
Chapter 6

M-Polynomial And VDB Indices

6.1 Introduction

In this chapter, we show how to compute the degree-based indices such as Forgotten index, Re-

duced Second Zagreb index, Sigma index, Hyper-Zagreb index and Albertson index using the

M-polynomial. In addition, we present as an application how to quickly and effectively compute

the degree-based topological indices using M-polynomial for carbon nanotube structures, namely

HC5C7[p, q], SC5C7[p, q] and V C5C7[p.q].

The chapter is organized as follows. Section 6.2, we recall some definitions and results. In Section

6.3, we compute degree based indices using the M -polynomial and in the last section 6.4, we apply

the M -polynomial to compute the VDB indices for three classes of carbon nanotubes.

6.2 Definitions and Required Results

In this section, we recall some of the definitions stated in Chapter 1 and state related results

required for this chapter. Mainly, the five indices that we focus in this chapter is listed below.

For a simple connected graph G(V (G), E(G)), the indices are defined as

1. F-index or Forgotten index [77]

F (G) =
∑

u∈V (G)

d(u)
3

=
∑

uv∈E(G)

(d(u)
2

+ d(v)
2
). (6.1)

2. Reduced Second Zagreb index [40]

RM2(G) =
∑

uv∈E(G)

(d(u)− 1)(d(v)− 1). (6.2)

3. Sigma index [79]

σ(G) =
∑

uv∈E(G)

(d(u)− d(v))2. (6.3)
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4. Hyper Zagreb index [64]

Hyp(G) =
∑

uv∈E(G)

(d(u) + d(v))2. (6.4)

5. Albertson index [78]

Alb(G) =
∑

uv∈E(G)

|d(u)− d(v)|. (6.5)

Definition 6.1. [111] Let G(V (G), E(G)) be a graph, then M-polynomial of G is given by

M(G;x, y) =
∑
i≤j

mijx
iyj ,

where mij denotes the number of edges uv of G whose end vertices have degrees i and j, that is,

{d(u), d(v)} = {i, j}.

Definition 6.2. [111] A degree based topological index for a graph G is defined as

I(G) =
∑

e=uv∈E(G)

f(d(u), d(v)), (6.6)

where f(x, y) is a function suitably representing some degree based topological indices.

For instance, the first Zagreb index M1(G) is defined with Equation (6.6) by putting f(x, y) = x+y.

By counting the edges which have same end-degrees, we can rewrite Equation (6.6) as

I(G) =
∑
i≤j

mijf(i, j). (6.7)

We require some of the operators as defined in [111]. The operators are listed below :

Dxf(x, y) = x
∂f(x, y)

∂x
, Dyf(x, y) = y

∂f(x, y)

∂y
. (6.8)

Sxf(x, y) =

ˆ x

0

f(t, y)

t
dt, Syf(x, y) =

ˆ y

0

f(x, t)

t
dt. (6.9)

J(f(x, y)) = f(x, x), Qα(f(x, y)) = xαf(x, y). (6.10)

Note that these operators are well-defined, especially in our case where we consider f(x,y) as a

polynomial function.

Next we consolidate the results from [111] as a theorem which is required for our proofs.

Theorem 6.3. ([111],Theorems 2.1, 2.2 and 2.3) Let G(V (G), E(G)) be a graph.
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1. If I(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) is a polynomial in x and y, then I(G) =

f(Dx, Dy)(M(G;x, y))|x=y=1.

2. If I(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) =
∑
i,j∈Z

αi,jx
iyj, αi,j ∈ R for each i, j. Then

I(G) can be obtained from M-polynomial using the operators Dx, Dy, Sx and Sy.

3. If I(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) =
xrys

(x+ y + α)k
, for all r, s ≥ 0, k ≥ 1 and

α ∈ Z. Then I(G) = SkxQαJD
r
xD

s
y(M(G;x, y))|x=y=1.

With the help of the above theorem, the authors in [111], have proved that certain topological

indices can be computed directly from M-polynomial. We summarize these results in Table 6.1.

