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Introduction

The origin of graph theory can be traced back to a Swiss Mathematician named Leonhard Euler

solving the Königsberg seven bridges problem in the 18th century. Euler’s solution for the seven

bridges problem was a new type of geometry called “Geometry of Position,” later renamed Graph

Theory. In 1736, Euler was the first Mathematician who published the first article on graph theory

due to his efforts to solve the Königsberg problem. Nearly a century ago, Cayley was interested in

an analytical form derived from differential calculus to examine a particular class of graphs known

as trees. He linked his results on trees with contemporary studies of chemical composition. Since

then, graph theory has received wide attention and has been studied and applied to various fields

such as Computer science, Chemical sciences, Operational research, and Social network analysis,

to name a few. Among the various applications, our focus in this thesis is on the applications of

graph theory in theoretical chemistry.

In the study of theoretical chemistry, the extensive focus of researchers has been to establish re-

lationships between a substance’s chemical and physical properties and the structure of the corre-

sponding molecules. It is, therefore, not an exaggeration to say that theoretical chemistry has ben-

efited a lot during the past 50 years from applying graph-theoretic [1, 2] and information-theoretic

techniques [3, 4] to characterize molecular structures. The modeling of a chemical structure and its

physical property led to the evolution of a new branch of mathematical chemistry called “Chem-

ical Graph Theory(CGT)”. Broadly, CGT uses graph theory and statistics to identify structural

features involved in structure-property activity relationships. Further, the topological characteri-

zation of chemical structures allows the classification of molecules and modeling unknown structure

with desired properties. Partitioning a molecular property and recombining its fragmental values

by additive models remains one of the main tasks here.

Structural descriptors play an essential role in investigating molecular structures in various fields

such as mathematical/computational chemistry, pharmaceutical science, materials science, and en-

gineering, to name a few. The descriptors have often been used to characterize molecular networks

since they quantify structural features. Indeed, QSAR and QSPR are well-known application ar-

eas where molecular structure descriptors have been proven beneficial. In particular, predicting

biological and pharmacological properties using descriptors has been a problem of great interest
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and importance. To this end, numerous descriptors are identified and considered viable; however,

no single graph invariant can completely characterize the underlying graph topology.

In this thesis, we focus on analyzing the extremal properties of degree-based descriptors on various

graph classes and focus on developing novel descriptors using graph matrices. Before that, we

begin with some basic definitions and concepts required for further reading this thesis.

1.1 Graph-Theoretical Concepts

A graph is denoted by G = G(V (G), E(G)), consisting of a finite, non-empty set V (G) of vertices,

together with a set E(G) of unordered pairs of vertices called edges. If V (G) has finite number of

elements, then G is called a finite graph; otherwise, it is called an infinite graph. If V (G) has a

single element, then G is called a trivial graph; otherwise, nontrivial graph.

For e ∈ E(G), if e = uv, where u, v ∈ V (G); we say that u and v are adjacent vertices, and e is

said to be incident with u and v, or we say that e joins the vertex u and v. If two or more edges

join the same pair of vertices then these edges are called multiple edges. An edge with identical

ends e = uu is called a loop. A graph is called a simple graph if it has no multiple edges or loops.

Let n denote the number of vertices and m denote the number of edges. A walk is an alternating

sequence of vertices and edges < v0, e0, v1, e1, . . . , ek−1, vk > such that ei = vi−1vi, ∀i = 1 to k,

and the number k is the length of the walk. If all the vertices and edges of a walk are distinct,

we call it a path. A graph is connected if any two vertices are connected by a path. For k ≥ 3, a

walk < v0, e0, v1, e1, . . . , ek−1, vk > in which no vertices and edges are repeated is called a cycle if

v0 = vk, it is denoted by Ck and k is called the length of the cycle. A tree is a connected graph

that has no cycles. If G is a tree graph then m = n− 1, where n and m represents the number of

vertices and number of edges respectively.

The degree of a vertex u ∈ V (G) denoted by d(u) or dG(u), is the number of edges incident to u.

