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PREFACE

The pseudo-differential operator is a generalization of the partial differential oper-
ator. Pseudo-differential operators are used extensively in the theory of partial dif-
ferential equations and quantum field theory by exploiting the theory of the Fourier
transform. This thesis treats different aspects and properties of the L-spectra of
pseudo-differential operators associated with the Bessel operator, Hankel wavelet
multipliers, Watson wavelet multipliers, Watson wavelet convolution product and

two-wavelet multipliers. This thesis consists of six chapters.

Chapter 1 is introductory, which provides the historical background of the pseudo-
differential operators and their spectral properties. We state the definitions and
properties of the Fourier transform, the Hankel transform, the Watson transform,
the Zemanian space and other spaces. Definitions of localization operators, wavelet

multipliers, unitary representation and their basic properties are given.

In chapter 2, the characterizations of the Lf-spectra of pseudo-differential opera-
tors associated with the Bessel operator is investigated by exploiting the theory
of the Hankel transform for 1 < p < oco. Some applications related to the essen-
tial spectrum of pseudo-differential operators involving the Hankel transform in the

Sobolev-type space, and in the heat equation are given.

Chapter 3 describes the Hankel wavelet multiplier associated with the unitary rep-
resentation and discussed its boundedness on LP-space for 1 < p < 0o, compactness
and other properties. It is also shown that the Hankel wavelet multiplier is Hilbert-
Schmidt operator and a unitarily equivalent to the Landau-Pollak Slepian operator

by taking the Hankel transform technique.

In chapter 4, an LP-boundedness, compactness and Hilbert-Schmidt class of wavelet

multiplier associated with the Watson transform are investigated and its various
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properties studied. The Landau-Pollak Slepian operator associated with the Watson
transform is discussed as an application of wavelet multiplier. The relation between
the Watson wavelet multiplier and Sobolev-type space is given and the trace class

of the Watson wavelet multiplier is also examined.

In chapter 5, the characterizations of localization operators associated with the inte-
gral representation of a locally compact group are discussed and with the help of the
Watson transform, its relation with wavelet multipliers is found. We also obtained

the trace class and Schatten-von Neumann property of localization operators.

In Chapter 6, utilizing the theory of Watson transform and Watson convolution,
we explore the Watson wavelet convolution product and its related properties. The
relation between the Watson Wavelet convolution product and Watson convolution
is also computed. Watson wavelet transform and its inversion formula are analyzed
heuristically. The Watson two-wavelet multipliers and their trace class are derived

from the Watson wavelet convolution product.
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Chapter 1

Introduction

The theory of pseudo-differential operators is one of the most important tools in
modern mathematics. It has found important applications in many mathemati-
cal developments. Utilizing the theory of the Fourier transform, pseudo-differential
operators played an important role in studying problems in quantum mechanics,
numerical analysis, functional analysis, and other areas of mathematics. This op-
erator is the generalization of partial differential operators. Many authors studied
the various properties of pseudo-differential operators by exploiting certain inte-
gral transform techniques and found many important observations. The calculus of
pseudo-differential operators was originated by Kohn and Nirenberg [32] in 1965 and
Hormander [29] did a significant contribution in the enhancement of this aforesaid
theory and made well-structured calculus. Later on, Fefferman [19], Shubin [61],
Taylor [63], Treves [65], Wong [75] and others established proper structures for the
development of pseudo-differential operators and studied many properties by using

the theory of the Fourier transform.

The spectral theory of a class of pseudo-differential operators was introduced by



