Chapter 6

M-Polynomial And VDB Indices

6.1 Introduction

In this chapter, we show how to compute the degree-based indices such as Forgotten index, Reduced Second Zagreb index, Sigma index, Hyper-Zagreb index and Albertson index using the M-polynomial. In addition, we present as an application how to quickly and effectively compute the degree-based topological indices using M-polynomial for carbon nanotube structures, namely $H C_{5} C_{7}[p, q], S C_{5} C_{7}[p, q]$ and $V C_{5} C_{7}[p . q]$.

The chapter is organized as follows. Section 6.2, we recall some definitions and results. In Section 6.3 , we compute degree based indices using the M-polynomial and in the last section 6.4 , we apply the M-polynomial to compute the VDB indices for three classes of carbon nanotubes.

6.2 Definitions and Required Results

In this section, we recall some of the definitions stated in Chapter 1 and state related results required for this chapter. Mainly, the five indices that we focus in this chapter is listed below.

For a simple connected graph $G(V(G), E(G))$, the indices are defined as

1. F-index or Forgotten index [77]

$$
\begin{equation*}
F(G)=\sum_{u \in V(G)} d(u)^{3}=\sum_{u v \in E(G)}\left(d(u)^{2}+d(v)^{2}\right) . \tag{6.1}
\end{equation*}
$$

2. Reduced Second Zagreb index [40]

$$
\begin{equation*}
R M_{2}(G)=\sum_{u v \in E(G)}(d(u)-1)(d(v)-1) \tag{6.2}
\end{equation*}
$$

3. Sigma index [79]

$$
\begin{equation*}
\sigma(G)=\sum_{u v \in E(G)}(d(u)-d(v))^{2} \tag{6.3}
\end{equation*}
$$

4. Hyper Zagreb index [64]

$$
\begin{equation*}
H y p(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{2} \tag{6.4}
\end{equation*}
$$

5. Albertson index [78]

$$
\begin{equation*}
A l b(G)=\sum_{u v \in E(G)}|d(u)-d(v)| \tag{6.5}
\end{equation*}
$$

Definition 6.1. [111] Let $G(V(G), E(G))$ be a graph, then M-polynomial of G is given by

$$
M(G ; x, y)=\sum_{i \leq j} m_{i j} x^{i} y^{j}
$$

where $m_{i j}$ denotes the number of edges $u v$ of G whose end vertices have degrees i and j, that is, $\{d(u), d(v)\}=\{i, j\}$.

Definition 6.2. [111] A degree based topological index for a graph G is defined as

$$
\begin{equation*}
I(G)=\sum_{e=u v \in E(G)} f(d(u), d(v)) \tag{6.6}
\end{equation*}
$$

where $f(x, y)$ is a function suitably representing some degree based topological indices.

For instance, the first Zagreb index $M_{1}(G)$ is defined with Equation (6.6) by putting $f(x, y)=x+y$. By counting the edges which have same end-degrees, we can rewrite Equation (6.6) as

$$
\begin{equation*}
I(G)=\sum_{i \leq j} m_{i j} f(i, j) \tag{6.7}
\end{equation*}
$$

We require some of the operators as defined in [111]. The operators are listed below :

$$
\begin{align*}
D_{x} f(x, y) & =x \frac{\partial f(x, y)}{\partial x}, & & D_{y} f(x, y)=y \frac{\partial f(x, y)}{\partial y} \tag{6.8}\\
S_{x} f(x, y) & =\int_{0}^{x} \frac{f(t, y)}{t} d t, & & S_{y} f(x, y)=\int_{0}^{y} \frac{f(x, t)}{t} d t \tag{6.9}\\
J(f(x, y)) & =f(x, x), & & Q_{\alpha}(f(x, y))=x^{\alpha} f(x, y) \tag{6.10}
\end{align*}
$$

Note that these operators are well-defined, especially in our case where we consider $f(x, y)$ as a polynomial function.

Next we consolidate the results from [111] as a theorem which is required for our proofs.
Theorem 6.3. ([111], Theorems 2.1, 2.2 and 2.3) Let $G(V(G), E(G))$ be a graph.