A vertex of degree one is called a pendant vertex and the edge incident to the pendant vertex is

called the pendant edge. An isolated vertex is a vertex of degree zero. The maximum and minimum

degree of a graph G are defined as

4(G) or 4 = max{d(u) : u ∈ V (G)}

δ(G) or δ = min{d(u) : u ∈ V (G)}.
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The neighborhood set of a vertex v ∈ V (G) is a set NG(v) = {u ∈ V (G) : uv ∈ E(G)}, which

consists of all vertices which are adjacent to v, i.e., |NG(v)| = d(v).

The cyclomatic number of a connected graph is defined as cy(G) = |E(G)| − |V (G)| + 1. When

G is a tree, we have |E(G)| = |V (G)| − 1. Since we know that trees have no cycles, we get

cy(G) = 0. When |V (G)| = |E(G)|, G has cyclomatic number 1 and is called as unicyclic graph.

When |E(G)| = |V (G)|+ 1, G has cyclomatic number 2 and is referred to as bicyclic graph. When

|E(G)| = |V (G)|+ 2, G has cyclomatic number 3 and G is referred to as tricyclic graph.

Alternatively, a graph that has a unique cycle is called a unicyclic graph. If the graph has two

cycles, then it is known as a bicyclic graph. If a graph has three cycles, then it is known as a

tricyclic graph.

A graph G is regular, if every vertex has the same degree and particularly a graph is called k

regular if every vertex has degree equal to k.

A path < v1v2, . . . , vk−1vk > is called pendant path if d(v1) = 1, d(vi) = 2 for i = 2, 3, ..., k − 1

and d(vk) ≥ 3.

A matching M of a graph G = G(V (G), E(G)) is a subset of E(G) such that no two edges are

adjacent in G. A vertex u ∈ V (G) is called M−saturated if it is incident to an edge of M . If all

the vertices of a graph G are M−saturated, then the matching M is called perfect matching. The

other notations and definitions are taken from the book [5] and are introduced at the place of first

use.

1.1.1 Molecular Graphs

We next introduce molecular graphs, on which our primary focus is. When applying graph theory

to molecules, we have the vertices corresponding to atoms and the edges to chemical bonds -

usually covalent bonds. The resulting graph depicts how atoms are bonded and which path or

paths connect one atom with another in the molecule is called a molecular graph. For a topological

representation of a hydrocarbon molecule, see Figure 1.1(a).

In a molecular graph, an edge between two nodes symbolizes the existence of a chemical bond

between the atoms represented by those nodes, no matter what the valence of the chemical bond

is. Sometimes it is necessary to consider the valence of the chemical bonds to deal with molecules

with the same number of atoms and topology but different kinds of chemical bonds - simple, twofold,
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triple, or quadruple covalent bonds. The result is called a molecular pseudograph or multigraph.

We will not consider pseudographs here, so there will be no multiple edges between connected

nodes. Usually, hydrogen atoms are not depicted in molecular graphs, in which case we speak

of hydrogen-depleted (hydrogen-suppressed) molecular graphs; see Figure 1.1(b). Henceforth, all

molecular graphs are meant to be hydrogen-suppressed, although not explicitly stated.
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(a) Topological representation of a hydrocarbon (b) Hydrogen depleted molecular graph of
the considered hydrocarbon

Figure 1.1: A hydrocarbon and its hydrogen depleted molecular graph representation.

The structural information contained in a molecular graph can now be codified by means of different

mathematical objects, like matrices, numerical indices, polynomials, spectra, groups, and operators.

Our interests lie in the numerical indices called the topological indices.

1.2 Topological Indices

This section introduces types of molecular descriptors called topological indices (TI). An invariant

is a graph property that depends only on the topological structure of the graphs and not on

the representation of graphs, such as particular drawing/labeling. Graph invariants representing

topological and algebraic properties (such as vertex degrees, edge degrees, paths, distances between

vertices, cycles, spanning trees, and orbits of the automorphism group, to name a few) have been

used to define topological indices. Graph invariants and hence, topological indices are essential in

predicting a chemical compound’s physicochemical, biomedical, environmental, and toxicological

properties directly from its molecular structure. In the literature, many topological indices have

been proposed such that each describes structural complexity based on a particular property, thus
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indicating indices cannot be uniquely defined. Therefore it is not surprising that diverse ideas and

contrasting methodologies have been a backbone in developing novel descriptors to compare and

characterize systems. Numerous indices are available in the literature; for example, see [6, 7].

