Chapter 4

SDD Index for Bicyclic graphs

4.1 Introduction

In CGT, cycles exist in aromatic compounds which contain the Kekule structure. The corresponding graph representation involves the study of perfect matching as it plays an essential role in analyzing the resonance energy and stability of hydrocarbons. Such an application also propels our interest in studying the $S D D$ index's behavior for the bicyclic graphs having a perfect matching. In this chapter, we present the first five lower bounds of the $S D D$ index for all bicyclic graphs that have a perfect matching and the graphs that attain the bounds. Further, we also compute an upper bound of the $S D D$ index for bicyclic graphs with a maximum degree of four, which admits a perfect matching.

The organization of the chapter is as follows. In Section 4.2 we present the first five lower bounds of the $S D D$ index for all bicyclic graphs with perfect matching. In Section 4.3, we compute the upper bound of bicyclic graphs that admit a perfect matching and having maximum degree at most four.

Before proving the desired results, first we prove a lemma which helps in finding the bounds of $S D D$ index.

Lemma 4.1. $S(1, x)=\frac{x^{2}+1}{x}, x \geq 2$, is a monotone increasing function.
Proof. Let $f(x)=\frac{x^{2}+1}{x}$ then $f^{\prime}(x)=1-\frac{1}{x^{2}}>0$, since $x \geq 2$. Hence $S(1, x)=\frac{x^{2}+1}{x}$ is an increasing function.

Remark 4.2. Note that the minimum value of $S(x, y)=\frac{x^{2}+y^{2}}{x y} \geq 2$ and equality holds iff $x=y$.

4.1.1 Notations and Definitions

We state some of the notations and definitions required in this chapter.

Let $\beta_{2 n}$ denote the set of all bicyclic graphs which have a perfect matching on $2 n$ vertices. Next, we define three of its subsets which also form a partition of $\beta_{2 n}$.

1. Let $\beta_{2 n}^{1} \subset \beta_{2 n}$ denote the set of bicyclic graphs on $2 n$ vertices such that if $G \in \beta_{2 n}^{1}$ then the two cycles in G are joined by a path as shown in Figure 4.1(a).
2. Let $\beta_{2 n}^{2} \subset \beta_{2 n}$ denote the set of bicyclic graphs on $2 n$ vertices such that if $G \in \beta_{2 n}^{2}$ then the two cycles in G are joined by a common vertex, see Figure 4.1(b).
3. Let $\beta_{2 n}^{3} \subset \beta_{2 n}$ denote the set of bicyclic graphs such that for $G \in \beta_{2 n}^{3}$, the two cycles of G have a common path as shown in Figure 4.1(c).

Note that any graph $G \in \beta_{2 n}$ belongs to exactly one of the three subsets $\beta_{2 n}^{1}, \beta_{2 n}^{2}$ or $\beta_{2 n}^{3}$, and hence

$$
\beta_{2 n}=\beta_{2 n}^{1} \cup \beta_{2 n}^{2} \cup \beta_{2 n}^{3}
$$

A representative for each of the graph classes defined above is shown in Figure 4.1.

Figure 4.1: Bicyclic graphs.

4.2 Lower Bounds

In this section, we compute the first five minimum values of $S D D$ index for all the bicyclic graphs that admit a perfect matching. To this end, we identify those graphs which possess the smallest value for the $S D D$ index in each of the subclasses $\beta_{2 n}^{1}, \beta_{2 n}^{2}$ and $\beta_{2 n}^{3}$.

4.2.1 Subclass $\beta_{2 n}^{1}$

Before proving the required bounds for graphs in $\beta_{2 n}^{1}$, we define some special classes of bicyclic graphs in $\beta_{2 n}^{1}$ which play a primary role in our proof.

Let $F_{1}^{1}(2 n) \subset \beta_{2 n}^{1}, n \geq 3$ be a collection such that for any $G \in F_{1}^{1}(2 n)$, the edge-degree partition of G is given by $E_{1}^{1}(G)=\left\{e_{22}=2 n-4, e_{23}=4, e_{33}=1\right\}$;

For $n \geq 4$ and $i=2,3$, let $F_{i}^{1}(2 n) \subset \beta_{2 n}^{1}$ represent those graphs G with edge-degree partitions $E_{2}^{1}(G)=\left\{e_{22}=2 n-5, e_{23}=6\right\}$ and $E_{3}^{1}(G)=\left\{e_{12}=1, e_{23}=5, e_{22}=2 n-7, e_{33}=2\right\}$, respectively.

For $n \geq 5$ and $i=4,5,6$, let $F_{i}^{1}(2 n) \subset \beta_{2 n}^{1}$ be defined by the edge-degree partitions $E_{4}^{1}(G)=$ $\left\{e_{12}=2, e_{23}=4, e_{22}=2 n-9, e_{33}=4\right\}, E_{5}^{1}(G)=\left\{e_{12}=1, e_{23}=7, e_{22}=2 n-8, e_{33}=1\right\}$, and $E_{6}^{1}(G)=\left\{e_{12}=1, e_{23}=9, e_{22}=2 n-9\right\}$, respectively.

Let $F_{7}^{1}(2 n) \subset \beta_{2 n}^{1}, n \geq 4$ be defined such that for any $G \in F_{7}^{1}(2 n)$, the edge-degree partition is given by $E_{7}^{1}(G)=\left\{e_{13}=1, e_{22}=2 n-6, e_{23}=4, e_{33}=2\right\}$.

Finally, let us define $F_{8}^{1}(2 n) \subset \beta_{2 n}^{1}$, for $n \geq 6$ to be the collections of the bicyclic graphs G, whose edge-degree partition is given by $E_{8}^{1}(G)=\left\{e_{12}=2, e_{23}=6, e_{22}=2 n-10, e_{33}=3\right\}$.

A representative for each of the graph classes defined above is shown in Figure 4.2(a) to 4.2(h).

(d) $G \in F_{4}^{1}(2 n)$

(e) $G \in F_{5}^{1}(2 n)$

Figure 4.2: Representation of graphs corresponding to edge-degree partition $E_{i}^{1}(G)$ of bicyclic graphs $F_{i}^{1}(2 n), i=1,2, \ldots, 8$ respectively.

Theorem 4.3. Let $G \in \beta_{2 n}$.

1. If $G \in \beta_{2 n}^{1}$, then $S D D(G) \geq 4 n+\frac{8}{3}$. Equality holds iff $G \in F_{1}^{1}(2 n), n \geq 3$.
2. If $G \in \beta_{2 n}^{1} \backslash\left\{F_{1}^{1}(2 n)\right\}$, then $S D D(G) \geq 4 n+3$. Equality holds iff $G \in F_{2}^{1}(2 n), n \geq 4$.
3. If $G \in \beta_{2 n}^{1} \backslash\left\{F_{1}^{1}(2 n), F_{2}^{1}(2 n)\right\}$, then $S D D(G) \geq 4 n+\frac{10}{3}$. Equality holds iff $G \in F_{3}^{1}(2 n)$, $n \geq 4$.
4. If $G \in \beta_{2 n}^{1} \backslash\left\{F_{1}^{1}(2 n), F_{2}^{1}(2 n), F_{3}^{1}(2 n)\right\}$, then $S D D(G) \geq 4 n+\frac{11}{3}$. Equality holds iff $G \in$ $F_{4}^{1}(2 n)$ or $G \in F_{5}^{1}(2 n), n \geq 5$.
5. If $G \in \beta_{2 n}^{1} \backslash\left\{F_{1}^{1}(2 n), F_{2}^{1}(2 n), F_{3}^{1}(2 n), F_{4}^{1}(2 n), F_{5}^{1}(2 n)\right\}$, then $S D D(G) \geq 4(n+1)$. Equality holds iff $G \in F_{6}^{1}(2 n), n \geq 5$ or $G \in F_{7}^{1}(2 n), n \geq 4$ or $G \in F_{8}^{1}(2 n), n \geq 6$.

