Contents

Li	List of Figures xvi			
List of Tables			xix	
Sy	mbo	bls	xxi	
P	Preface xx			
1	Inti	roduction	1	
1	1 1	Graph-Theoretical Concepts	2	
	1.1	1.1.1 Molecular Graphs	3	
	12	Topological Indices	4	
	1.2	1.2.1 Distance-Based Topological Indices	5	
		1.2.2 Degree-Based Topological Indices	6	
	1.3	Applications of Topological Indices	9	
	1.4	Objective of the Thesis	10	
	1.5	Literature Review	11	
	1.6	Outline of the Thesis	12	
2	Sec	ond Reformulated Zagreb Index for Graphs With Cyclomatic Number A	t	
	Mo	st Three	15	
	2.1	Introduction	15	
	2.2	Graph Transformations	15	
		2.2.1 Graph Transformations to Increase the Index Value	16	
		2.2.2 Graph Transformations to Decrease the Index Value	29	
	2.3	Bounds of Second Reformulated Zagreb Index	47	
		2.3.1 Trees	47	
		2.3.2 Unicyclic Graphs	47	
		2.3.3 Bicyclic Graphs	49	
	~ .	2.3.4 Tricyclic Graphs	51	
	2.4	Summary	54	
3	Symmetric Division Deg Index for Trees and Unicyclic Graphs			
	3.1	Introduction	55	
	3.2	Trees with Perfect Matching	56	
		3.2.1 Lower Bounds for <i>SDD</i> Index	57	
		3.2.2 Upper Bounds for <i>SDD</i> Index	59	
	3.3	Unicyclic Graphs with Perfect Matching	63	

		3.3.1 Lower Bounds for <i>SDD</i> Index
	~ (3.3.2 Upper Bounds for SDD Index
	3.4	Summary
4	SDI	D Index for Bicyclic graphs 73
	4.1	Introduction
		4.1.1 Notations and Definitions
	4.2	Lower Bounds
		4.2.1 Subclass β_{2n}^1
		4.2.2 Subclass β_{2n}^{2n}
		4.2.3 Subclass β_{2n}^3
	4.3	Upper Bounds
	4.4	Summary 95
5	Apr	plication of SDD Index 97
0	5 1	Introduction 07
	5.2	Physicochemical Properties 07
	5.2	VDB Indices vs Properties of PCB Congeners
	0.0	5.2.1 Statistical Model
		5.3.1 Statistical Model
		5.2.2 Dredictability Applysis
	5.4	Summary
6	M-	Polynomial And VDB Indices 109
	6.1	
	6.2 c. a	Definitions and Required Results
	6.3	Main Results
	6.4	Application to Nanotubes
		6.4.1 HC5C7 Nanotubes
		6.4.2 SC5C7 Nanotubes
		$6.4.3 \text{VC5C7 Nanotubes} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	6.5	Summary
7	AL	indices and their Applications 123
	7.1	Introduction
	7.2	Novel AL Indices
	7.3	Degeneracy of AL Indices 126
	7.4	Correlation of AL Indices 127
		7.4.1 Linear Regression Model for Octane Isomer
		7.4.2 Linear Regression Model for PCB Congeners 137
	7.5	Summary 146
А	Oct	ane Isomer 157
	A.1	Physicochemical Properties of Octane Isomer
	A.2	AL Indices for Octane Isomer
P	р,	
в	Poly	VUNIOROBIPNENYI Congeners 159
	B.1	Physicochemical Properties of PCB Congeners
	B.2	AL Indices for PCB Congeners

Bibliography	171
List of publications	183

List of Figures

1.1	A hydrocarbon and its hydrogen depleted molecular graph representation	4
2.1	Representation of transformation A.	16
2.2	Representation of transformation B	17
2.3	Representation of transformation C	21
2.4	Representation of transformation D	30
2.5	Representation of transformation E.	32
2.6	Representation of transformation F	46
2.7	Bicyclic graphs which has no pendant vertices	46
2.8	Some bicyclic graphs which are using in upper bounds	50
2.9	Representation of tricyclic graphs in \mathbb{X}_0^n which has no pendant vertices	52
2.10	Tricyclic graphs in \mathbb{X}_1^n	52
2.11	Tricyclic graphs which attains the upper bounds	53
3.1	Representative trees from the collection $G_i(m)$, $i = 1, 2, 3, 4, \ldots$	57
3.2	Representative trees from the collection $G_5(m)$ and $G_6(m)$.	59
3.3	Collection of trees with <i>m</i> -pendant vertices on $\mathbb{T}(m)$, $m = 4, 5, 6, 7, \ldots$	60
3.4	Collection of trees with at most one vertex of degree 4 in $\mathbb{T}(m)$.	60
3.5	Representative graphs for $\mathbb{C}_a(m), \mathbb{C}_b(m)$.	66
3.6	Collection of unicyclic graph with m -pendant vertices on $\mathbb{U}(m)$ for $m = 4, 5, 6, 7$.	67
3.7	Collection of unicyclic graph with m -pendant vertices on $\mathbb{U}(m)$ for $m = 7, \ldots$	68
4.1	Bicyclic graphs.	74
4.2	Representation of graphs corresponding to edge-degree partition $E_i^1(G)$ of bicyclic	
	graphs $F_i^1(2n), i = 1, 2, \dots, 8$ respectively.	75
4.3	Representation of graphs corresponding to edge-degree partition $E_i^3(G)$ of bicyclic	0.0
4 4	graphs in $H_i^{\circ}(2n)$, $i = 1, 2,, 12$.	82
4.4	Representation of bicyclic graphs which attains maximum SDD index Baprosentation of graphs corresponding to adge degree partition $E(C)$ of bicyclic	87
1.0	graphs $D_1^1(2n)$, $D_2^1(2n)$, $D_3^3(2n)$, $D_3^3(2n)$ respectively.	87
4.6	Bicyclic graphs discussed in Subcase 1.1 and having either 12 or 14 vertices.	88
4.7	Illustration of induction in Case (A).	90
4.8	Illustration for the Case (B)(a).	91
4.9	Illustration for the Case $(B)(b)$.	92
4.10	Illustration for the Case (B)(c).	93
5.1	Correlation of vertex degree based indices with log water solubility (log Sau)	101
5.1 5.2	Correlation of vertex degree based indices with octanol-water partition coefficient	101
0.4	(log P),, $(log P)$,, $(log P)$,	102
5.3	Correlation of vertex degree based indices with the melting point (MP)	103
		-00