Topological descriptors are broadly classified based on the graph property it represents. Distance-

based, degree-based, and distance and degree-based are a few classes of topological indices.

Next, we present some of the most commonly cited distance-based and degree-based topological

indices along with a brief literature survey and their applications in chemical graph theory.

1.2.1 Distance-Based Topological Indices

Distance-based topological indices are calculated based on the distance between any two vertices in

a graph. One of the oldest topological indices was introduced in 1947 by the chemist Harold Wiener

[8] when he was analyzing the chemical properties of paraffins (alkanes). This index is known as

the Wiener index and is one of the most studied topological indices both from a theoretical and

experimental perspective; [9–15].

The Wiener index W (G), for a graph G, is defined as

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v) =
∑

{u,v}⊆V (G)

d(u, v), (1.1)

where d(u, v) represent the shortest-path distance between the vertices u and v. There are various

algorithms [16–18] for the evaluation of this index is available in the literature. In particular, this

index has been calculated for trees [9, 19, 20], cyclic graphs [21], line graphs and nanotubes to

name a few. In 1998, Gutman and Klavžar [22] established a relation between Wiener indices of

phenylenes and benzoid compounds. For more details on Wiener index, see the articles [23, 24].

In 1993, the hyper Wiener index was introduced by Randić for acyclic graphs [25] and was extended

to general graphs by Klein et al. in [26]. For a graph G, the hyper Wiener index WW (G) is defined

as

WW (G) =
1

2

∑
{u,v}⊆V (G)

d(u, v) +
1

2

∑
{u,v}⊆V (G)

d2(u, v) (1.2)
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This index shows a good correlation between various physico-chemical and biological properties

[27–29] of a chemical compounds. The relation between Wiener and hyper Wiener index is given

in articles [30–32].

The modification of Wiener index, known as generalized Wiener index [7], is defined as

Wk(G) =
∑

{u,v}⊆V (G)

[d(u, v)]k (1.3)

If we take k = −1, then it is known as “reciprocal Wiener index” and if k = −2, then it is known as

the “Harary index”. Sometimes the reciprocal Wiener index is also referred as the Harary index.

1.2.2 Degree-Based Topological Indices

This section presents the degree-based indices used in the rest of the chapters, especially in Chapters

5 to 7, for our comparative analysis. A topological descriptor whose computation is based only on

the degree of a vertex is known as vertex-degree-based (V DB) indices. A large number of such

descriptors have been proposed, and the computation of these indices for various chemical networks

is an active area of research in both chemical and mathematical literature [8, 33–48].

Randić index [49] is one of the most widely studied and used degree-based index. The Randić

index [49] for a graph G, is defined as-

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

. (1.4)

It has been observed that Randić index has a good correlation with several physicochemical prop-

erties of alkanes such as boiling point, chromatographic retention times, enthalpies of formation,

etc. For mathematical properties and chemical application of this index we refer to a series of

articles [50–55].

A generalized version of Randić index [50], for a graph G, is defined as

Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α, (1.5)

where α ∈ R, and for α = −1/2, we obtain Randić index.
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Another variation of the Randić index was first introduced by Siemion Fajtlowicz [56] known as

Harmonic index. For a graph G, it is defined as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
. (1.6)

Favaron et al., [57] has given the relation between Harmonic index and eigenvalues of a graph.

The Zagreb indices [58] are one of the most important and well-studied topological indices in the

literature. It first appeared in 1972, during the study of π−energy of conjugate molecules. For a

graph G, the first and second Zagreb indices [58, 59] are defined as-

ZM1(G) =
∑

u∈V (G)

d2(u) =
∑

uv∈E(G)

(d(u) + d(v)) (1.7)

ZM2(G) =
∑

uv∈E(G)

d(u)d(v). (1.8)

Following this work, there was a plethora of literature published on Zagreb indices [40, 60–62].

Further, many modified forms and variants of Zagreb indices were also introduced. One of the

modified Zagreb index mM2(G) introduced by J. Hao [63], in 2009, is defined by

mM2(G) =
∑

uv∈E(G)

1

d(u)d(v)
(1.9)

In 2014, Furtula and Gutman [40] studied the difference between first and second Zagreb index.

They found that this difference is closely related to the vertex degree based invariant

RM2(G) =
∑

uv∈E(G)

(d(u)− 1)(d(v)− 1), (1.10)

known as the reduced second Zagreb index.