1. If $I(G)=\sum_{u v \in E(G)} f(d(u), d(v))$, where $f(x, y)$ is a polynomial in x and y, then $I(G)=$ $\left.f\left(D_{x}, D_{y}\right)(M(G ; x, y))\right|_{x=y=1}$.
2. If $I(G)=\sum_{u v \in E(G)} f(d(u), d(v))$, where $f(x, y)=\sum_{i, j \in \mathbb{Z}} \alpha_{i, j} x^{i} y^{j}, \alpha_{i, j} \in \mathbb{R}$ for each i, j. Then $I(G)$ can be obtained from M-polynomial using the operators D_{x}, D_{y}, S_{x} and S_{y}.
3. If $I(G)=\sum_{u v \in E(G)} f(d(u), d(v))$, where $f(x, y)=\frac{x^{r} y^{s}}{(x+y+\alpha)^{k}}$, for all $r, s \geq 0, k \geq 1$ and $\alpha \in \mathbb{Z}$. Then $I(G)=\left.S_{x}^{k} Q_{\alpha} J D_{x}^{r} D_{y}^{s}(M(G ; x, y))\right|_{x=y=1}$.

With the help of the above theorem, the authors in [111], have proved that certain topological indices can be computed directly from M-polynomial. We summarize these results in Table 6.1.

TABLE 6.1: Degree based topological indices derived from M-polynomial:

Degree based topological index	$f(x, y)$	Derivation from $M(G ; x, y)$
$Z M_{1}(G)$	$x+y$	$\left.\left(D_{x}+D_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
$Z M_{2}(G)$	$x y$	$\left.\left(D_{x} D_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
${ }^{m} M_{2}(G)$	$\frac{1}{x y}$	$\left.\left(S_{x} S_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
For $\alpha \in \mathbb{N}, R_{\alpha}(G)$	$(x y)^{\alpha}$	$\left(D_{x}^{\alpha} D_{y}^{\alpha}\right)(M(G ; x, y)) \mid x=y=1$
For $\alpha \in \mathbb{N}, R R_{\alpha}(G)$	$\frac{1}{(x y)^{\alpha}}$	$\left.\left(S_{x}^{\alpha} S_{y}^{\alpha}\right)(M(G ; x, y))\right\|_{x=y=1}$
$S D D(G)$	$\frac{x^{2}+y^{2}}{x y}$	$\left(D_{x} S_{y}+D_{y} S_{x}\right)(M(G ; x, y)) \mid x=y=1$
$H(G)$	$\frac{2}{x+y}$	$\left.2 S_{x} J(M(G ; x, y))\right\|_{x=y=1}$
$I S I(G)$	$\frac{x y}{x+y}$	$\left.S_{x} J D_{x} D_{y}(M(G ; x, y))\right\|_{x=y=1}$
$A Z I(G)$	$\frac{(x y)^{3}}{(x+y-2)^{3}}$	$\left.S_{x}^{3} Q_{-2} J D_{x}^{3} D_{y}^{3}(M(G ; x, y))\right\|_{x=y=1}$

6.3 Main Results

In this section, we present our main results on computing various degree based indices using the M-polynomial. As the first step, when applying the operator D_{x}, D_{y} on M-polynomial, we get:

$$
\begin{gather*}
D_{x} M(G ; x, y)=x \frac{\partial M(x, y)}{\partial x}=x\left\{\sum_{i \leq j} i m_{i j} x^{i-1} y^{j}\right\}=\sum_{i \leq j} i m_{i j} x^{i} y^{j} \tag{6.11}\\
D_{x}^{2} M(G ; x, y)=x \frac{\partial}{\partial x}\left\{x \frac{\partial}{\partial x} M(G ; x, y)\right\}=\sum_{i \leq j} i^{2} m_{i j} x^{i} y^{j} \tag{6.12}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
D_{y} M(G ; x, y)=\sum_{i \leq j} j m_{i j} x^{i} y^{j} \tag{6.13}
\end{equation*}
$$

and

$$
\begin{gather*}
D_{y}^{2} M(G ; x, y)=\sum_{i \leq j} j^{2} m_{i j} x^{i} y^{j} . \tag{6.14}\\
D_{x} D_{y} M(G ; x, y)=x \frac{\partial}{\partial x}\left\{y \frac{\partial}{\partial y} M(G ; x, y)\right\}=\sum_{i \leq j} i j m_{i j} x^{i} y^{j} . \tag{6.15}
\end{gather*}
$$