5.4	Correlation of VDB indices with relative enthalpy of formation (dHf)	105
5.5	Correlation of vertex degree based indices with log Henry constant $(log H)$	106
5.6	Experimental versus Expected Value of $logSw$ and $logP$	107
6.1	3-D geometry of nanotubes $HC_5C_7(A)$, $SC_5C_7(B)$ and $VC_5C_7(C)$.	115
6.2	Structure of $HC_5C_7[3,3]$ nanotube	116
6.3	Structure of $SC_5C_7[p,q]$ nanotube	118
6.4	Structure of $VC_5C_7[3,4]$ nanotube	120
7.1	Molecular graph of "2,5,4'-Trichloro-1-1'-biphenyl"	124
7.2	AL indices Vs Acentric factor of octane isomer	132
7.3	AL indices Vs entropy of octane isomer	133
7.4	AL indices Vs Enthalpy of vaporization of octane isomer	135
7.5	AL indices Vs Standard enthalpy of vaporization of octane isomer	136
7.16	Experimental versus Expected Value of TSA , $logSw$, $logP$ and $logYw$ of PCBs.	145
7.6	AL indices Vs Total surface area of octane isomer	147
7.7	AL indices Vs Density of octane isomer.	148
7.8	AL indices Vs total surface area (TSA) of PCBs	149
7.9	AL indices Vs log water solubility $(logSw)$ of PCBs	150
7.10	AL indices Vs relative retation time (RRT) of PCBs	151
7.11	AL indices Vs octanol-water partition coefficient $(log P)$ of PCBs	152
7.12	AL indices Vs log water activity coefficient $(logYw)$ PCB	153
7.13	AL indices Vs Melting point of PCBs.	154
7.14	AL indices Vs relative enthalpy of formation (dHf) of PCBs	155
7.15	AL indices Vs log Henry constant $(logH)$ of PCBs	156

List of Tables

4.1	Edge-degree partition for graphs in β_{16}^1 .	88
4.2	Edge-degree partition for graphs in β_{18}^1 .	89
4.3	Edge-degree partition for graphs in β_{20}^1 .	89
4.4	Edge-degree partition for graphs in $\beta_{12}^{\overline{3}}$.	93
4.5	Edge-degree partition for graphs in β_{14}^3 .	94
5.1	The statistical parameters of linear regression fit with correlation coefficient for VDB index and log water solubility $(logSw)$ are given.	100
5.2	The statistical parameters of linear regression fit with correlation coefficient for VDB index and octanol-water partition coefficient $(loaP)$ are given.	100
5.3	The statistical parameters of linear regression fit with correlation coefficient for VDB index and Melting point (MP) are given.	100
5.4	The statistical parameters of linear regression fit with correlation coefficient for VDB index and relative enthalpy of formation (dHf) are given.	104
5.5	The statistical parameters of linear regression fit with correlation coefficient for VDB index and log Henry constant $(logH)$ are given.	104
6.1	Degree based topological indices derived from <i>M-polynomial</i> :	111
6.2	<i>M</i> -Polynomial for more degree based topological indices	115
7.1	Measure of sensitivity of indices for octane isomers and <i>PCB</i> congeners	126
7.2	The statistical table of linear regression model comparing VDB indices with acentric factor of octane isomers.	130
7.3	The statistical table of linear regression model comparing VDB indices with entropy of octane isomers.	131
7.4	The statistical table of linear regression model comparing VDB indices with en- thalpy of vaporization of octane isomer.	134
7.5	The statistical table of linear regression model comparing VDB indices with stan- dard enthalpy of vaporization for octane isomer.	134
7.6	The statistical table of linear regression model comparing <i>VDB</i> indices with the total surface area of octane isomer.	137
7.7	The statistical table of linear regression model comparing VDB indices with density of octane isomer.	137
7.8	The statistical table of linear regression model comparing VDB indices with the total surface area of PCBs	140
7.9	The statistical table of linear regression model comparing VDB indices with the log water solubility of PCPs	1/1
7.10	The statistical table of linear regression model comparing VDB indices with the	141
7.11	relative retention time of PCBs	141
	octanol-water-partition coefficient of PCBs.	142

The statistical table of linear regression model comparing <i>VDB</i> indices with the log-water-activity coefficient of PCBs.	142
The statistical table of linear regression model comparing VDB indices with the melting point of PCBs.	143
The statistical table of linear regression model comparing VDB indices with the relative enthalpy of formation of PCBs	144
The statistical table of linear regression model comparing VDB indices with the	144
log-Henry constant of PCBs.	144
Experimental value of physicochemical properties of octane isomers	157
AL Index value of Octane isomers.	158
The bold values indicate the expected values of the PCB congeners for log-water solubility and octanol-water partition coefficient while the others are experimental	
data.	159
4 Linder or her of Delevellenship handle (DCD)	1.65
	The statistical table of linear regression model comparing VDB indices with the log-water-activity coefficient of PCBs

xx