Proof. We prove this theorem by taking conditions on the number of pendant paths K in the bicyclic graph $G \in \beta_{2 n}^{1}$.
Case 1: If $K=0$, then $\triangle=3$ and $G \in F_{1}^{1}(2 n)$ with $n \geq 3$ or $G \in F_{2}^{1}(2 n)$ with $n \geq 4$. Note that by direct computation, $S D D(G)=4 n+\frac{8}{3}$, if $G \in F_{1}^{1}(2 n)$, and $S D D(G)=4 n+3$, if $G \in F_{2}^{1}(2 n)$.
Case 2: If $K=1$, then $3 \leq \triangle \leq 4$ and we need to consider following two subcases:
(2.1) - when the length of the pendant path is one and
(2.2) when the length of the pendant path is at least two.

Subcase 2.1: If the length of the pendant path is one, then by taking condition on maximum degree \triangle, we have:
(i) If $\triangle=3$, then G has exactly three vertices w_{1}, w_{2}, w_{3} of degree three. Now, again studying the vertices w_{1}, w_{2}, w_{3} we see that among these vertices G has at most two pairs of them are adjacent, since $G \in \beta_{2 n}^{1}$.
(a) Suppose G have two pair of adjacent vertices among w_{1}, w_{2}, w_{3}, then $G \in F_{7}^{1}(2 n)$ with $n \geq 4$ and $S D D(G)=4(n+1)$.
(b) Suppose that at most one pair of vertices are adjacent among w_{1}, w_{2}, w_{3}, then G has at least 6 edges which connect the vertices of degree two and three. Since, contribution of an edge $u v$ is at least 2 , we get

$$
S D D(G) \geq 6 S(2,3)+S(1,3)+4(n-3)=4 n+\frac{13}{3}>4(n+1)
$$

(ii) If $\triangle=4$, then G has atleast two edges which connect the vertices of degree two and \triangle. Then,

$$
S D D(G) \geq 2 S(2,4)+S(1,4)+4(n-1)=4 n+\frac{21}{4}>4(n+1)
$$

Subcase 2.2: If the length of the pendant path is at least two, then we again make conditions on the maximum degree.
(i) Let $\triangle=3$, then G has exactly three vertices w_{1}, w_{2}, w_{3} of degree three. Again we observe that G can have at most two pairs of adjacent vertices among w_{1}, w_{2}, w_{3}, since $G \in \beta_{2 n}^{1}$.
(a) Suppose two pairs of vertices among w_{1}, w_{2}, w_{3} are adjacent, then $G \in F_{3}^{1}(2 n)$ with $n \geq 4$ and $S D D(G)=4 n+\frac{10}{3}$.
(b) Suppose one pair of the vertices among w_{1}, w_{2}, w_{3} are adjacent, then $G \in F_{5}^{1}(2 n)$ with $n \geq 5$ and $S D D(G)=4 n+\frac{11}{3}$.
(c) Suppose that no pair of vertices w_{1}, w_{2}, w_{3} are adjacent, then $G \in F_{6}^{1}(2 n)$ with $n \geq 5$ and $S D D(G)=4(n+1)$.
(ii) Let $\triangle=4$, then G has at least three edges which connect the vertices of degree two and four.

In this subcase, we have

$$
S D D(G) \geq 3 S(2,4)+S(1,2)+2 S(2,3)+2(2 n-5)=4 n+\frac{13}{3}>4(n+1)
$$

Case 3: If $K=2$, then $3 \leq \triangle \leq 5$. Now, we need to consider two subcases.
Subcase 3.1: If G has at least one pendant path of length one, then from Lemma 4.1, we have

$$
S D D(G) \geq S(1,3)+S(1,2)+2 S(2,3)+2(2 n-3)=4 n+\frac{25}{6}>4(n+1)
$$

Subcase 3.2: Both the pendant paths have length atleast two.
(i) If $\triangle=3$, then G has four vertices $w_{1}, w_{2}, w_{3}, w_{4}$ of degree three. Now, we analyze the position of these vertices $w_{1}, w_{2}, w_{3}, w_{4}$ in G. Since $G \in \beta_{2 n}^{1}$, cycles are joined by a path, so among the vertices $w_{1}, w_{2}, w_{3}, w_{4}$, at most four pair of vertices are adjacent.
(a) Suppose G has four pairs of adjacent vertices among $w_{1}, w_{2}, w_{3}, w_{4}$, then G will have exactly four edges which connect the vertices of degree two and three. Hence $G \in F_{4}^{1}(2 n)$ with $n \geq 5$ and $S D D(G)=4 n+\frac{11}{3}$.
(b) Suppose G has three pairs of adjacent vertices from $w_{1}, w_{2}, w_{3}, w_{4}$, then G will have exactly 6 edges which connect the vertices of degree two and three. In that case, $G \in$ $F_{8}^{1}(2 n)$ with $n \geq 6$ and $S D D(G)=4(n+1)$.
(c) Suppose that G has at most two pairs of adjacent vertices among $w_{1}, w_{2}, w_{3}, w_{4}$, then G has at least 8 edges which connect the vertices of degree two and three. Then, $S D D(G) \geq 8 S(2,3)+2 S(1,2)+2(2 n-9)=4 n+\frac{13}{3}>4(n+1)$.
(ii) If $\triangle \geq 4$, then G has at least two edges which connect the vertices of degree two and \triangle. Then, $S D D(G) \geq 2 S(1,2)+2 S(2, \triangle)+2 S(2,3)+2(2 n-5) \geq 2 S(1,2)+2 S(2,4)+2 S(2,3)+$ $2(2 n-5)=4 n+\frac{13}{3}>4(n+1)$.

Case 4: If $K=3$, then $3 \leq \triangle \leq 6$ and we consider the following two subcases:
(4.1) - when atleast one pendant path has length one, and
(4.2) - all three pendant path have length atleast two.

Subcase 4.1: If G has at least one pendant path of length one then from Remark 4.2 and Lemma 4.1, we have

$$
S D D(G) \geq S(1,3)+2 S(1,2)+4(n-1)=4 n+\frac{13}{3}>4(n+1)
$$

Subcase 4.2: If all three pendant path in G have length atleast two then we have following cases based on the maximum degree \triangle.
(i) If $\triangle=3$, then G has five vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$ of degree three. Since $G \in \beta_{2 n}^{1}$ is bicyclic graph in which cycles are joined by a path, then G has atmost 5 pair of adjacent vertices among $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$. Then G has at least 5 edges which connect the vertices of degree two and three. Since G has three pendant paths, then

$$
S D D(G) \geq 3 S(1,2)+5 S(2,3)+2(2 n-7)=4 n+\frac{13}{3}>4(n+1)
$$

(ii) If $\triangle \geq 4$, then G has at least one edge which connect the vertices of degree two and \triangle, then $S D D(G) \geq 3 S(1,2)+S(2, \triangle)+2 S(2,3)+2(2 n-5) \geq 3 S(1,2)+S(2,4)+2 S(2,3)+2(2 n-5)=$ $4 n+\frac{13}{3}>4(n+1)$.