Next we derive the five topological indices given by Equations (6.1) to (6.5) from the M-polynomial
Theorem 6.4. Let $M(G ; x, y)$ be an M-polynomial for a graph $G(V(G), E(G))$, then the Forgotten index is given by

$$
F(G)=\left.\left(D_{x}^{2}+D_{y}^{2}\right) M(G ; x, y)\right|_{x=y=1}
$$

Proof. Now using Equations (6.6) and (6.7) in the Equation 6.1 of the Forgotten index, we get

$$
\begin{equation*}
F(G)=\sum_{u v \in E(G)}\left(d(u)^{2}+d(v)^{2}\right)=\sum_{i \leq j} m_{i j}\left(i^{2}+j^{2}\right) \tag{6.16}
\end{equation*}
$$

Now by using the Equations (6.12) and (6.14) in (6.16), we immediately obtain that $F(G)=$ $\left.\left(D_{x}^{2}+D_{y}^{2}\right) M(G ; x, y)\right|_{x=y=1}$.

Theorem 6.5. Let $M(G ; x, y)$ be an M-polynomial for a graph $G(V(G), E(G))$, then the Reduced Second Zagreb index is given by

$$
R M_{2}(G)=\left.\left(D_{x}-1\right)\left(D_{y}-1\right) M(G ; x, y)\right|_{x=y=1}
$$

Proof. Note that

$$
\begin{align*}
\left(D_{x}-1\right)\left(D_{y}-1\right) M(G ; x, y) & =\left(D_{x} D_{y}-D_{x}-D_{y}+1\right) M(G ; x, y) \\
& =D_{x} D_{y} M(G ; x, y)-D_{x} M(G ; x, y)-D_{y} M(G ; x, y)+M(G ; x, y) \tag{6.17}
\end{align*}
$$

By using Equations (6.11), (6.13) and (6.15) in Equation (6.17) and upon simplification, we then get

$$
\begin{equation*}
\left(D_{x}-1\right)\left(D_{y}-1\right) M(G ; x, y)=\sum_{i \leq j}(i-1)(j-1) m_{i j} x^{i} y^{j} \tag{6.18}
\end{equation*}
$$

Rewriting Reduced Second Zagreb index with the help of Equations (6.6) and (6.7), we get

$$
\begin{equation*}
R M_{2}(G)=\sum_{u v \in E(G)}(d(u)-1)(d(v)-1)=\sum_{i \leq j} m_{i j}(i-1)(j-1) \tag{6.19}
\end{equation*}
$$

Hence $R M_{2}(G)=\left.\left(D_{x}-1\right)\left(D_{y}-1\right) M(G ; x, y)\right|_{x=y=1}$.
Theorem 6.6. Let $M(G ; x, y)$ be a polynomial for a graph $G(V(G), E(G))$, then Sigma index is given by

$$
\sigma(G)=\left.\left(D_{x}-D_{y}\right)^{2} M(G ; x, y)\right|_{x=y=1}
$$

Proof. Since,

$$
\begin{align*}
\left(D_{x}-D_{y}\right)^{2} M(G ; x, y) & =\left(D_{x}^{2}+D_{y}^{2}-2 D_{x} D_{y}\right) M(G ; x, y) \\
& =D_{x}^{2} M(G ; x, y)+D_{y}^{2} M(G ; x, y)-2 D_{x} D_{y} M(G ; x, y) \tag{6.20}
\end{align*}
$$

Now using Equations (6.12), (6.14) and (6.15) in Equation (6.20), then

$$
\begin{equation*}
\left(D_{x}-D_{y}\right)^{2} M(G ; x, y)=\sum_{i \leq j}(i-j)^{2} m_{i j} x^{i} y^{j} \tag{6.21}
\end{equation*}
$$

Sigma index can be rewritten using Equations (6.6) and (6.7), as

$$
\begin{equation*}
\sigma(G)=\sum_{u v \in E(G)}(d(u)-d(v))^{2}=\sum_{i \leq j} m_{i j}(i-j)^{2} \tag{6.22}
\end{equation*}
$$