G. Shirdel et al. [64] introduced a new version of Zagreb index named hyper-Zagreb index. For a

graph G, the hyper Zagreb index is defined as

HM(G) =
∑

uv∈E(G)

(d(u) + d(v))2. (1.11)

Some new results on the hyper-Zagreb index is found in article [65].
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Another index proven useful in the study of heat formation of heptanes and octanes is Augmented

Zagreb index [66], which is defined as

AZI(G) =
∑

uv∈E(G)

(
d(u)d(v)

d(u) + d(v)− 2

)3

. (1.12)

Motivated by the concept of line graph L(G) of a graph G where the edges in G represents the

vertices of line graph L(G), Miličević et al. [67] introduced a pair of topological indices in terms of

edge degree instead of vertex degree in Zagreb index. For a graph G, first and second reformulated

Zagreb indices are defined as-

EM1(G) =
∑

e∈E(G)

d2(e), (1.13)

EM2(G) =
∑
e∼f

d(e)d(f), (1.14)

where e ∼ f means the edge e and f are adjacent in graph G, i.e., the edge e and f have a common

vertex. Further, if e = uv, then note that d(e) = d(u) + d(v)− 2.

The inverse sum index introduced by Vukičević and Gašperov [68], in 2010, is shown to be a

significant predictor of the total surface area of octane isomers. For a graph G, the inverse sum

index ISI(G) is defined as-

ISI(G) =
∑

uv∈E(G)

1
1

d(u) + 1
d(v)

=
∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)
. (1.15)

In 2010, Vukičević and Gašperov [68] considered the large class of molecular descriptors, which con-

sist of 148 discrete Adriatic descriptors for improving the various quantitative structure-property

activity relationship (QSPR/QSAR). They found and established that only a few of these descrip-

tors were useful and distinct. Among these descriptors, the symmetric division degree index was

determined to be a useful discrete Adriatic index. The symmetric division degree (SDD), index

[68] is defined as

SDD(G)
∑

uv∈E(G)

{d(u)

d(v)
+
d(v)

d(u)
}. (1.16)

For more work related to SDD index, we refer to [69–76].



Chapter 1. Introduction 9

In 2015, Furtula and Gutman [77] introduced a topological index known as Forgotten topological

index. For a graph G, it is defined as

F (G) =
∑

u∈V (G)

d3(u) =
∑

uv∈E(G)

(d2(u) + d2(v)). (1.17)

Albertson index [78] of a graph G is defined as

Alb(G) =
∑

uv∈E(G)

|d(u)− d(v)|. (1.18)

Gutman at al. [79], in 2017, introduced a topological index known as sigma index, defined by

σ(G) =
∑

uv∈E(G)

(d(u)− d(v))2 (1.19)

1.3 Applications of Topological Indices

The study of topological descriptors has a wide range of applications in many different areas, such as

thermo-chemistry, Hückel theory, spectral analysis, aromatic sextet theory, computer-assisted drug

discovery, and deriving multi-linear regression models. We now discuss the two most important

application of molecular graphs and their topological characterization.

Chemoinformatics

Chemoinformatics is a trending branch of research that combines chemistry, mathematics, and

information science. The research in this field is concerned with the quantitative structure-

activity (QSAR) and structure-property/toxicity (QSPR/QSTR) relationships, as the properties

of molecules are derivable from their chemical structures. The main objective of QSAR/ QSPR/

QSTR is to quantify the molecular structures so as to build a correlation model between the

chemical structures and their corresponding physicochemical properties [80–83].

This study has made it possible to predict a specific activity of a chemical compound even before

its synthesis. Because molecular descriptors make it possible to quantify a chemical structure with

a numerical value, they are crucial in this study for examining the characterization of chemical

compounds without conducting any actual tests. Over the years, researchers have focused on
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the relationship between graph -theoretic topological indices and physicochemical properties of

underlying chemical structures [41, 84–91].