Case 5: If $K \geq 4$, then from Lemma 3.1.1, $S D D(G) \geq \frac{2}{3} K+2|E(G)| \geq \frac{2}{3} \times 4+2(2 n+1)=$ $4 n+\frac{14}{3}>4(n+1)$.

4.2.2 Subclass $\beta_{2 n}^{2}$

Before proving the required bounds for graphs in $\beta_{2 n}^{2}$, first we identify a special class of graphs in this collection which is required for our proof.

Let $J_{2 n}^{2} \subset \beta_{2 n}^{2}$, be a collection of bicyclic graphs on $2 n$ vertices, such that if $G \in J_{2 n}^{2}$, then G has edge-degree partition $E(G)=\left\{e_{24}=4, e_{22}=2 n-3\right\}, n \geq 3$, see Figure 4.1(b).

Theorem 4.4. If $G \in \beta_{2 n}^{2}$, then $S D D(G) \geq 4(n+1)$. Equality holds iff $G \in J_{2 n}^{2}, n \geq 3$.

Proof. We prove this theorem by taking condition on the number of pendant paths K in the bicyclic graph $G \in \beta_{2 n}^{2}$.

Case 1: If $K=0$, then $\triangle=4$ and $G \in J_{2 n}^{1}$ with $n \geq 3$. Note that $S D D(G)=4(n+1)$ if $G \in J_{2 n}^{1}$ for $n \geq 3$.

Case 2: If $K=1$, then $4 \leq \triangle \leq 5$ and G has exactly one pendant paths. Now, we need to consider following two subcases:
(2.1) When the length of pendant path is one and
(2.2) When the length of pendant path is at least two.

Subcase 2.1: If the length of the pendant path is one, then there are at least three edges of G connect the vertices of degree two and \triangle. From the definition of $S D D$ index, we get

$$
S D D(G) \geq 3 S(2, \triangle)+S(1,3)+2(n-3) \geq 3 S(2,4)+S(1,3)+2(2 n-3)=2 n+\frac{29}{6}>4(n+1)
$$

Subcase 2.2: If the length of the pendant path is at least two, then we make conditions on the maximum degree \triangle.
(i) Let $\triangle=5$, then G has five edges which connect the vertices of degree two and \triangle. Since G has a pendant path,

$$
S D D(G)=S(1,2)+5 S(2,5)+2(2 n-5)=4 n+7>4(n+1)
$$

(i) Let $\triangle=4$, then G has atleast three edges which connect the vertices of degree two and \triangle and one edge which connect the vertices of degree two and three. Then, we have

$$
S D D(G) \geq S(1,2)+S(2,3)+3 S(2,4)+4(n-2)=4 n+\frac{25}{6}>4(n+1)
$$

Case 3: If $K=2$, then $4 \leq \Delta \leq 6$. Now, we need to consider two subcases.
Subcase 3.1: If G has at least one pendant path of length one, then from Lemma 4.1, we have

$$
\begin{aligned}
S D D(G) \geq & 2 S(2, \triangle)+S(1,3)+S_{(1,2)}+2(2 n-3) \geq 2 S(2,4)+S(1,3)+S(1,2)+2(2 n-3) \\
& =4 n+\frac{29}{6}>4(n+1)
\end{aligned}
$$

Subcase 3.2: Both the pendant paths have length atleast two.

$$
\begin{aligned}
S D D(G) \geq & 2 S(2, \triangle)+2 S(1,2)+2 S(2,3)+2(2 n-5) \geq 2 S(2,4)+2 S(1,2)+2 S(2,3)+2(2 n-5) \\
& =4 n+\frac{13}{3}>4(n+1)
\end{aligned}
$$

Case 4: If $K=3$, then $4 \leq \triangle \leq 7$ and we consider the following two subcases:
(4.1) - when atleast one pendant path has length one, and
(4.2) - all three pendant path have length atleast two.

Subcase 4.1: If G has at least one pendant path of length one then from Remark 4.2 and Lemma 4.1, we have

$$
\begin{aligned}
S D D(G) \geq & S(2, \triangle)+2 S(1,2)+S(1,3)+2(2 n-3) \geq S(2,4)+2 S(1,2)+S(1,3)+2(2 n-3) \\
& =4 n+\frac{29}{6}>4(n+1)
\end{aligned}
$$

Subcase 4.2: If all three pendant path in G have length atleast two. Then, we get

$$
\begin{aligned}
S D D(G) \geq & S(2, \triangle)+3 S(1,2)+3 S_{(2,3)}+2(2 n-6) \geq S(2,4)+3 S(1,2)+3 S(2,3)+2(2 n-6) \\
& =4 n+\frac{27}{6}>4(n+1)
\end{aligned}
$$

Case 5: If $K \geq 4$, then from Lemma 3.1.1, $S D D(G) \geq \frac{2}{3} K+2|E(G)| \geq 4 n+\frac{14}{3}>4(n+1)$.

4.2.3 \quad Subclass $\beta_{2 n}^{3}$

Before proving the required bounds for graphs in $\beta_{2 n}^{3}$, first we identify and define some special classes of bicyclic graphs in $\beta_{2 n}^{3}$ which are required for our proof.

Let $H_{1}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 2 ; H_{2}^{3}(2 n), H_{3}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 3 ; H_{4}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 2 ; H_{5}^{3}(2 n), H_{6}^{3}(2 n) \subset$ $\beta_{2 n}^{3}, n \geq 4 ; H_{7}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 3 ; H_{8}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 4 ; H_{9}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 5 ; H_{10}^{3}(2 n) \subset \beta_{2 n}^{3}$, $n \geq 3 ; H_{11}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 5$, and $H_{12}^{3}(2 n) \subset \beta_{2 n}^{3}, n \geq 6$ be the collections of bicyclic graphs which has a perfect matching such that if $G \in H_{i}^{3}(2 n), i=1,2, \ldots, 12$, then it has following edge-degree
partition

$$
\begin{aligned}
& E_{1}^{3}(G)=\left\{e_{22}=2 n-4, e_{23}=4, e_{33}=1\right\} \\
& E_{2}^{3}(G)=\left\{e_{22}=2 n-5, e_{23}=6\right\} \\
& E_{3}^{3}(G)=\left\{e_{12}=1, e_{23}=3, e_{22}=2 n-6, e_{33}=3\right\} \\
& E_{4}^{3}(G)=\left\{e_{12}=2, e_{23}=4, e_{22}=2 n-9, e_{33}=4\right\} \\
& E_{5}^{3}(G)=\left\{e_{12}=2, e_{23}=2, e_{22}=2 n-8, e_{33}=5\right\} \\
& E_{6}^{3}(G)=\left\{e_{12}=1, e_{23}=5, e_{22}=2 n-7, e_{33}=2\right\} \\
& E_{7}^{3}(G)=\left\{e_{13}=1, e_{22}=2 n-5, e_{23}=2, e_{33}=3\right\} \\
& E_{8}^{3}(G)=\left\{e_{12}=1, e_{23}=7, e_{22}=2 n-8, e_{33}=1\right\} \\
& E_{9}^{3}(G)=\left\{e_{12}=1, e_{23}=9, e_{22}=2 n-9\right\} \\
& E_{10}^{3}(G)=\left\{e_{13}=1, e_{23}=4, e_{22}=2 n-6, e_{33}=2\right\} \\
& E_{11}^{3}(G)=\left\{e_{12}=2, e_{23}=6, e_{22}=2 n-10, e_{33}=3\right\} \\
& E_{12}^{3}(G)=\left\{e_{12}=3, e_{23}=3, e_{22}=2 n-11, e_{33}=6\right\}
\end{aligned}
$$