Table 6.1: Degree based topological indices derived from M-polynomial :

Degree based topological index f(x, y) Derivation from M(G;x, y)

ZM1(G) x+ y (Dx +Dy)(M(G;x, y))|x=y=1

ZM2(G) xy (DxDy)(M(G;x, y))|x=y=1

mM2(G)
1

xy
(SxSy)(M(G;x, y))|x=y=1

For α ∈ N, Rα(G) (xy)
α

(Dα
xD

α
y )(M(G;x, y))|x = y = 1

For α ∈ N, RRα(G)
1

(xy)α
(SαxS

α
y )(M(G;x, y))|x=y=1

SDD(G)
x2 + y2

xy
(DxSy +DySx)(M(G;x, y))|x = y = 1

H(G)
2

x+ y
2SxJ(M(G;x, y))|x=y=1

ISI(G)
xy

x+ y
SxJDxDy(M(G;x, y))|x=y=1

AZI(G)
(xy)3

(x+ y − 2)3
S3
xQ−2JD

3
xD

3
y(M(G;x, y))|x=y=1

6.3 Main Results

In this section, we present our main results on computing various degree based indices using the

M-polynomial. As the first step, when applying the operator Dx, Dy on M-polynomial, we get:

DxM(G;x, y) = x
∂M(x, y)

∂x
= x

∑
i≤j

imijx
i−1yj

 =
∑
i≤j

imijx
iyj . (6.11)

D2
xM(G;x, y) = x

∂

∂x

{
x
∂

∂x
M(G;x, y)

}
=
∑
i≤j

i2mijx
iyj . (6.12)



Chapter 6. M-Polynomial And VDB Indices 112

Similarly,

DyM(G;x, y) =
∑
i≤j

jmijx
iyj , (6.13)

and

D2
yM(G;x, y) =

∑
i≤j

j2mijx
iyj . (6.14)

DxDyM(G;x, y) = x
∂

∂x

{
y
∂

∂y
M(G;x, y)

}
=
∑
i≤j

ijmijx
iyj . (6.15)

Next we derive the five topological indices given by Equations (6.1) to (6.5) from the M-polynomial

Theorem 6.4. Let M(G;x, y) be an M -polynomial for a graph G(V (G), E(G)), then the Forgotten

index is given by

F (G) = (D2
x +D2

y)M(G;x, y)|x=y=1.

Proof. Now using Equations (6.6) and (6.7) in the Equation 6.1 of the Forgotten index, we get

F (G) =
∑

uv∈E(G)

(d(u)
2

+ d(v)
2
) =

∑
i≤j

mij(i
2 + j2). (6.16)

Now by using the Equations (6.12) and (6.14) in (6.16), we immediately obtain that F (G) =

(D2
x +D2

y)M(G;x, y)|x=y=1.

Theorem 6.5. Let M(G;x, y) be an M -polynomial for a graph G(V (G), E(G)), then the Reduced

Second Zagreb index is given by

RM2(G) = (Dx − 1)(Dy − 1)M(G;x, y)|x=y=1.

Proof. Note that

(Dx − 1)(Dy − 1)M(G;x, y) = (DxDy −Dx −Dy + 1)M(G;x, y)

= DxDyM(G;x, y)−DxM(G;x, y)−DyM(G;x, y) +M(G;x, y).

(6.17)
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By using Equations (6.11), (6.13) and (6.15) in Equation (6.17) and upon simplification, we then

get

(Dx − 1)(Dy − 1)M(G;x, y) =
∑
i≤j

(i− 1)(j − 1)mijx
iyj . (6.18)

Rewriting Reduced Second Zagreb index with the help of Equations (6.6) and (6.7), we get

RM2(G) =
∑

uv∈E(G)

(d(u)− 1)(d(v)− 1) =
∑
i≤j

mij(i− 1)(j − 1). (6.19)

Hence RM2(G) = (Dx − 1)(Dy − 1)M(G;x, y)|x=y=1.

Theorem 6.6. Let M(G;x, y) be a polynomial for a graph G(V (G), E(G)), then Sigma index is

given by

σ(G) = (Dx −Dy)2M(G;x, y)|x=y=1.