Comparing Equations (6.21) and (6.22), we get $\sigma(G)=\left.\left(D_{x}-D_{y}\right)^{2} M(G ; x, y)\right|_{x=y=1}$.
Theorem 6.7. Let $M(G ; x, y)$ be an M-polynomial for a graph $G(V(G), E(G))$, then Hyper-Zagreb index is given by

$$
H y p(G)=\left.\left(D_{x}+D_{y}\right)^{2} M(G ; x, y)\right|_{x=y=1}
$$

Proof. Note that

$$
\begin{align*}
\left(D_{x}+D_{y}\right)^{2} M(G ; x, y) & =\left(D_{x}^{2}+D_{y}^{2}+2 D_{x} D_{y}\right) M(G ; x, y) \\
& =D_{x}^{2} M(G ; x, y)+D_{y}^{2} M(G ; x, y)+2 D_{x} D_{y} M(G ; x, y) \tag{6.23}
\end{align*}
$$

Now using Equations (6.12), (6.14) and (6.15) in Equation (6.23), then

$$
\begin{equation*}
\left(D_{x}+D_{y}\right)^{2} M(G ; x, y)=\sum_{i \leq j}(i+j)^{2} m_{i j} x^{i} y^{j} \tag{6.24}
\end{equation*}
$$

With the help of Equations (6.6) and (6.7), Hyper Zagreb index can be rewritten as,

$$
\begin{equation*}
H y p(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{2}=\sum_{i \leq j} m_{i j}(i+j)^{2} \tag{6.25}
\end{equation*}
$$

Now from Equations (6.24) and (6.25), we get $\operatorname{Hyp}(G)=\left.\left(D_{x}+D_{y}\right)^{2} M(G ; x, y)\right|_{x=y=1}$.
Theorem 6.8. Let $M(G ; x, y)$ be an M-polynomial for a given graph $G(V(G), E(G))$, then Albertson index is given by

$$
\operatorname{Alb}(G)=\left.\left(D_{y}-D_{x}\right) M(G ; x, y)\right|_{x=y=1}
$$

Proof. : Since,

$$
\begin{equation*}
\left(D_{y}-D_{x}\right) M(G ; x, y)=D_{y} M(G ; x, y)-D_{x} M(G ; x, y) \tag{6.26}
\end{equation*}
$$

Now using Equations (6.11) and (6.13) in the Equation (6.26), we have

$$
\begin{equation*}
\left(D_{y}-D_{x}\right) M(G ; x, y)=\sum_{i \leq j}(j-i) m_{i j} x^{i} y^{j} \tag{6.27}
\end{equation*}
$$

By using Equations (6.6) and (6.7), we can rewrite Albertson index as :

$$
\begin{equation*}
A l b(G)=\sum_{u v \in E(G)}|d(u)-d(v)|=\sum_{i \leq j} m_{i j}(j-i) \tag{6.28}
\end{equation*}
$$

Now from Equations (6.27) and (6.28), we get $\operatorname{Alb}(G)=\left.\left(D_{y}-D_{x}\right) M(G ; x, y)\right|_{x=y=1}$.
In this section, we have computed the polynomial of five degree based indices other than those mentioned in Table 6.1 and have consolidated these results in Table 6.2.

Table 6.2: M-Polynomial for more degree based topological indices

Degree based topological index	$f(x, y)$	derivation from $M(G ; x, y)$
$F(G)$	$x^{2}+y^{2}$	$\left.\left(D_{x}^{2}+D_{y}^{2}\right)(M(G ; x, y))\right\|_{x=y=1}$
$R M_{2}(G)$	$(x-1)(y-1)$	$\left.\left(D_{x}-1\right)\left(D_{y}-1\right)(M(G ; x, y))\right\|_{x=y=1}$
$\sigma(G)$	$(x-y)^{2}$	$\left.\left(D_{x}-D_{y}\right)^{2}(M(G ; x, y))\right\|_{x=y=1}$
$H y p(G)$	$(x+y)^{2}$	$\left.\left(D_{x}+D_{y}\right)^{2}(M(G ; x, y))\right\|_{x=y=1}$
$\operatorname{Alb}(G)$	$\|x-y\|$	$\left.\left(D_{y}-D_{x}\right)(M(G ; x, y))\right\|_{x=y=1}$