respectively, see Figure 4.3 for a graph representing each of these classes.
Theorem 4.5. 1. If $G \in \beta_{2 n}^{3}$, then $S D D(G) \geq 4 n+\frac{8}{3}$. Equality holds iff $G \in H_{1}^{3}(2 n), n \geq 4$.
2. If $G \in \beta_{2 n}^{3} \backslash\left\{H_{1}^{3}(2 n)\right\}$, then $S D D(G) \geq 4 n+3$. Equality holds iff $G \in H_{2}^{3}(2 n)$ or $G \in H_{3}^{3}(2 n)$, $n \geq 3$ or $G \in H_{4}^{3}(2 n), n \geq 5$.
3. If $G \in \beta_{2 n}^{3} \backslash\left\{H_{i}^{3}(2 n)\right\}, i=1,2,3,4$, then $S D D(G) \geq 4 n+\frac{10}{3}$. Equality holds iff $G \in H_{5}^{3}(2 n)$ or $G \in H_{6}^{3}(2 n), n \geq 4$.
4. If $G \in \beta_{2 n}^{3} \backslash\left\{H_{i}^{3}(2 n)\right\}, i=1, \ldots, 6$, then $S D D(G) \geq 4 n+\frac{11}{3}$. Equality holds iff $G \in H_{7}^{3}(2 n)$, $n \geq 3$ or $G \in H_{8}^{3}(2 n), n \geq 4$.
5. If $G \in \beta_{2 n}^{3} \backslash\left\{H_{i}^{3}(2 n)\right\}, i=1, \ldots, 8$, then $S D D(G) \geq 4(n+1)$. Equality holds iff $G \in H_{10}^{3}(2 n)$, $n \geq 4$ or $G \in H_{9}^{3}(2 n)$ or $G \in H_{11}^{3}(2 n), n \geq 5$ or $G \in H_{12}^{3}(2 n), n \geq 6$.

Proof. We prove this theorem by taking condition on pendant paths K in bicyclic graph $G \in$ $\beta_{2 n}^{3}(p, q, l)$.

Case 1: If $K=0$, then $\triangle=3$ and $G \in H_{1}^{3}(2 n)$ with $n \geq 2$ or $G \in H_{2}^{3}(2 n)$ with $n \geq 3$. Note that by direct computation, $S D D(G)=4 n+\frac{8}{3}$ if $G \in H_{1}^{3}(2 n)$ and $S D D(G)=4 n+3$ if $G \in H_{2}^{3}(2 n)$.

Figure 4.3: Representation of graphs corresponding to edge-degree partition $E_{i}^{3}(G)$ of bicyclic graphs in $H_{i}^{3}(2 n), i=1,2, \ldots, 12$.

Case 2: If $K=1$, then $3 \leq \triangle \leq 4$ and we need to consider following two subcases:
(2.1) - when the length of the pendant path is one and
(2.2) when the length of the pendant path is at least two.

Subcase 2.1: If the length of the pendant path is one, then by taking condition on maximum degree \triangle, we have:
(i) If $\triangle=3$, then G has exactly three vertices w_{1}, w_{2}, w_{3} of degree three. Now, again studying the vertices w_{1}, w_{2}, w_{3} we see that among these vertices G has at most three pairs of them are adjacent, since $G \in \beta_{2 n}^{3}(p, q, l)$.
(a) Suppose three pair of vertices w_{1}, w_{2}, w_{3} are adjacent, then $G \in H_{7}^{3}(2 n)$ with $n \geq 7$ and $S D D\left(H_{7}^{3}(2 n)\right)=4 n+\frac{11}{3}$.
(b) Suppose G have two pair of adjacent vertices among w_{1}, w_{2}, w_{3}, then G has four edges which connect the vertices of degree two and three. In that case $G \in H_{10}^{3}(2 n)$ with $n \geq 4$ and $S D D(G)=4(n+1)$
(c) Suppose that at most one pair of vertices are adjacent among w_{1}, w_{2}, w_{3}, then G has atleast six edges which connect the vertices of degree two and three. Since G has a pendant path, then we have

$$
S D D(G) \geq S(1,3)+6 S(2,3)+4(n-3)=4 n+\frac{13}{3}>4(n+1)
$$

(ii) If $\triangle=4$, then G has atleast two edges which connect the vertices of degree two and \triangle. Then,

$$
S D D(G) \geq 2 S(2,4)+S(1,4)+4(n-1)=4 n+\frac{21}{4}>4(n+1)
$$

Subcase 2.2: If the length of the pendant path is at least two, then we again make conditions on the maximum degree.
(i) Let $\triangle=3$, then G has exactly three vertices w_{1}, w_{2}, w_{3} of degree three. Again we observe that G can have at most three pairs of adjacent vertices among w_{1}, w_{2}, w_{3}, since $G \in \beta_{2 n}^{3}(p, q, l)$.
(a) Suppose three pair of vertices w_{1}, w_{2}, w_{3} are adjacent, then $G \in H_{3}^{3}(2 n)$ with $n \geq 3$ and $S D D(G)=4 n+3$.
(b) Suppose two pair of vertices w_{1}, w_{2}, w_{3} are adjacent then $G \in H_{6}^{3}(2 n)$ with $n \geq 4$ and $S D D(G)=4 n+\frac{10}{3}$.
(c) Suppose one pair of vertices w_{1}, w_{2}, w_{3} are adjacent, then $G \in H_{8}^{3}(2 n)$ with $n \geq 4$ and $S D D(G)=4 n+\frac{11}{3}$.
(d) Assume that no pair of vertices w_{1}, w_{2}, w_{3} are adjacent, then $G \in H_{9}^{3}(2 n)$ with $n \geq 5$ and $S D D\left(H_{9}^{2}(2 n)\right)=4(n+1)$.
(ii) Let $\triangle=4$, then G has at least three edges which connect the vertices of degree two and four. In this subcase, we have

$$
S D D(G) \geq 3 S(2,4)+S(1,2)+2 S(2,3)+2(2 n-5)=4 n+\frac{13}{3}>4(n+1)
$$

Case 3: If $K=2$, then $3 \leq \triangle \leq 5$. Now, we need to consider two subcases.
Subcase 3.1: If G has at least one pendant path of length one, then from Lemma 4.1, we have

$$
S D D(G) \geq S(1,3)+S(1,2)+2 S(2,3)+2(2 n-3)=4 n+\frac{25}{6}>4(n+1)
$$

Subcase 3.2: Both the pendant paths have length atleast two.
(i) If $\triangle=3$, then G has four vertices $w_{1}, w_{2}, w_{3}, w_{4}$ of degree three. Now, we analyze the position of these vertices $w_{1}, w_{2}, w_{3}, w_{4}$ in G. Since $G \in \beta_{2 n}^{3}(p, q, l)$ is a bicyclic graph in which cycles have a common path, so among the vertices $w_{1}, w_{2}, w_{3}, w_{4}$, at most five pair of vertices are adjacent.
(a) Suppose G has five pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}$, then G has exactly two edges which connect the vertices of degree two and three. In that case $G \in H_{5}^{3}(2 n)$ with $n \geq 4$ and $S D D(G)=4 n+\frac{10}{3}$.
(b) Suppose G has four pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}$, then G has exactly four edges which connect the vertices of degree two and three. In that case $G \in H_{4}^{3}(2 n)$ with $n \geq 5$ and $S D D(G)=4 n+3$.
(c) Suppose G has three pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}$, then G has exactly six edges which connect the vertices of degree two and three. In that case $G \in H_{11}^{3}(2 n)$ with $n \geq 5$ and $S D D(G)=4(n+1)$.
(d) Assume that G has atmost two pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}$, then G has atleast eight edges which connect the vertices of degree two and three.

$$
S D D(G) \geq 8 S(2,3)+2 S(1,2)+2(2 n-9)=4 n+\frac{13}{3}>4(n+1)
$$

(ii) If $\triangle \geq 4$, then G has at least two edges which connect the vertices of degree two and \triangle. Then, $S D D(G) \geq 2 S(1,2)+2 S(2, \triangle)+2 S(2,3)+2(2 n-5) \geq 2 S(1,2)+2 S(2,4)+2 S(2,3)+$ $2(2 n-5)=4 n+\frac{13}{3}>4(n+1)$.