Proof. Since,

(Dx −Dy)2M(G;x, y) =(D2
x +D2

y − 2DxDy)M(G;x, y)

=D2
xM(G;x, y) +D2

yM(G;x, y)− 2DxDyM(G;x, y). (6.20)

Now using Equations (6.12), (6.14) and (6.15) in Equation (6.20), then

(Dx −Dy)2M(G;x, y) =
∑
i≤j

(i− j)2mijx
iyj . (6.21)

Sigma index can be rewritten using Equations (6.6) and (6.7), as

σ(G) =
∑

uv∈E(G)

(d(u)− d(v))2 =
∑
i≤j

mij(i− j)2. (6.22)

Comparing Equations (6.21) and (6.22), we get σ(G) = (Dx −Dy)2M(G;x, y)|x=y=1.

Theorem 6.7. Let M(G;x, y) be an M-polynomial for a graph G(V (G), E(G)), then Hyper-Zagreb

index is given by

Hyp(G) = (Dx +Dy)2M(G;x, y)|x=y=1.
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Proof. Note that

(Dx +Dy)2M(G;x, y) =(D2
x +D2

y + 2DxDy)M(G;x, y)

=D2
xM(G;x, y) +D2

yM(G;x, y) + 2DxDyM(G;x, y). (6.23)

Now using Equations (6.12), (6.14) and (6.15) in Equation (6.23), then

(Dx +Dy)2M(G;x, y) =
∑
i≤j

(i+ j)2mijx
iyj . (6.24)

With the help of Equations (6.6) and (6.7), Hyper Zagreb index can be rewritten as,

Hyp(G) =
∑

uv∈E(G)

(d(u) + d(v))2 =
∑
i≤j

mij(i+ j)2. (6.25)

Now from Equations (6.24) and (6.25), we get Hyp(G) = (Dx +Dy)2M(G;x, y)|x=y=1.

Theorem 6.8. Let M(G;x, y) be an M-polynomial for a given graph G(V (G), E(G)), then Albert-

son index is given by

Alb(G) = (Dy −Dx)M(G;x, y)|x=y=1.

Proof. : Since,

(Dy −Dx)M(G;x, y) = DyM(G;x, y)−DxM(G;x, y). (6.26)

Now using Equations (6.11) and (6.13) in the Equation (6.26), we have

(Dy −Dx)M(G;x, y) =
∑
i≤j

(j − i)mijx
iyj . (6.27)

By using Equations (6.6) and (6.7), we can rewrite Albertson index as :

Alb(G) =
∑

uv∈E(G)

|d(u)− d(v)| =
∑
i≤j

mij(j − i). (6.28)

Now from Equations (6.27) and (6.28), we get Alb(G) = (Dy −Dx)M(G;x, y)|x=y=1.

In this section, we have computed the polynomial of five degree based indices other than those

mentioned in Table 6.1 and have consolidated these results in Table 6.2.
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Table 6.2: M -Polynomial for more degree based topological indices

Degree based topological index f(x, y) derivation from M(G;x, y)

F (G) x2 + y2 (D2
x +D2

y)(M(G;x, y))|x=y=1

RM2(G) (x− 1)(y − 1) (Dx − 1)(Dy − 1)(M(G;x, y))|x=y=1

σ(G) (x− y)2 (Dx −Dy)2(M(G;x, y))|x=y=1

Hyp(G) (x+ y)2 (Dx +Dy)2(M(G;x, y))|x=y=1

Alb(G) |x− y| (Dy −Dx)(M(G;x, y))|x=y=1

6.4 Application to Nanotubes

In this section, we apply the theoretical results proposed in section 6.3 to a collection of chemical

graphs, namely carbon nanotubes. Carbon nanotubes are a particular type of fullerenes. It con-

stitutes the carbon allotropes formed in a cylindrical structure. Carbon nanotubes are known to

have outstanding properties such as high Young’s modulus, high tensile strength, high electronics

flow, to name a few. At room temperature, the thermal conductivity of nanotubes is higher than

that of natural diamond and the basal plane of graphite. Superconductivity has been observed

but only at low temperatures [127]. Owing to such properties, carbon nanotubes are well-suited

for virtually any application requiring high strength, durability, electrical conductivity, thermal

conductivity and lightweight properties compared to conventional materials. For a detailed study

on the properties of nanotubes, we refer to [128].