6.4 Application to Nanotubes

In this section, we apply the theoretical results proposed in section 6.3 to a collection of chemical graphs, namely carbon nanotubes. Carbon nanotubes are a particular type of fullerenes. It constitutes the carbon allotropes formed in a cylindrical structure. Carbon nanotubes are known to have outstanding properties such as high Young's modulus, high tensile strength, high electronics flow, to name a few. At room temperature, the thermal conductivity of nanotubes is higher than that of natural diamond and the basal plane of graphite. Superconductivity has been observed but only at low temperatures [127]. Owing to such properties, carbon nanotubes are well-suited for virtually any application requiring high strength, durability, electrical conductivity, thermal conductivity and lightweight properties compared to conventional materials. For a detailed study on the properties of nanotubes, we refer to [128].

The structural and physical properties of carbon nanotubes have attracted a wide range of application in the field of nanotechnology, electronics, material science, architecture, to name a few. We focus on three nanotubes namely ${H C_{5}} C_{7}, S C_{5} C_{7}$ and $V C_{5} C_{7}$, the structure of these carbon nanotubes consist of alternating pentagons $\left(C_{5}\right)$ and heptagons $\left(C_{7}\right)$. A three-dimensional representation of these carbon nanotubes is given in Figure 6.1. The two-dimensional lattice structure of these carbon nanotubes are given in Figure 6.2, Figure 6.3 and Figure 6.4 respectively. For a detailed study of the structural properties of these nanotubes using topological indices, we refer to [125, 129].

Figure 6.1: 3-D geometry of nanotubes $H C_{5} C_{7}(A), S C_{5} C_{7}(B)$ and $V C_{5} C_{7}(C)$.

6.4.1 HC5C7 Nanotubes

In this section, we compute the degree based indices for graph carbon nanotubes $H_{5} C_{7}[p, q]$ from the M-polynomial. As stated before, this nanotube is a $C_{5} C_{7}$ net whose two-dimensional lattice structure consists of alternatively arranged pentagons C_{5} and heptagons C_{7} with a trivalent decoration as shown in Figure 6.2. In $H C_{5} C_{7}[p, q], p$ denotes the number of heptagons C_{7} in the first row of its $2-D$ lattice representation and q denotes the number of periods in the whole lattice. Here, a period consists of the four rows, as shown in Figure 6.2, which represents the $i^{\text {th }}$ period. The lattice structure consists of $16 p$ vertices in each period along with a set of $2 p$ vertices joined as pendants at the last row. Thus, the total number of vertices in this lattice is $\left|V\left(H C_{5} C_{7}[p, q]\right)\right|=16 p q+2 p$. Similarly, counting the number of edges, we find that there are $24 p$ edges in each period with an additional $2 p$ edges which were added (as extra) to connect the pendant vertices to get a $2-D$ lattice, that is, $\left|E\left(H C_{5} C_{7}[p, q]\right)\right|=24 p q-2 p$.

Theorem 6.9. Let G be the graph of the nanotube $H_{5} C_{7}[p, q]$, for $p, q \geq 1$ then its M-polynomial is given by

$$
M(G ; x, y)=8 p x^{2} y^{3}+(24 p q-10 p) x^{3} y^{3}
$$

Proof. To compute the M-polynomial, we partition the edges of this nanotube based on the degree of the end vertices. We find that the edges can be partitioned in to exactly two sets given by:

$$
E_{1}(G)=\{u v \in E(G) \mid d(u)=2 \text { and } d(v)=3\}, E_{2}(G)=\{u v \in E(G) \mid d(u)=d(v)=3\}
$$

Number of edges in $E_{1}(G)$ and $E_{2}(G)$ are $8 p$ and $24 p q-10 p$ respectively. Now we compute the M -

