on .#(R™), can be uniquely extended

to a bounded linear operator from L*(R") into L*(R™).

3. Let o be a symbol in S™ and T, be its associated pseudo-differential operator.

Suppose there exists a linear operator 77 a formal adjoint of the operator

T : S (R") — . (R") such that

(To0,¥) = (0, T;0) ¢, € L(RY) (1.2.4)

Then we call T} is a formal adjoint of 7.
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4. Let o be a symbol. Then for 1 < p < oo, the pseudo-differential operator T,

is closable.
5. T4 is a closed extension of T, for 1 < p < oo.

6. Let 0 € S. Then T,,, =T, for 1 < p < oo i.e for o € . (R"™), the minimal and

maximal extensions in LP(R"), 1 < p < oo, of T, : /(R") — . (R™) coincide.

1.3 Hankel transform

In this section, various definitions, properties and formulae of the Hankel transform

are discussed:
Let f € L*(0,00), then the Hankel transform is defined by

Ju(xy) f(x)de, p> —% (1.3.1)

=

(h f)(y) = / ()

where J,, denotes the Bessel function of first kind and of order p.

If f € L'(0,00) and h,f € L'(0,00), then the inverse Hankel transform is given by

Fa) = [y ten) o)y, for = =3, (132)

The H, space consists of all complex-valued infinitely differentiable functions ¢

defined on I = (0, co) satisfying

Ve (¢) = sup [2" (271 D,) a2 g (x)| < 00, ¥ m,le NU{0}. (1.3.3)

zel
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From [6], let 22 f(z), *t2g(z) € L}(0, 00), then the Hankel convolution is defined
by
U9 = [ 10)mo) Wiy (13.4)
0

where

(ra9)(w) = () = / " 9(2) Dyl y, 7)) (1.3.5)

is the Hankel translation and D, (x,y, z) is the basic function

o=
o=

Ju(yt)(zt)2 J,(2t)dt, (1.3.6)

Dy, ) = / " () ) ()

where z,y,z € I = (0,00).

Properties

From [6, 39, 43], we shall use the following formulae:
1. The Hankel transform h, is an automorphism on the Zemanian space H,,.
2. Let f € L'(0,00) and g € L'(0,00), then ||(f#9)[l1 < [|f]l1llg]h-

3. If 2#*2 f(z) and 2"*2g(z) € LY(0, 00) then

hu(f#9)(x) = 2773 (h f) (@) (hug) (). (1.3.7)

4.8, =8,,= dd—; ! ;;2“2. (1.3.8)
5. hy(Suo) = (_yz)hu(z)' (1.3.9)
6. S) ,d(x) =D ba T2 (@ D) (27 2 (). (1.3.10)

J=0
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From Wing [71] and Kerr [31], for 4 > —3, the Hankel transform of function f €

L*(0, 00) is defined by

[NIES

(haf)(y) = k. / (ey)t (o) (2)de, (13.11)

and the corresponding inverse Hankel transform is

f(a) = i / () (o) (b ) (9)dy, (1.3.12)

where [.i.m. denote convergence in L*(0, 00).

h,, is isometric on L?(0, c0), h;lh“ f = [, then the Parseval’s formula of the Hankel

transformation for f, g € L?*(0,00) is given by

| s@et@as = [t te) iy (1.3.13)

Pseudo-Differential Operator associated with the Hankel transform

A complex-valued continuous function o € C*°(0,00), is a symbol belong to the

class H™, if it satisfies the following inequality
(€7 De)*o(§)] < Ca(l+ "7, VEEL (1.3.14)

for C, > 0, and m is any fixed real number.

The pseudo-differential operator associated with the symbol ¢ € H™, is defined by

(Mo ®) () = /Ox(xf)l/zJu(mé)a(i)(hm)(€)d€7 ¢ € Hy. (1.3.15)
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1.4 Watson transform

From Schuitman [8] and Titchmarsh [64], Watson transform is the generalization of
the Fourier transform and the Hankel transform. Various definitions and properties
of the Watson transform, which are used in other subsequent chapters, are given
below:

The Watson transform of function f € L(0,00) is defined by

(Wf)(z) = /O " k(at) f(1)dt. (1.4.1)

If f e L'(0,00) and W f € L'(0,00), then the inversion of the Watson transform is

f(t) = /O " k(at) (W f) (2)ds, (1.4.2)

where k(x) is called the kernel of the Watson transform which would be in the

following form:

1 c+1i00

k(x) = —/ K(s)x™°ds and s=c+it, (1.4.3)

27

—100

where K (s) be an analytic function on A < Re s < p such that K(c + it) €
L'(—00,0) for some ¢ with A\ < ¢ < p. Assume further that for every pair (a,b)
such that A < a < b < p, there exists a real number 7 such that K(s) = O(s7) as

|s| — oo, uniformly on @ < Re s < b, for A\, u € R*, A\ < p.

We denote R* = RU{—o00, oo}, C is the set of complex numbers and Ny = {0, 1, 2...}.
Let A\, € R*, A < p. Let {\,}22, and {u,}5°, be sequence of real numbers with

A 4 A piy T and A, < pp, for all n € Ng.
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Then T'(\, i) is the space of all functions ¢ € C*°(0, 00) with the property that

Ba(¢) = sup |tTPPP(t)] < oo V¥V n €N, (1.4.4)

t>0
p=0,1,2....n
An<c<pn

A complex-valued continuous function o defined on I = (0, 00) is a symbol belongs

to the class T,, if and only if there exists a constant C' > 0 such that
lo(y)| < C(L+y)™, (1.4.5)

where m is a fixed real number.
Then the pseudo-differential operator A(z, D) associated with the symbol o(y) is
defined by

Az, D) = / ko)W ()dy, ¢ € T 1), (1.4.6)

where k is defined in (1.4.3) and W denotes the Watson transform.