The structural and physical properties of carbon nanotubes have attracted a wide range of appli-

cation in the field of nanotechnology, electronics, material science, architecture, to name a few.

We focus on three nanotubes namely HC5C7, SC5C7 and V C5C7, the structure of these carbon

nanotubes consist of alternating pentagons (C5) and heptagons (C7). A three-dimensional repre-

sentation of these carbon nanotubes is given in Figure 6.1. The two-dimensional lattice structure

of these carbon nanotubes are given in Figure 6.2, Figure 6.3 and Figure 6.4 respectively. For a

detailed study of the structural properties of these nanotubes using topological indices, we refer to

[125, 129].

Figure 6.1: 3-D geometry of nanotubes HC5C7(A), SC5C7(B) and V C5C7(C).



Chapter 6. M-Polynomial And VDB Indices 116

6.4.1 HC5C7 Nanotubes

In this section, we compute the degree based indices for graph carbon nanotubes HC5C7[p, q]

from the M-polynomial. As stated before, this nanotube is a C5C7 net whose two-dimensional

lattice structure consists of alternatively arranged pentagons C5 and heptagons C7 with a trivalent

decoration as shown in Figure 6.2. In HC5C7[p, q], p denotes the number of heptagons C7 in the

first row of its 2 − D lattice representation and q denotes the number of periods in the whole

lattice. Here, a period consists of the four rows, as shown in Figure 6.2, which represents the

ith period. The lattice structure consists of 16p vertices in each period along with a set of 2p

vertices joined as pendants at the last row. Thus, the total number of vertices in this lattice is

|V (HC5C7[p, q])| = 16pq + 2p. Similarly, counting the number of edges, we find that there are

24p edges in each period with an additional 2p edges which were added (as extra) to connect the

pendant vertices to get a 2−D lattice, that is, |E(HC5C7[p, q])| = 24pq − 2p.

Theorem 6.9. Let G be the graph of the nanotube HC5C7[p, q], for p, q ≥ 1 then its M-polynomial

is given by

M(G;x, y) = 8px2y3 + (24pq − 10p)x3y3.

Proof. To compute the M-polynomial, we partition the edges of this nanotube based on the degree

of the end vertices. We find that the edges can be partitioned in to exactly two sets given by:

E1(G) = {uv ∈ E(G)|d(u) = 2 and d(v) = 3}, E2(G) = {uv ∈ E(G)|d(u) = d(v) = 3}.

Number of edges in E1(G) and E2(G) are 8p and 24pq−10p respectively. Now we compute the M-

2-D structure of HC5C7[3, 3]. ith period of HC5C7.

Figure 6.2: Structure of HC5C7[3, 3] nanotube.

polynomial for given graph G = HC5C7[p, q]. Since, {d(u), d(v)} = {i, j} and (i, j) ∈ {(2, 3), (3, 3)}
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then from Definition 6.1, we have

M(G;x, y) = m23x
2y3 +m33x

3y3 = |E1(G)|x2y3 + |E2(G)|x3y3

= 8px2y3 + (24pq − 10p)x3y3.

Now using the expression for the M-polynomial of HC5C7[p, q], and the polynomial representations

of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for

HC5C7[p, q] nanotube as follows:

Theorem 6.10. The computed value of the degree based indices for the graph HC5C7[p, q], p, q ≥

1, is given by

RM2(G) = 96pq − 24p, Hyp(G) = 864pq − 160p,

F (G) = 432pq − 76p, σ(G) = 8p,

Alb(G) = 8p.