Figure 6.2: Structure of $\mathrm{HC}_{5} \mathrm{C}_{7}[3,3]$ nanotube.
polynomial for given graph $G=H C_{5} C_{7}[p, q]$. Since, $\{d(u), d(v)\}=\{i, j\}$ and $(i, j) \in\{(2,3),(3,3)\}$
then from Definition 6.1, we have

$$
\begin{aligned}
M(G ; x, y) & =m_{23} x^{2} y^{3}+m_{33} x^{3} y^{3}=\left|E_{1}(G)\right| x^{2} y^{3}+\left|E_{2}(G)\right| x^{3} y^{3} \\
& =8 p x^{2} y^{3}+(24 p q-10 p) x^{3} y^{3}
\end{aligned}
$$

Now using the expression for the M-polynomial of $\mathrm{HC}_{5} C_{7}[p, q]$, and the polynomial representations of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for $\mathrm{HC}_{5} \mathrm{C}_{7}[p, q]$ nanotube as follows:

Theorem 6.10. The computed value of the degree based indices for the graph $H C_{5} C_{7}[p, q], p, q \geq$ 1, is given by

$$
\begin{aligned}
R M_{2}(G) & =96 p q-24 p, & H y p(G)=864 p q-160 p \\
F(G) & =432 p q-76 p, & \sigma(G)=8 p \\
A l b(G) & =8 p &
\end{aligned}
$$

Proof. From Theorem 6.9, M-polynomial for the graph $G=H C_{5} C_{7}[p, q]$ is

$$
M(G ; x, y)=8 p x^{2} y^{3}+(24 p q-10 p) x^{3} y^{3}
$$

then

$$
\begin{align*}
D_{x} M(G ; x, y) & =16 p x^{2} y^{3}+3(24 p q-10 p) x^{3} y^{3}, \tag{6.29}\\
D_{y} M(G ; x, y) & =24 p x^{2} y^{3}+3(24 p q-10 p) x^{3} y^{3}, \tag{6.30}\\
D_{y} D_{x} M(G ; x, y) & =48 p x^{2} y^{3}+9(24 p q-10 p) x^{3} y^{3}, \tag{6.31}\\
D_{x}^{2} M(G ; x, y) & =32 p x^{2} y^{3}+9(24 p q-10 p) x^{3} y^{3}, \tag{6.32}\\
D_{y}^{2} M(G ; x, y) & =72 p x^{2} y^{3}+9(24 p q-10 p) x^{3} y^{3} . \tag{6.33}
\end{align*}
$$

Applying the operators values given by (6.29) to (6.33) in the expressions given in Table 6.2, we get the required results of the theorem.

6.4.2 SC5C7 Nanotubes

In this section, we compute the degree based indices for the carbon nanotubes $S C_{5} C_{7}[p, q]$ from M - polynomial. As stated before, this nanotube is a $C_{5} C_{7}$ net whose two-dimensional lattice structure consists of alternately arranged pentagons $\left(C_{5}\right)$ and heptagons $\left(C_{7}\right)$ with a trivalent decoration as shown in Figure 6.3. In $S C_{5} C_{7}[p, q], p$ denotes the number of heptagons $\left(C_{7}\right)$ in the first row of its $2-D$ lattice representation and q denotes the number of periods in the whole lattice. Here, a period consists of the three rows, as shown in Figure 6.3, which represents the $i^{\text {th }}$-period. In this lattice structure, there are $8 p$ vertices in each period. Thus, the total number of vertices in this lattice is $\left|V\left(S C_{5} C_{7}\right)[p, q]\right|=8 p q$. Similarly, counting the number of edges, we find that there are $12 p$ edges in each period and there are additional $2 p$ edges which were joined as extra at the ends of the lattice structure, that is $\left|E\left(S C_{5} C_{7}[p, q]\right)\right|=12 p q-2 p$.