The basic function is defined by

wh,g,t) = /0 " R(hE) k(g k(L6 (1.4.7)

provided integral (1.4.3) being convergent under the assumption k¥ € L'(0,00) N
L>(0,00) and assume that k(0) =1 and w(h, g,t) > 0 for every h,g,t € (0, 00).

From (1.4.3), we have

KRR = [ wlhg. k() (1.4.38)

Setting £ = 0 in (1.4.8),

/00 w(h, g, t)dt = 1. (1.4.9)
0
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Using (1.4.7), (1.4.8) and (1.4.9), the Watson translation is given by
Fu9) = () = [ Feih gt (1.4.10)
Let f € L'(0,00) and ¢ € L'(0,00). Then Watson convolution is defined by

(40 (h / e (1.4.11)

If f,g € L'(0,00) N L?(0,00), then the Parseval relation is given as

| wanowawd = [ g (1.4.12)

0
Properties of Watson transform

1. The map W : T(1 — u,1 — A) = T(A, ), defined by

(W) (x) = / k(xt) £(£)dt (1.4.13)
0
is linear and continuous.

2. Let f € L'(0,00) and ¢ € L'(0,00) then
W({f#) = W(HW (). (1.4.14)
3. Let f € L'(0,00) and ¢ € L'(0, 00) then

#0000 < NS 122,00 91| 21(0,00) - (1.4.15)
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4. Let f € L'(0,00) and ¢ € L?(0, 00) and then
1f#¢] Le(0,00) < ILF[1E1(0,00) 18] £2(0,00) (1.4.16)
5. Let f € LP(0,00) and ¢ € L9(0,00) then

1 1 1
| f#YLr 0,000 < || Il 2r(0,00) 1] La(0,00) P +-—1 (1.4.17)

1.5 Localization operator and Wavelet multiplier

From [34], and with the help of the Fourier transform, we introduced definitions and
formulae of the unitary representation, localization operators, and wavelet multipli-

ers.
Definition 1.5.1. Let 7 : R®™ — U(L*(R")) be the unitary representation of the
multiplicative group R"™ on L?(R") is defined by

(m(&)u)(x) = e u(z), r,§ €R" (1.5.1)

for all functions w in L?*(R"), and U(L*(R™)) is the group of all unitary operators
on L?(R™).

Let ¢ be any function in L2(R™) N L>°(R") such that ||¢||» = 1, where || - ||, denotes

the norm in LP(R™) for 1 < p < co. Then it is proved that

(bu, dv) = (2m)™" / (1, 7(€) ) (n(£) 6, v) e (15.2)

n

for all functions v and v in the Schwartz space . and ( ) denotes the inner product.
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Definition 1.5.2. Let 0 € LY(R") N L>®(R"). Then for u,v € .7 (R"), we give the

definition of localization operator which is defined by

(Prgt) = [ (O rQ)m(o, 00, CERY (153)
R
where ¢ plays the role of admissible wavelet in the localization operator P, 4.

Remark: The function ¢ in the bounded linear operator P,  : L*(R") — L*(R"™)
plays the role of the admissible wavelet in a localization operator, then the bounded

linear operator P, : L*(R") — L*(R™) is a wavelet multiplier.

Definition 1.5.3. Hilbert-schmidt operator:
From Wong [80, p. 17], let T': H — H be a bounded linear operator in a Hilbert

space H such that,

STl < o, (1.5.4)
k

for all orthonormal bases {¢y : K € N} in H. Then T : H — H is in the Hilbert-

Schmidt class S; and satisfies the following norm

ITNZ, = 1Tl (1.5.5)
k

With the help of Wong [76, p. 14], we state the definition of trace class 5.

Proposition 1.5.4. Let A: X — X be a bounded linear operator on a Hilbert space
X and let {¢y : k = 1,2,3...} be any orthonormal basis for X. Then the series
S e 1 (Ady, o) is absolutely convergent and the sum is independent of the choice of

the orthonormal basis {¢r : k=1,2,3...}.

Definition 1.5.5. Trace class:

In view of the Proposition 1.5.4, we can define the trace class S; of any linear
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operator A : X — X on a Hilbert space X by

[ee)

tr(A) = Z<A¢k7¢k>~ (1.5.6)

k=1

Properties

1. Let o € L°(R™). Then from [34, p. 1010], we find that the bounded linear
operators P, s : L*(R") — L*(R") and ¢T,¢ : L*(R") — L%*(R") are unitarily

equivalent.

2. The function ¢ in L?(R") satisfying ||¢||o = 1 and

{6, m(£)¢)|*d€ < o0 (1.5.7)

R’n,
is said to be an admissible wavelet of 7 : R™ — U(L*(R")).

3. For every admissible wavelet ¢, the wavelet constant ¢, is given by

(0, 7(€) )| dE. (1.5.8)

co= [ |
Rn

4. The set of admissible wavelets for 7 : R — U(L?*(R")) consists of all functions

¢ in L*(R™) N L*(R™) for which ||¢||]2 = 1, and for every admissible wavelet ¢,

cp = (2m)"| |91 (1.5.9)

sk ok



