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Preface 

Protein misfolding and aggregation is not only a great intellectual challenge but also of 

excellent therapeutics importance. Protein misfolding is associated with various pathological 

conditions in humans, including neurodegenerative diseases like Alzheimer’s (AD), Parkinson’s 

(PD), and prion-related protein misfolding diseases. Drug discovery processes for protein 

misfolding diseases are still a tremendous scientific challenge as the protein folding process is still 

an enigma, and the underlying processes are still poorly understood.  Protein amyloids usually form 

stable β-sheet-rich structures, as reported in most cases. Amyloid fibrils represent a very stable class 

of structures in terms of thermodynamics. Among various schools of the hypothesis, the toxicity of 

oligomeric intermediates is well established and accepted compared to matured fibrils. Currently, 

therapeutic development for protein misfolding diseases focuses on these oligomeric intermediates.  

The thesis reports some critical findings related to protein amyloid formation/dissociation in 

the presence of a few selected metabolites using integrated computational and biophysical methods.  

The work provides fundamental insights into the effect of these selected metabolites on protein 

amyloid formation and critical insight into pathological conditions arising from disturbed 

homeostasis with neurodegenerative symptoms. 

We have utilized extensive computational methods like molecular docking and simulation to 

analyse the interactions of various nucleosides, nitrogenous bases and nucleotides with aggregation-

prone zones of model amyloid protein, i.e. Hen egg While Lysozyme (HEWL). We further 

analyzed the binding interactions and molecular docking statistics to identify the best binding 

molecules. The hypothesis for this work mainly revolved around the fact that interaction of various 

intracellular metabolites with aggregation-prone zones within the protein would prevent 

intracellular interactions within these regions, which could drive the protein away from 

aggregation-mediated pathways under stress conditions. We have identified a few small 

intracellular metabolites like nucleosides and nitrogenous bases with the best docking parameters 

within the aggregation-prone regions of HEWL. The selected metabolites show a good binding 

affinity and potential anti-amyloid properties. The encouraging results with few compounds 

prompted us to test the hypothesis experimentally. 

Subsequently, we examined the effect of the best computationally identified compounds for 

anti-amyloid properties using HEWL amyloid as a model system. HEWL amyloid is well 

characterized at pH 12.2 and widely reported in the literature. We have also characterized HEWL 

amyloid at near physiological pH, i.e. 7.4. Our results showed that amyloid fibrillation is more 

pronounced in near physiological pH than at pH 12.2. Further, we also report a lower formation of 

oligomers and, subsequently, matured fibrils of HEWL in the presence of both nitrogenous bases 

(Cytosine, Guanine, Thymine and Uracil), nucleosides (Adenosine and Guanosine) in a time-

dependent manner. We also validated the results using supporting data like aggregation index, 

dynamic light scattering (DLS) studies and atomic force microscopy (AFM) imaging. We also 

performed and interpreted the RMSD, RMSF, SASA, and secondary structure analyses through 

molecular dynamics and simulation of the selected holoprotein complexes after binding these 

compounds with amyloid-prone regions. We concluded that the selected nucleosides and 

nitrogenous bases potentially suppress (slow down) primary nucleation processes under these 

experimental conditions.  
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Furthermore, we have also explored the impact of these metabolites on the preformed early 

oligomeric state of HEWL. We attempted to unravel the HEWL amyloid kinetics in near 

physiological pH and determine the critical microscopic stages of HEWL aggregation. The HEWL 

aggregation followed a Saturation Elongation and Fragmentation model. We report that upon 

adding ligands on preformed HEWL amyloids, there is a sharp increase in the Thioflavin T 

intensity of the samples indicating the rapid formation of matured fibrils upon adding the chosen 

ligands. The observation was repeated at three different time points. Our AFM analyses also 

supplemented this. On the contrary, our turbidity and UV scattering analyses showed a decreasing 

trend, which could be explained by the overall reduction of scattering intensity due to large 

aggregates. We further elucidated using the Thioflavin T kinetics assay that in the presence of the 

metabolites, the HEWL aggregation half-time is shortened compared to HEWL aggregation without 

metabolites. Further, there is an increase in combined nucleation and elongation rate. Considering 

these two factors, we concluded that the selected metabolites enhance and promote fibrillation 

processes at this stage. Although in seeded reactions where we had anticipated quickening up of 

overall reaction and shortening of lag phase, the addition of ligands along with preformed seeds to 

HEWL monomers showed varied results. Adenosine and Cytosine did not decrease lag time 

compared to control samples. On the contrary, Guanine, Guanosine and Thymine increased overall 

lag time. This important observation indicates that the metabolites modify the lag phase period in 

aggregation kinetics, depending much upon the stage of protein aggregation they encounter in 

solution.  

Since it is now established that protein aggregation remains the critical process behind the 

occurrence of notorious forms of protein aggregation diseases, some additional in vivo factors also 

direct the overall pathogenicity of the diseased state. In the last chapter of the thesis, we have used 

in silico methods to decipher potential novel inhibitors of Acetylcholinesterase (AChE) and 

Butyrylcholinesterase (BuChE) by drug repurposing strategy, which are vital enzymes identified as 

factors aggravating the pathophysiology of Alzheimer’s Disease (AD). We performed molecular 

docking in critical domains of these two enzymes with some of the recently approved drugs by 

FDA for various other neurological and psychiatric diseases. Subsequently, we employed molecular 

dynamics (MD) simulations for further insights. We report Brexpiprazole and Deutetrabenazine as 

potential BuChE and AChE inhibitors by their high binding affinity and capacity to interact with 

critical residues of the oxyanion hole and active catalytic site (CAS), indicating a possible dual 

mechanism of enzyme inhibition. The results are encouraging for other studies in vivo as potential 

enzyme inhibitors for AD treatment.  

The results from this thesis open up some critical areas for a better understanding of protein 

aggregation, especially in correlation with loss in the homeostasis of intracellular metabolites. The 

work depicted here also gives us insights into potential mechanisms of small ligands, how they 

could act as protein aggregation modifiers, and areas where more useful therapeutics could be 

developed.       

  

 