Pharmaceutical Industries

The application of molecular topology to the pharmacological research was only a matter of time,

the pioneering work being done in the mid-1980s, and the first papers appearing at the beginning

of the 1990s. The main incentive for developing new molecular descriptors was triggered especially

by the pharmaceutical industry in its continuous need for improving drug design methods as these

descriptors can be correlated with physicochemical properties of chemical compounds [92, 93]. Over

a year, more than half a million new substances are synthesized or characterized to treat various

syndromes. In contrast, only a few are and can be tested biologically, thereby increasing the cost

of any new medicine. Therefore, any method helping investigators to know which structures are

worthy of being synthesized and tested and which are not, results in enormous savings. Indeed, a

significant role for the topological indices can be to provide a helpful starting point in computer-

assisted drug discovery and predictive toxicological studies. This is one of the significant roles of

the topological indices as it can provide a helpful starting point in computer-assisted drug discovery

and predictive toxicological studies [94, 95].

Whatever the field, the interest in molecular topology is clear: Predicting with confidence some

specific activity of a molecule saves time and money. Although the applications of molecular

topology are manifold, the focus on pharmacological studies is soaring because of their novelty

value and social impact.

1.4 Objective of the Thesis

The objective of this thesis is three-fold: We consider the mathematical, computational, and

application-oriented analysis of vertex-degree-based indices. With this in mind, we study the

following problems:

(i) Characterizing the extremal values of vertex-degree-based indices for certain classes of graphs.

(ii) Facilitating easy ways to compute vertex-degree-based indices by establishing relations with

certain polynomials.
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(iii) Constructing novel topological indices that can correlate well with the physicochemical prop-

erties of chemicals.

(iv) Comparing existing and proposed indices to establish the potentiality and predict expected

values of these properties.

Next, we give a brief literature survey of the state-of-art in each of these problems.

1.5 Literature Review

For a topological index, in place of computation of exact value, characterizing its extremal values

and finding the extremal graphs are interesting and considered important. Suppose an index

correlates well with a certain physicochemical property of chemical compounds. With the help of

bounds, we can quickly determine the range for related molecular properties. When analyzing the

existing descriptors, many well-known graph families and vertex-degree-based topological indices

exist in the literature for which the estimation of a range for index values remains open. Recently

finding the extremal values or bounds for the topological indices of graphs and the related problems

of characterizing the extremal graphs have attracted the attention of many researchers. Many

results are available in the literature, see articles [46, 59, 61, 96–98].

In particular, for the bounds of reformulated Zagreb indices we refer to [99–104]. Recently, in

[105, 106], the authors gave bounds for SDD index using the Zagreb indices and other edge/vertex

degree based indices. For more related work on SDD index, we refer the reader to [69–73, 75, 76,

105–107].

In another direction, traditionally, the computation of topological indices involved only their def-

initions. Such computations are known to be time-consuming. Several techniques are introduced

to reduce topological indices’ computation time. Among them, the polynomial representation of

indices has received wide attention in the literature. For instance, Hosoya polynomial, also known

as Wiener polynomial [12, 108], is used to compute various indices such as Wiener index [8], Hosoya

index [109] and Hyper Wiener index [26], etc. For example, the derivative of the Hosoya polyno-

mial, when evaluated at 1, gives the Weiner index. Hyper Weiner index and Tratch-Zefirov index

can be obtained similarly [110].
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In 2015, Deutsch and Klavžar [111] introduced a polynomial known as M-polynomial. For a graph

G, it is defined as

M(G;x, y) =
∑
i≤j

mijx
iyj , (1.20)

where mij denotes the number of edges uv ∈ E(G) such that {d(u), d(v)} = {i, j}, where d(u), d(v)

denote degree of the vertex u and v in the graph G.

Note that the M-polynomial is a general polynomial because, with the help of this polynomial, one

can determine many degree-based indices. At least nine such indices have been computed. For

more details on M-polynomial, we refer to [112–118].

In the third direction, when one introduces a new topological descriptor/index in CGT, one needs

to justify its potential ability and effectiveness to be a viable descriptor. Thousands of topological

indices exist in chemical graph theory, such as distance-based indices, vertex-degree-based, and

eigenvalue-based indices, to name a few. Only a few topological indices have been recognized

as promising and worthy of practical applications in analyzing chemical structures. Hence, one

can justify its well-definedness by using the discriminating power or the sensitivity to different

compounds within a dataset. Further, by comparing it with existing indices and their behavior to

various properties, one can test the potential ability and effectiveness.