Case 4: If $K=3$, then $3 \leq \triangle \leq 6$ and we consider the following two subcases:
(4.1) - when atleast one pendant path has length one, and
(4.2) - all three pendant path have length atleast two.

Subcase 4.1: If G has at least one pendant path of length one then from Remark 4.2 and Lemma 4.1, we have

$$
S D D(G) \geq S(1,3)+2 S(1,2)+4(n-1)=4 n+\frac{13}{3}>4(n+1)
$$

Subcase 4.2: If all three pendant path in G have length atleast two then we have following cases based on the maximum degree \triangle.
(i) If $\triangle=3$, then G has five vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$ of degree three. Since $G \in \beta_{2 n}^{3}(p, q, l)$ is a bicyclic graph in which cycles have a common path, then G has atmost 6 pair of adjacent vertices among $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$.
(a) Suppose G has six pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$, then $G \in H_{12}^{3}(2 n)$ with $n \geq 6$ and $S D D(G)=4(n+1)$.
(b) Assume that G has atmost five pair of adjacent vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$, then G has atleast five edges which connect the vertices of degree two and three. Since G has three pendant paths,

$$
S D D(G) \geq 3 S(1,2)+5 S(2,3)+2(2 n-7)=4 n+\frac{13}{3}>4(n+1)
$$

(ii) If $\triangle \geq 4$, then G has at least one edge which connect the vertices of degree two and \triangle, then $S D D(G) \geq 3 S(1,2)+S(2, \triangle)+2 S(2,3)+2(2 n-5) \geq 3 S(1,2)+S(2,4)+2 S(2,3)+2(2 n-5)=$ $4 n+\frac{13}{3}>4(n+1)$.

Case 5: If $K \geq 4$, then from Lemma 3.1.1, $S D D(G) \geq \frac{2}{3} K+2|E(G)| \geq \frac{2}{3} \times 4+2(2 n+1)=$ $4 n+\frac{14}{3}>4(n+1)$.

Now, combining the above three theorems, we are ready with first five minimum values for the SDD index of all bicyclic graphs which have a perfect matching.

Theorem 4.6. Let $G \in \beta_{2 n}$ be a bicyclic graph which has a perfect matching.

1. The minimum value of $S D D(G)$ is $4 n+\frac{8}{3}$ and equality holds iff $G \in F_{1}^{1}(2 n), n \geq 3$ or $G \in H_{1}^{3}(2 n), n \geq 4$.
2. The second-minimum value for $S D D(G)$ is $4 n+3$ and equality holds iff $G \in H_{2}^{3}(2 n)$ or $G \in H_{3}^{3}(2 n), n \geq 3$ or $G \in F_{2}^{1}(2 n)$ or $G \in H_{4}^{3}(2 n), n \geq 4$.
3. The third-minimum value of $S D D(G)$ is $4 n+\frac{10}{3}$ and equality holds iff $G \in F_{3}^{1}(2 n)$ or $G \in H_{5}^{3}(2 n)$ or $G \in H_{6}^{3}(2 n), n \geq 4$.
4. The fourth-minimum value of $S D D(G)$ is $4 n+\frac{11}{3}$ and equality holds iff $G \in H_{7}^{3}(2 n)$, for $n \geq 3$ or $H_{8}^{3}(2 n)$, for $n \geq 4$ or $G \in F_{4}^{1}(2 n)$ or $G \in F_{5}^{1}(2 n), n \geq 5$.
5. The fifth-minimum value of $S D D(G)$ is $4(n+1)$ and equality holds iff $G \in J_{2 n}^{2}, n \geq 3$ or $F_{7}^{1}(2 n)$ or $G \in H_{10}^{3}(2 n), n \geq 4$ or $G \in F_{6}^{1}(2 n)$ or $G \in H_{9}^{3}(2 n)$ or $G \in H_{11}^{3}(2 n), n \geq 5$ or $G \in F_{8}^{1}(2 n)$ or $G \in H_{12}^{3}(2 n), n \geq 6$.

Proof. The theorem follows directly from Theorems 4.3, 4.4 and 4.5.

4.3 Upper Bounds

In this section, we compute the upper bounds of $S D D$ index for bicyclic graphs, which has maximum degree four and that admits a perfect matching. Before proving the results we identify and define some interesting class of graphs which play a crucial role in computation of upper bounds. Let $D_{i}^{1}(2 n) \subset \beta_{2 n}^{1}, D_{i}^{3}(2 n) \subset \beta_{2 n}^{3} i=1,2,3$ be the set of bicyclic graphs such that, if $G \in D_{1}^{3}(2 n)$, $n \geq 6$ or $G \in D_{1}^{1}(2 n), n \geq 10$, then depending on n being even or odd, we have two sets of edge-degree partition of G. When n is even, then the edge-degree partition is given by

$$
E(G)=\left\{e_{12}=\frac{n-2}{2}, e_{14}=\frac{n+2}{2}, e_{24}=\frac{n-2}{2}, e_{44}=\frac{n+4}{2}\right\},
$$

see Figure 4.4(a) and Figure 4.4(c). When n is odd, the edge-degree partition is

$$
E(G)=\left\{e_{12}=\frac{n-3}{2}, e_{13}=1, e_{14}=\frac{n+1}{2}, e_{24}=\frac{n-3}{2}, e_{34}=2, e_{44}=\frac{n+1}{2}\right\},
$$

see Figure 4.4(b) and Figure 4.4(d).
If $G \in D_{2}^{3}(2 n), n \geq 4$, or $G \in D_{2}^{1}(2 n), n \geq 6$, then edge-degree partition of G is

$$
E(G)=\left\{e_{13}=n-2, e_{14}=2, e_{33}=n-4, e_{34}=4, e_{44}=1\right\}
$$

see Figure 4.5(a) and Figure 4.5(c).
For $G \in D_{3}^{3}(2 n), n \geq 5$, or $G \in D_{3}^{1}(2 n), n \geq 7$, the edge-degree partition of bicyclic graph G is

$$
E(G)=\left\{e_{13}=n-2, e_{14}=2, e_{33}=n-5, e_{34}=6\right\}
$$

see Figure 4.5(b) and Figure 4.5(d).
Theorem 4.7. Let $G \in \beta_{2 n}$, for $n \geq 6$ and G have maximum degree at most four. Then

$$
S D D(G) \leq \begin{cases}\frac{1}{8}(45 n+25): & n \text { is odd } \\ \frac{1}{8}(45 n+26): & n \text { is enen. }\end{cases}
$$

Equality holds if and only if $G \in D_{1}^{3}(2 n), n \geq 6$ or $G \in D_{1}^{1}(2 n), n \geq 9$.