Proof. From Theorem 6.9, M-polynomial for the graph G = HC5C7[p, q] is

M(G;x, y) = 8px2y3 + (24pq − 10p)x3y3,

then

DxM(G;x, y) = 16px2y3 + 3(24pq − 10p)x3y3, (6.29)

DyM(G;x, y) = 24px2y3 + 3(24pq − 10p)x3y3, (6.30)

DyDxM(G;x, y) = 48px2y3 + 9(24pq − 10p)x3y3, (6.31)

D2
xM(G;x, y) = 32px2y3 + 9(24pq − 10p)x3y3, (6.32)

D2
yM(G;x, y) = 72px2y3 + 9(24pq − 10p)x3y3. (6.33)

Applying the operators values given by (6.29) to (6.33) in the expressions given in Table 6.2, we

get the required results of the theorem.
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6.4.2 SC5C7 Nanotubes

In this section, we compute the degree based indices for the carbon nanotubes SC5C7[p, q] from

M − polynomial. As stated before, this nanotube is a C5C7 net whose two-dimensional lattice

structure consists of alternately arranged pentagons (C5) and heptagons (C7) with a trivalent

decoration as shown in Figure 6.3. In SC5C7[p, q], p denotes the number of heptagons (C7) in the

first row of its 2−D lattice representation and q denotes the number of periods in the whole lattice.

Here, a period consists of the three rows, as shown in Figure 6.3, which represents the ith-period.

In this lattice structure, there are 8p vertices in each period. Thus, the total number of vertices in

this lattice is |V (SC5C7)[p, q]| = 8pq. Similarly, counting the number of edges, we find that there

are 12p edges in each period and there are additional 2p edges which were joined as extra at the

ends of the lattice structure, that is |E(SC5C7[p, q])| = 12pq − 2p.

2-D structure of SC5C7[4, 4].

ith period of SC5C7[p, q].

Figure 6.3: Structure of SC5C7[p, q] nanotube.

Theorem 6.11. [117] Let G be the graph of this nanotube, the M−polynomial of G = SC5C7[p, q]

is given by

M(G;x, y) = px2y2 + 6px2y3 + (12pq − 9p)x3y3.

Now using the expression for the M−polynomial of SC5C7[p.q], and the polynomial representations

of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for

SC5C7[p, q] nanotube as follows:

Theorem 6.12. The computed value of the degree based indices for the graph G = SC5C7[p, q],

p, q ≥ 1, are given by

RM2(G) = 48pq − 23p, Hyp(G) = 432pq − 158p,

F (G) = 216pq − 76p, σ(G) = 6p,

Alb(G) = 6p.
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Proof. : From Theorem 6.11, M − polynomial for the graph G = SC5C7[p, q] is

M(G;x, y) = px2y2 + 6px2y3 + (12pq − 9p)x3y3,

then

DxM(G;x, y) = 2px2y2 + 12px2y3 + 3(12pq − 9p)x3y3, (6.34)

DyM(G;x, y) = 2px2y2 + 18px2y3 + 3(12pq − 9p)x3y3, (6.35)

DyDxM(G;x, y) = 4px2y2 + 36px2y3 + 9(12pq − 9p)x3y3, (6.36)

D2
xM(G;x, y) = 4px2y2 + 24px2y3 + 9(12pq − 9p)x3y3, (6.37)

D2
yM(G;x, y) = 4px2y2 + 54px2y3 + 9(12pq − 9p)x3y3. (6.38)

Substituting these values given by (6.34) to (6.38) in the expressions given in Table 6.2 we get the

required results of the theorem.

6.4.3 VC5C7 Nanotubes

In this section, we compute the degree based indices for graph carbon nanotubes V C5C7[p, q]

from M-polynomial. As stated before, this nanotube is also a C5C7 net whose two-dimensional

lattice structure consists of alternatively arranged pentagons C5 and heptagons C7 with a trivalent

decoration as shown in Figure 6.4. In V C5C7[p, q], p denotes the number of pentagons C5 in the

first row of its 2−D lattice representation and q denotes the number of periods in the whole lattice.

Here, a period consists of the four rows, as shown in Figure 6.4, which represents the ith period.

In this lattice structure again, there are 16p vertices in each period along with a set of 3p vertices

joined as degree two vertices at the last row. Thus, the total number of vertices in this lattice is

|V (V C5C7[p, q])| = 16pq + 3p. Similarly, counting the number of edges, we find that there are 24p

edges in each period and there are extra 3p edges added to connect the degree two vertices to get

a 2−D lattice, that is, |E(V C5C7[p, q])| = 24pq − 3p.