For instance, recently, Furtula, Das, and Gutman [107] had done a comparative analysis of the SDD

index with other popular V DB indices such as the Zagreb index, geometric-arithmetic index, atom-

bond connectivity index, and inverse sum index, using the data of octane isomer. They concluded

that the SDD index has the right to be considered as a viable and applicable molecular descriptor.

Similarly, Furtula and Gutman [77], pointed out the importance of F (G). It can be used to

obtain high accuracy of the prediction of logarithm of the octanol-water partition coefficient. The

mathematical properties of F (G) are given in the following articles [119, 120].

1.6 Outline of the Thesis

A molecular graph having a perfect matching plays a crucial role in the analysis of the resonance

energy and stability of the molecules. In this thesis, we investigate the bounds of topological indices,

especially for reformulated second Zagreb index and symmetric division deg index, of graphs with
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the cyclomatic number at most three. Also, we construct some new topological indices and compare

these indices with well-studied VDB indices. The thesis is mainly divided into seven chapters.

Firstly, we determine the bounds of the second reformulated Zagreb index for special graph classes:

trees, unicyclic graphs, bicyclic graphs, and tricyclic graphs. Chapter 2 focuses on finding the

bounds of the second reformulated Zagreb index. In particular, we give the bounds for special

graph classes, such as the trees, unicyclic graphs, bicyclic graphs, and tricyclic graphs. To study

the bounds for these graphs, we propose to use certain transformations that help us obtain the

required results. Further, we also find the extremal graphs which attain these bounds.

Next, we determine the sequence of lower bounds of SDD index for trees, unicyclic graphs, and

bicyclic graphs that have a perfect matching. We also compute an upper bound of the SDD index

for trees, unicyclic graphs, and bicyclic graphs with a maximum degree of four, which admits a

perfect matching. Chapter 3 details the study on the range of the SDD index for molecular

graphs, that is, the upper bound and lower bound for the SDD index. We also give tight bounds

by presenting the extremal graphs that attain the first four lower bounds of SDD index for trees

and unicyclic graphs with maximum degree 4 that admits perfect matching. Also, we identify those

graphs that attain the upper bounds of these trees and unicyclic graphs.

In Chapter 4, we present the first five lower bounds of the SDD index for all bicyclic graphs

that have a perfect matching and the graphs that attain the bounds. Further, we compute an

upper bound of the SDD index for bicyclic graphs with a maximum degree of four, which admits

a perfect matching.

From the application perspective, our next work focuses on the predictive power of the SDD index.

Here we analyze the SDD index against the physicochemical properties such as the melting point

(MP ), octanol-water partition coefficient (logP ), log Henry constant (logH), log water solubility

(logSw), and relative enthalpy of formation (dHf) of polychlorobiphenyl (PCB) congeners. Fur-

ther, we compare the SDD index with the other well-studied VDB indices, such as ZM1, ZM2,

R, AZI, H, and ISI. Chapter 5 summarizes our findings and presents the statistical analysis for

the PCB congener data.

From the computational perspective, we use the concept of M-polynomial and show how to compute

the degree-based indices such as Forgotten index, Reduced Second Zagreb index, Sigma index,

Hyper-Zagreb index, and Albertson index directly. In addition, we present as an application how

to quickly and effectively compute these degree-based topological indices using M-polynomial for
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carbon nanotube structures, HC5C7[p, q], SC5C7[p, q] and V C5C7[p.q]. Chapter 6 details the

computation technique using M-polynomial and its applications to nanotubes.

Finally, we achieve our objective of proposing novel descriptors in Chapter 7, where we construct

8 novel topological indices, denoted by AL1, AL2, AL3, AL4, AL5, AL6, AL7 and AL8. We give a

method to compute these indices from a neighborhood matrix of graphs. To establish our aim, we

study the proposed indices’ discriminating ability and perform correlation and regression analysis

using the widely available datasets on the physicochemical properties of the octane isomers and

PCB congeners. Further, we also make a comparative study with a few existing V DB indices

to establish the potentiality and use them to predict expected values of the properties for PCB

congeners.

The thesis also contains two appendices Appendix A and B, containing the experimental values

of the physicochemical properties of octane isomers and PCB congeners used in our computa-

tion and the predicted values for some specific properties based on this research work. Also, we

give the computed data of AL indices of the octane isomers and PCB congeners that enable our

predictability analysis.

***********