Figure 4.4: Representation of bicyclic graphs which attains maximum $S D D$ index.

Figure 4.5: Representation of graphs corresponding to edge-degree partition $E(G)$ of bicyclic graphs $D_{2}^{1}(2 n), D_{3}^{1}(2 n), D_{2}^{3}(2 n), D_{3}^{3}(2 n)$ respectively.

Proof. Let

$$
\Psi(n)=\left\{\begin{array}{l}
\frac{1}{8}(45 n+25): n \text { is odd } \tag{4.1}\\
\frac{1}{8}(45 n+26): n \text { is enen }
\end{array}\right.
$$

We prove this theorem by considering two cases depending on the number of pendant vertices in $G \in \beta_{2 n}$: (1) G has exactly n pendant vertices and (2) G has at most $n-1$ pendant vertices.

Case. 1: When G has n pendant verticecs, then each non-pendant vertex of G is adjacent to a vertex of degree one, and that in this case, either $G \in \beta_{2 n}^{1}$ or $G \in \beta_{2 n}^{3}$, and $G \notin \beta_{2 n}^{2}$ as the graphs under study have maximum degree at most four.

Now we consider two subcases: (1.1) If $G \in \beta_{2 n}^{1}$ or, (1.2) If $G \in \beta_{2 n}^{3}$.
Subcase. 1.1: Suppose $G \in \beta_{2 n}^{1}$. We prove this case by the method of induction.
(i) When $n=6$, then $G \cong \rho_{1}$ (as shown in Figure 4.6(a)) and $S D D\left(\rho_{1}\right)=36.16<\Psi(6)$.
(ii) When $n=7$, then $G \cong \rho_{2}$ (as in Figure 4.6(b),) or $G \cong \rho_{3}$ (Figure 4.6(c)) or $G \cong \rho_{4}$ (Figure $4.6(\mathrm{~d}))$ and $S D D\left(\rho_{2}\right)=41.66<\Psi(7)=42.5, S D D\left(\rho_{3}\right)=41.5<\Psi(7)$ and $S D D\left(\rho_{4}\right)=$ $42.08<\Psi(7)$.

Figure 4.6: Bicyclic graphs discussed in Subcase 1.1 and having either 12 or 14 vertices.
(iii) For $n=8,9,10, G$ is one of the graphs $\beta_{16}^{1}, \beta_{18}^{1}, \beta_{20}^{1}$ which have edge-degree partitions as given in Table 4.1, Table 4.2 and Table 4.3, respectively.
(a) If $G \in \beta_{16}^{1}$, then from Table 4.1, $S D D(G)<\Psi(8)=48.25$.

Classes	e_{12}	e_{13}	e_{14}	e_{23}	e_{24}	e_{33}	e_{34}	e_{44}	$S D D$
I	0	6	2	0	0	3	6	0	47
II	0	6	2	0	0	4	4	1	46.83
III	1	4	3	0	1	1	6	1	47.58
IV	1	4	3	0	1	2	4	2	47.41

Table 4.1: Edge-degree partition for graphs in β_{16}^{1}.
(b) If $G \in \beta_{18}^{1}$, then from Table $4.2, S D D(G) \leq \Psi(9)=53.75$ and equality is attained by graphs in the class (XIII) from Table 4.2 whose edge-degree partition represents $D_{1}^{1}(18)$ that is, equality holds if $G \in D_{1}^{1}(18)$.

Classes	e_{12}	e_{13}	e_{14}	e_{23}	e_{24}	e_{33}	e_{34}	e_{44}	$S D D$
I	0	7	2	0	0	4	6	0	52.33
II	0	7	2	0	0	5	4	1	52.166
III	1	5	3	0	1	2	6	1	52.91
IV	1	5	3	0	1	3	4	2	52.75
V	1	5	3	0	1	1	8	0	53.08
VI	1	5	3	1	0	2	5	2	52.5
VII	1	5	3	1	0	1	7	1	52.66
VIII	2	3	4	0	2	1	4	3	53.33
IX	2	3	4	0	2	1	5	2	53.41
X	2	3	4	0	2	0	6	2	53.5
XI	2	3	4	0	2	2	2	4	53.166
XII	2	3	4	1	1	0	5	3	53.08
XIII	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{5 3 . 7 5}$

TAbLE 4.2: Edge-degree partition for graphs in β_{18}^{1}.
(c) If $G \in \beta_{20}^{1}$, then from Table $4.3, S D D(G) \leq \Psi(10)=59.5$ and equality is attained by graphs in the class (X) from Table 4.3 whose edge-degree partition represents $D_{1}^{1}(20)$, that is, equality holds if $G \in D_{1}^{1}(20)$.

Classes	e_{12}	e_{13}	e_{14}	e_{23}	e_{24}	e_{33}	e_{34}	e_{44}	$S D D$
I	0	8	2	0	0	5	6	0	57.66
II	0	8	2	0	0	6	4	1	57.5
III	1	6	3	0	1	2	8	0	58.41
IV	2	4	4	0	2	2	4	3	58.66
V	2	4	4	0	2	1	6	2	58.833
VI	1	6	3	0	1	3	6	1	58.25
VII	3	2	5	0	3	1	2	5	59.083
VIII	3	2	5	0	3	0	4	4	59.25
IX	1	6	3	0	1	4	4	2	58.08
X	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{5 9 . 5}$
XI	3	2	5	1	2	0	3	5	58.833
XII	2	4	4	2	0	0	6	3	58.166
XIII	1	6	3	1	0	3	5	2	57.833
XIV	2	4	4	1	1	1	5	3	58.41
XV	2	4	4	1	1	2	3	4	58.25
XVI	3	2	5	0	3	0	4	1	53.25
XVII	2	4	4	2	0	1	4	4	58
XVIII	2	4	4	1	1	0	7	2	58.58
XIX	1	6	3	1	0	2	7	1	58
XX	2	4	4	0	2	0	8	1	59
XXI	2	4	4	0	2	3	2	4	58.5
XXII	1	6	3	1	0	1	9	0	58.166

Table 4.3: Edge-degree partition for graphs in β_{20}^{1}.

Thus the results holds for $6 \leq n \leq 10$.
(iv) For $n>10$, we prove the theorem by induction by assuming that the result holds for $G \in \beta_{2 m}^{1}$,
for $10<m<n$, where each non-pendant vertex of G has a pendant-neighbor.

Let M be a perfect matching of $G \in \beta_{2 n}^{1}$ and let each non-pendant vertex of G have a pendantneighbor. Suppose x_{1}, \ldots, x_{n} are the pendant vertices which are adjacent to the vertices y_{1}, \ldots, y_{n}, respectively, where $d\left(y_{i}\right) \geq 2,1 \leq i \leq n$. Then $\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \in M$. We complete the proof of this case by considering two subcases.
Subcase. 1.1(iv).1: If G has at least one vertex $y \in\left\{y_{1}, \ldots y_{n}\right\}$ such that $d(y)=2$.
Without loss of generality, let $y:=y_{1}$. Let x_{1} be its neighboring pendant vertex, where $\left\{x_{1} y_{1}\right\} \in M$.
In this subcase, suppose $y_{2}\left(\neq x_{1}\right)$ is the other neighbor of $y_{1} \in G$, then $d\left(y_{2}\right) \geq 3$.
(A) Suppose $d\left(y_{2}\right)=3$ with $N_{G}\left(y_{2}\right)=\left\{y_{1}, x_{2}, y_{3}\right\}$, where $d\left(y_{3}\right) \geq 3$.