Figure 6.3: Structure of $S C_{5} C_{7}[p, q]$ nanotube.
Theorem 6.11. [117] Let G be the graph of this nanotube, the M - polynomial of $G=S C_{5} C_{7}[p, q]$ is given by

$$
M(G ; x, y)=p x^{2} y^{2}+6 p x^{2} y^{3}+(12 p q-9 p) x^{3} y^{3}
$$

Now using the expression for the M-polynomial of $S C_{5} C_{7}[p . q]$, and the polynomial representations of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for $S C_{5} C_{7}[p, q]$ nanotube as follows:

Theorem 6.12. The computed value of the degree based indices for the graph $G=S C_{5} C_{7}[p, q]$, $p, q \geq 1$, are given by

$$
\begin{aligned}
R M_{2}(G) & =48 p q-23 p, & H y p(G)=432 p q-158 p \\
F(G) & =216 p q-76 p, & \sigma(G)=6 p \\
A l b(G) & =6 p &
\end{aligned}
$$

Proof. : From Theorem 6.11, M - polynomial for the graph $G=S C_{5} C_{7}[p, q]$ is

$$
M(G ; x, y)=p x^{2} y^{2}+6 p x^{2} y^{3}+(12 p q-9 p) x^{3} y^{3}
$$

then

$$
\begin{align*}
D_{x} M(G ; x, y) & =2 p x^{2} y^{2}+12 p x^{2} y^{3}+3(12 p q-9 p) x^{3} y^{3}, \tag{6.34}\\
D_{y} M(G ; x, y) & =2 p x^{2} y^{2}+18 p x^{2} y^{3}+3(12 p q-9 p) x^{3} y^{3}, \tag{6.35}\\
D_{y} D_{x} M(G ; x, y) & =4 p x^{2} y^{2}+36 p x^{2} y^{3}+9(12 p q-9 p) x^{3} y^{3}, \tag{6.36}\\
D_{x}^{2} M(G ; x, y) & =4 p x^{2} y^{2}+24 p x^{2} y^{3}+9(12 p q-9 p) x^{3} y^{3}, \tag{6.37}\\
D_{y}^{2} M(G ; x, y) & =4 p x^{2} y^{2}+54 p x^{2} y^{3}+9(12 p q-9 p) x^{3} y^{3} . \tag{6.38}
\end{align*}
$$

Substituting these values given by (6.34) to (6.38) in the expressions given in Table 6.2 we get the required results of the theorem.

6.4.3 VC5C7 Nanotubes

In this section, we compute the degree based indices for graph carbon nanotubes $V C_{5} C_{7}[p, q]$ from M-polynomial. As stated before, this nanotube is also a $C_{5} C_{7}$ net whose two-dimensional lattice structure consists of alternatively arranged pentagons C_{5} and heptagons C_{7} with a trivalent decoration as shown in Figure 6.4. In $V C_{5} C_{7}[p, q], p$ denotes the number of pentagons C_{5} in the first row of its $2-D$ lattice representation and q denotes the number of periods in the whole lattice. Here, a period consists of the four rows, as shown in Figure 6.4, which represents the $i^{\text {th }}$ period. In this lattice structure again, there are $16 p$ vertices in each period along with a set of $3 p$ vertices joined as degree two vertices at the last row. Thus, the total number of vertices in this lattice is $\left|V\left(V C_{5} C_{7}[p, q]\right)\right|=16 p q+3 p$. Similarly, counting the number of edges, we find that there are $24 p$ edges in each period and there are extra $3 p$ edges added to connect the degree two vertices to get a $2-D$ lattice, that is, $\left|E\left(V C_{5} C_{7}[p, q]\right)\right|=24 p q-3 p$.

Theorem 6.13. Let G be the graph of the nanotube $V C_{5} C_{7}[p, q]$, for $p, q \geq 1$, then its M-polynomial is given by

$$
M(G ; x, y)=p x^{2} y^{2}+10 p x^{2} y^{3}+(24 p q-14 p) x^{3} y^{3}
$$

Proof. To compute the M-polynomial, we partition the edges of this nanotube based on the degree of the end vertices. We find that the edges can be partitioned in to exactly three sets given by:

$$
\begin{aligned}
& E_{1}(G)=\{u v \in E(G) \mid d(u)=d(v)=2\} \\
& E_{2}(G)=\{u v \in E(G) \mid d(u)=2 \text { and } d(v)=3\} \\
& E_{3}(G)=\{u v \in E(G) \mid d(u)=d(v)=3\}
\end{aligned}
$$

The number of edges in $E_{1}(G), E_{2}(G)$ and $E_{3}(G)$ are $p, 10 p$, and $24 p q-14 p$. Now we compute

$2-D$ graph of $V C_{5} C_{7}[3,4]$.