Theorem 6.13. Let G be the graph of the nanotube V C5C7[p, q], for p, q ≥ 1, then its M-polynomial

is given by

M(G;x, y) = px2y2 + 10px2y3 + (24pq − 14p)x3y3.
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Proof. To compute the M-polynomial, we partition the edges of this nanotube based on the degree

of the end vertices. We find that the edges can be partitioned in to exactly three sets given by:

E1(G) = {uv ∈ E(G)|d(u) = d(v) = 2},

E2(G) = {uv ∈ E(G)|d(u) = 2 and d(v) = 3},

E3(G) = {uv ∈ E(G)|d(u) = d(v) = 3}.

The number of edges in E1(G), E2(G) and E3(G) are p, 10p, and 24pq − 14p. Now we compute

2−D graph of V C5C7[3, 4]. Graph of ith period of V C5C7[3, 4].

Figure 6.4: Structure of V C5C7[3, 4] nanotube

the M-polynomial for given graph G = V C5C7[p, q]. Since, {d(u), d(v)} = {i, j}, and (i, j) ∈

{(2, 2), (2, 3), (3, 3)} then from Definition 6.1, we have

M(G;x, y) = m22x
2y2 +m23x

2y3 +m33x
3y3

= |E1(G)|x2y2 + |E2(G)|x2y3 + |E3(G)|x3y3

= px2y2 + 10px2y3 + (24pq − 14p)x3y3.

Now using the expression for the M-polynomial of V C5C7[p.q], and the polynomial representations

of the 5 degree based indices (given in Table 6.2) we compute the exact value of the indices for

V C5C7[p.q] nanotube as follows:
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Theorem 6.14. The computed value of the degree based indices for the graph of V C5C7[p, q],

p, q ≥ 1 are given by

RM2(G) = 96pq − 35p, Hyp(G) = 864pq − 238p,

F (G) = 432pq − 114p, σ(G) = 10p,

Alb(G) = 10p.

Proof. From Theorem 6.13, M-polynomial for the G = V C5C7[p, q] is

M(G;x, y) = px2y2 + 10px2y3 + (24pq − 14p)x3y3,

then

DxM(G;x, y) = 2px2y2 + 20px2y3 + 3(24pq − 14p)x3y3, (6.39)

DyM(G;x, y) = 2px2y2 + 30px2y3 + 3(24pq − 14p)x3y3, (6.40)

DxDyM(G;x, y) = 4px2y2 + 60px2y3 + 9(24pq − 14p)x3y3, (6.41)

D2
xM(G;x, y) = 4px2y2 + 40px2y3 + 9(24pq − 14p)x3y3. (6.42)

D2
yM(G;x, y) = 4px2y2 + 90px2y3 + 9(24pq − 14p)x3y3. (6.43)

Substituting the values given by (6.39) to (6.43) in Table 6.2 we get the required results of the

theorem.

6.5 Summary

In this chapter, we have shown a way to calculate the Reduced Second Zagreb index, Hyper

Zagreb index, Forgotten index, Sigma index and Albertson index using M-polynomial. Further, we

have shown that computation of these topological indices for carbon nanotubes HC5C7[p, q] and

V C5C7[p, q] becomes very simple and easy when using the M -polynomial.

We observe that the Sigma index and Albertson index behave identically to any nanotube, and it

is independent of the number of periods in the lattice structure of a nanotube. Further, the Sigma

index of HC5C7, SC5C7 depends only on heptagons while Sigma index of V C5C7 depends only on

pentagons in a period.
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In each of the nanotube structures, the formula obtained for reduced second Zagreb index and

the Forgotten index depend on both the total number of pentagons/heptagons in the lattice as

well as in each of the period. Another interesting observation is that even though these indices

mathematically look dependent, that is, has a similar formulaic pattern, but they differ significantly

and hence are incomparable.

Finally, we see that by the application of M-polynomial we can reduce drastically the computational

effort required to compute most of the degree-based topological indices.

***********