If G has no vertex of degree four, then G will not be a bicyclic graph as each non-pendant vertex of G has a pendant neighbor, and so we get a contradiction. Hence, there exist a vertex $y_{2+k}, k \geq 1$ of degree four in G, such that $y_{2}, y_{3}, \ldots, y_{k+1}$ are vertices of degree three in G. Let $\Upsilon_{1}=G+\left\{y_{1} y_{2+k}\right\} \backslash\left\{x_{2}, y_{2}, x_{3}, y_{3}, \ldots, x_{k+1}, y_{k+1}\right\}$ and $M_{1}=M \backslash\left\{x_{2} y_{2}, x_{3} y_{3}, \ldots, x_{k+1} y_{k+1}\right\}$. Note that $\Upsilon_{1} \in \beta_{2(n-k)}^{1}$ and M_{1} is a perfect matching of Υ_{1}; see Figure 4.7. By induction hypothesis, we have

$$
\begin{aligned}
S D D(G) & =S D D\left(\Upsilon_{1}\right)+k S(1,3)+(k-1) S(3,3)+S(2,3)+S(3,4)-S(2,4) \\
& \leq \Psi(n-k)+\frac{1}{12}(64 k-3)
\end{aligned}
$$

(a) If $n-k$ is even, then from Equation 4.1, we have

$$
S D D(G) \leq \frac{1}{8}\{45(n-k)+26\}+\frac{1}{12}(64 k-3)=\Psi(n)-\frac{1}{24}(7 k+6)<\Psi(n)
$$

(b) If $n-k$ is odd, then from Equation 4.1, we have

$$
S D D(G) \leq \frac{1}{8}\{45(n-k)+25\}+\frac{1}{12}(64 k-3)=\Psi(n)-\frac{1}{24}(7 k+6)<\Psi(n)
$$

(a) G

(b) Υ_{1}

Figure 4.7: Illustration of induction in Case (A).
(B) When $d\left(y_{2}\right)=$ 4: and let us denote the neighbors as $N_{G}\left(y_{2}\right)=\left\{y_{1}, x_{2}, y_{3}, y_{n}\right\}$, where $d\left(x_{2}\right)=$ $1, d\left(y_{3}\right), d\left(y_{n}\right) \geq 2$. Since $n>10$, either y_{3}, or y_{n} has degree greater than or equal to three. Without loss of generality, let $d\left(y_{3}\right) \geq 3$. Now, we need to take condition on $d\left(y_{3}\right)$, and $d\left(y_{n}\right)$.
(a) Suppose $d\left(y_{n}\right)=2$ and $d\left(y_{3}\right) \geq 3$. Let $N_{G}\left(y_{n}\right)=\left\{x_{n}, y_{2}\right\}$ and let $\left\{y_{2}, x_{3}, y_{4}\right\}$ be the three neighbors of y_{3}, such that $d\left(y_{4}\right) \geq 3$. Note that, if G has no vertex of degree four other than $\left\{y_{2}\right\}$, then G cannot be a bicyclic graph. Hence there exist a vertex of degree four in G, say y_{k+2} where $k \geq 1$ is the least. that is, either y_{3} is degree 4 or the vertices y_{3}, \ldots, y_{k+1} are having degree three.

Let $\Upsilon_{2}:=G+\left\{y_{n} y_{k+2}\right\} \backslash\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{k+1}, y_{k+1}\right\}$ and let $M_{2}:=M \backslash\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{k+1} y_{k+1}\right\}$. Now, $\Upsilon_{2} \in \beta_{2(n-k-1)}^{1}$ and M_{2} is a perfect matching of Υ_{2}; see Figure 4.8. Hence, by induction, we have
i. When $k=1$, we have

$$
\begin{array}{rl}
S D D(G)=S & D D\left(\Upsilon_{2}\right)+S(1,2)+S(2,4)+S(4,1)+S(2,4)+S(4,4) \\
& -S(2,4) \leq \Psi(n-2)+\frac{45}{4} \leq \Psi(n)
\end{array}
$$

ii. For $k>1$, we have

$$
\begin{aligned}
S D D(G)= & S D D\left(\Upsilon_{2}\right)+S(1,2)+S(2,4)+S(1,4)+(k-1) S(1,3) \\
& +S(3,4)+(k-2) S(3,3)+S(2,4)+S(3,4)-S(2,4) \\
& \leq \Psi(n-k-1)+\frac{1}{12}(64 k+73) \\
& \leq \Psi(n)-\frac{1}{24}(7 k-11),(\text { From Equation } 4.1) \\
& <\Psi(n) .
\end{aligned}
$$

(a) G

(b) Υ_{2}

Figure 4.8: Illustration for the Case (B)(a).
(b) When $d\left(y_{n}\right)=d\left(y_{3}\right)=3$: Denote the neighbors of y_{n} and y_{3} by $N_{G}\left(y_{n}\right)=\left\{y_{n-1}, x_{n}, y_{2}\right\}$ and $N_{G}\left(y_{3}\right)=\left\{y_{2}, x_{3}, y_{4}\right\}$, respectively, where x_{n}, x_{3} are pendant vertices, $d\left(y_{n-1}\right) \geq 2$ and $d\left(y_{4}\right) \geq 2$.

Let $\Upsilon_{3}=G+\left\{y_{n-1} y_{4}\right\} \backslash\left\{x_{1}, y_{1}, y_{2}, x_{2}, x_{n}, y_{n}, x_{3}, y_{3}\right\}$ and let $M_{3}:=M \backslash\left\{x_{n} y_{n}, x_{1} y_{1}\right.$, $\left.x_{2} y_{2}, x_{3} y_{3}\right\}$. We have $\Upsilon_{3} \in \beta_{2(n-4)}^{1}$ and M_{3} is a perfect matching of Υ_{3}; see Figure 4.9. Now by induction, we have

$$
\begin{aligned}
S D D(G) & =S D D\left(\Upsilon_{3}\right)+S(1,2)+S(2,4)+S(1,4)+2 S(3,4)+2 S(1,3) \\
& +S\left(3, d\left(y_{n-1}\right)\right)+S\left(3, d\left(y_{4}\right)\right)-S\left(d\left(y_{n-1}\right), d\left(y_{4}\right)\right)
\end{aligned}
$$

Since $d\left(y_{n-1}\right), d\left(y_{4}\right) \geq 2$ and $S(3,2)>S(3,4)>S(z, z)$, where $z \geq 2$. Then, we have

$$
S D D(G) \leq \Psi(n-4)+\frac{269}{12} \leq \Psi(n)-\frac{1}{12}<\Psi(n)
$$

This follows from Equation 4.1.

(a) G

(b) Υ_{3}

Figure 4.9: Illustration for the Case (B)(b).
(c) When $d\left(y_{n}\right) \geq 3$ and $d\left(y_{3}\right)=4$: Let $\Upsilon_{4}=G+\left\{y_{n} y_{3}\right\} \backslash\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ and $M_{4}:=$ $M \backslash\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$. Note that $\Upsilon_{4} \in \beta_{2(n-2)}^{1}$ and M_{4} is a perfect matching of Υ_{4}; see Figure 4.10. By induction hypothesis, we have

$$
\begin{aligned}
S D D(G) & =S D D\left(\Upsilon_{4}\right)+S(1,2)+S(2,4)+S(1,4)+S(3,4)+S(4,4) \\
& -S(3,4) \leq \Psi(n-2)+\frac{45}{4} \leq \Psi(n)
\end{aligned}
$$

which follows from Equation 4.1.