Graph of $i^{\text {th }}$ period of $V C_{5} C_{7}[3,4]$.

Figure 6.4: Structure of $V C_{5} C_{7}[3,4]$ nanotube
the M-polynomial for given graph $G=V C_{5} C_{7}[p, q]$. Since, $\{d(u), d(v)\}=\{i, j\}$, and $(i, j) \in$ $\{(2,2),(2,3),(3,3)\}$ then from Definition 6.1, we have

$$
\begin{aligned}
M(G ; x, y) & =m_{22} x^{2} y^{2}+m_{23} x^{2} y^{3}+m_{33} x^{3} y^{3} \\
& =\left|E_{1}(G)\right| x^{2} y^{2}+\left|E_{2}(G)\right| x^{2} y^{3}+\left|E_{3}(G)\right| x^{3} y^{3} \\
& =p x^{2} y^{2}+10 p x^{2} y^{3}+(24 p q-14 p) x^{3} y^{3} .
\end{aligned}
$$

Now using the expression for the M-polynomial of $V C_{5} C_{7}[p . q]$, and the polynomial representations of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for $V C_{5} C_{7}[p . q]$ nanotube as follows:

Theorem 6.14. The computed value of the degree based indices for the graph of $V C_{5} C_{7}[p, q]$, $p, q \geq 1$ are given by

$$
\begin{aligned}
R M_{2}(G) & =96 p q-35 p, & H y p(G)=864 p q-238 p \\
F(G) & =432 p q-114 p, & \sigma(G)=10 p \\
A l b(G) & =10 p &
\end{aligned}
$$

Proof. From Theorem 6.13, M-polynomial for the $G=V C_{5} C_{7}[p, q]$ is

$$
M(G ; x, y)=p x^{2} y^{2}+10 p x^{2} y^{3}+(24 p q-14 p) x^{3} y^{3}
$$

then

$$
\begin{align*}
D_{x} M(G ; x, y) & =2 p x^{2} y^{2}+20 p x^{2} y^{3}+3(24 p q-14 p) x^{3} y^{3}, \tag{6.39}\\
D_{y} M(G ; x, y) & =2 p x^{2} y^{2}+30 p x^{2} y^{3}+3(24 p q-14 p) x^{3} y^{3}, \tag{6.40}\\
D_{x} D_{y} M(G ; x, y) & =4 p x^{2} y^{2}+60 p x^{2} y^{3}+9(24 p q-14 p) x^{3} y^{3}, \tag{6.41}\\
D_{x}^{2} M(G ; x, y) & =4 p x^{2} y^{2}+40 p x^{2} y^{3}+9(24 p q-14 p) x^{3} y^{3} . \tag{6.42}\\
D_{y}^{2} M(G ; x, y) & =4 p x^{2} y^{2}+90 p x^{2} y^{3}+9(24 p q-14 p) x^{3} y^{3} . \tag{6.43}
\end{align*}
$$

Substituting the values given by (6.39) to (6.43) in Table 6.2 we get the required results of the theorem.

6.5 Summary

In this chapter, we have shown a way to calculate the Reduced Second Zagreb index, Hyper Zagreb index, Forgotten index, Sigma index and Albertson index using M-polynomial. Further, we have shown that computation of these topological indices for carbon nanotubes $H_{5} C_{7}[p, q]$ and $V C_{5} C_{7}[p, q]$ becomes very simple and easy when using the M-polynomial.

We observe that the Sigma index and Albertson index behave identically to any nanotube, and it is independent of the number of periods in the lattice structure of a nanotube. Further, the Sigma index of $\mathrm{HC}_{5} C_{7}, S C_{5} C_{7}$ depends only on heptagons while Sigma index of $V C_{5} C_{7}$ depends only on pentagons in a period.

In each of the nanotube structures, the formula obtained for reduced second Zagreb index and the Forgotten index depend on both the total number of pentagons/heptagons in the lattice as well as in each of the period. Another interesting observation is that even though these indices mathematically look dependent, that is, has a similar formulaic pattern, but they differ significantly and hence are incomparable.

Finally, we see that by the application of M-polynomial we can reduce drastically the computational effort required to compute most of the degree-based topological indices.