Hence in that subcase result is true.
Subcase. 1.1(iv).2: If no pendant vertex has a degree two neighbor in $G \in \beta_{2 n}^{1}$.

(a) G

(b) Υ_{4}

Figure 4.10: Illustration for the Case (B)(c).

Since G is a bicyclic graph where each of its non pendant vertex has a pendant neighbor, it follows immediately that G is isomorphic to one of the graphs in the subcollection Q_{1}^{1}, Q_{2}^{1}, as shown in Figure 4.5 (a) and $4.5(\mathrm{~b})$, that is, $G \cong Q_{1}^{1}$ or $G \cong Q_{2}^{1}$.
By direct computation, we find that $S D D\left(Q_{1}^{1}\right)=\frac{1}{6}(32 n+25)$, and $S D D\left(Q_{2}^{1}\right)=\frac{1}{6}(32 n+26)$.
(a) If n is even, then from Equation 4.1, we have

$$
\begin{gathered}
\Psi(n)-S D D\left(Q_{1}^{1}\right)=\frac{1}{8}(45 n+26)-\frac{1}{6}(32 n+25)=\frac{1}{24}(7 n-22)>0 \\
\text { since } n \geq 6
\end{gathered}
$$

(b) If n is odd, then from Equation 4.1, we have

$$
\begin{gathered}
\Psi(n)-S D D\left(Q_{2}^{1}\right)=\frac{1}{8}(45 n+25)-\frac{1}{6}(32 n+25)=\frac{1}{24}(7 n-25)>0 \\
\text { since } n \geq 6
\end{gathered}
$$

Thus implying the result is true in this subcase.
Subcase. 1.2: If $G \in \beta_{2 n}^{3}$ and each non pendant vertex of G has a pendant neighbor.
(i) If $n=6$, then graphs of β_{12}^{3} have edge-degree partition as given by Table 4.4. From direct observation, we have $S D D(G) \leq \Psi(6)=37$ and equality is attained by class (VI) in Table 4.4. Note the graph of class (VI) represents $D_{1}^{3}(12)$, that is, equality holds if $G \in D_{1}^{3}(12)$.

Classes	e_{12}	e_{13}	e_{14}	e_{23}	e_{24}	e_{33}	e_{34}	e_{44}	$S D D$
I	0	4	2	0	0	1	6	0	36.33
II	0	4	2	0	0	2	4	1	36.166
III	1	2	3	0	1	0	4	2	36.75
IV	1	2	3	0	1	1	2	3	36.58
V	1	2	3	1	0	0	3	3	36.33
VI	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3 7}$

Table 4.4: Edge-degree partition for graphs in β_{12}^{3}.
(ii) If $n=7$, then graphs of β_{14}^{3} have edge-degree partitions as given in Table 4.5.From Table 4.5, $S D D(G) \leq \Psi(7)=42.5$ and equality is attained by the graphs in class (VIII) of Table 4.5 whose edge-degree partition represents $D_{1}^{3}(14)$, that is, equality holds if $G \in D_{1}^{3}(14)$. Thus

Classes	e_{12}	e_{13}	e_{14}	e_{23}	e_{24}	e_{33}	e_{34}	e_{44}	$S D D$
I	0	5	2	0	0	2	6	0	41.66
II	0	5	2	0	0	3	4	1	41.5
III	1	3	3	0	1	0	6	1	42.25
IV	1	3	3	0	1	1	4	2	42.08
V	1	3	3	1	0	0	5	2	41.83
VI	1	3	3	1	0	1	3	3	41.66
VII	2	1	4	1	1	0	1	5	40.08
VIII	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4 2 . 5}$

Table 4.5: Edge-degree partition for graphs in β_{14}^{3}.
the results hold for $n=6$ and $n=7$.
(iii) For $n \geq 8$, we prove by induction by assuming that the result holds for $\beta_{2 m}^{3}, 8 \leq m<n$, where each non pendant vertex of $G \in \beta_{2 m}^{3}$ has a pendant neighbor.

Let M be the perfect matching of $G \in \beta_{2 n}^{3}$ where each non-pendant vertex of G has a pendant neighbor. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the pendant vertices which are adjacent to the vertices $y_{1}, y_{2}, \ldots, y_{n}$, respectively, where $d\left(y_{i}\right) \geq 2, i=1,2, \ldots, n$. Note that $\left\{x_{i} y_{i}\right\} \subseteq M$, for $i=1,2, \ldots, n$. Similar to Case 1.1(iv), we consider the following two subcases to complete the proof.
(a) If $G \in \beta_{2 n}^{3}$ has a vertex $y \in\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d(y)=2$.

Proof of this subcase is similar to Subcase. 1.1(iv).1.
(b) If no pendant vertex has a degree two neighbor in $G \in \beta_{2 n}^{3}$.

In this subcase, we find that G is isomorphic to one of the graphs in the subcollection Q_{1}^{3},
Q_{2}^{3}, that is, either $G \cong Q_{1}^{3}$ (see Figure. 4.5(c)) or $G \cong Q_{2}^{3}$ (see Figure. 4.5(d)).
By direct computation, we have that $S D D\left(Q_{1}^{3}\right)=\frac{1}{6}(32 n+25)$, and $S D D\left(Q_{2}^{3}\right)=\frac{1}{6}(32 n+26)$.
i. If n is even, then from Equation 4.1, we have

$$
\Psi(n)-S D D\left(Q_{1}^{3}\right)=\frac{1}{24}(7 n-22)>0, \quad \text { since } n \geq 4
$$

ii. If n is odd, then from Equation 4.1, we have

$$
\Psi(n)-S D D\left(Q_{2}^{3}\right)=\frac{1}{24}(7 n-26)>0, \quad \text { since } n \geq 4
$$

Hence, if each non pendant vertex of a bicyclic graph $G \in \beta_{2 n}$ have a pendant neighbor, then $S D D(G) \leq \Psi(n)$.
Case. 2: Suppose G has at most $n-1$ pendant vertex, then G has at least one vertex which is not adjacent to a vertex of degree one.

From Lemma 3.2.1, it is immediate that the contribution of a vertex in $S D D$ index is maximum, if that vertex has a pendant neighbor. Further, in Case. 1, we have just shown that $S D D(G) \leq \Psi(n)$, when each non pendant vertex of a bicyclic graph G have a pendent neighbor, which implies that $S D D(G) \leq \Psi(n)$, if G have at most $n-1$ vertex.

Hence, to summarize, if $G \in \beta_{2 n}^{1}$ then $S D D(G) \leq \Psi(n)$ and equality holds if and only if $G \in$ $D_{1}^{1}(2 n), n \geq 9$. If $G \in \beta_{2 n}^{2}$, then $S D D(G)<\Psi(n)$ and in that case equality does not hold. Finally, if $G \in \beta_{2 n}^{3}$, then $S D D(G) \leq \Psi(n)$ and equality holds if and only if $G \in D_{1}^{3}(2 n), n \geq 6$.

4.4 Summary

In this chapter, we have studied the first five minimum values of the $S D D$ index attained by the bicyclic graphs having a perfect matching. In this study, one of our main contributions is in identifying the graphs that attain the stated bounds. Further, we have also computed an upper bound of the $S D D$ index for bicyclic graphs with a maximum degree of four, which admits a perfect matching, and have shown that the given bound is tight.

