Table of Contents

Contents	Page No.
Chapter 1: Introduction	1-10
Chapter 2: Literature of Review	11-41
2.1 Heavy metal pollution: Source and toxicity	12
2.2 Removal of heavy metal ions	16
2.2.1 Biosorption	17
2.2.2 Bioaccumulation: Removal of heavy metal using living cells	28
2.2.2.1 Bacterial species: Role in bioremediation of heavy metal ions	
2.2.2.3 Microbial reduction of Cr (VI)	33
2.2.2.3 Mycoremediation: Fungal mediated removal of heavy metal ions	35
2.2.2.4 Heavy metal detoxification mechanism in living cells: Metal binding	
protein and antioxidant system	
2.2.3 Modelling approaches for heavy metal biosorption	
2.2.3.1 Adsorption kinetic study	
2.2.3.2 Adsorption isotherm study	
2.2.3.3 Thermodynamics study	40
2.2.3.4 Artificial Neural Network (ANN)	40
2.2.3.5 Adsorption dynamics and diffusivity coefficients	41
2.3 Thesis Objectives	42

Chapter 3: Materials and methods43-69
3.1 Collection of biological waste44
3.2 Preparation of stock solutions44
3.2.1 Chemicals and reagents
3.2.2 Preparation of biosorbent44
3.2.2.1 RH and FeRH
3.2.2.2 Synthesis of CMNPs45
3.2.2.3 Preparation of ChCLP45
3.3 Characterization of synthesized biosorbents
3.4 Dimensionless numbers and Artificial neural network (ANN)47
3.4.1 Derivation of dimensionless number47
3.4.2 ANN
3.5 Adsorption study
3.5.1 Adsorption of Cr (VI) using RH and FeRH49
3.5.2 Adsorption of Cr (VI), Cd (II) and Pb (II) using CMNPs49
3.5.3 Adsorption of Cr (VI), Cd (II), and Pb (II) using ChCLP50
3.5.4 Determination of percentage removal and adsorption capacity
3.6.0 Isotherms, Kinetics, Thermodynamics and Mechanistic study
3.6.1 Isotherm models
3.6.2 Thermodynamic

3.6.3 Kinet	tics
3.6.4 Mech	nanistic study
3.7.0 Des	sorption of heavy metal ions: regeneration of biosorbent
3.8.0 Con	ntinuous column study
3.8.1 Paran	neters and design of packed bed column58
3.9.0 Isol	lation of new bacterial strain from the site contaminated with coal
mir	ne effluents: characterization and heavy metal removal
3.9.1 Col	llection and physicochemical characterization of wastewater59
3.9.2 Isol	lation of heavy metal tolerant bacteria60
3.9.3 Ger	nomic DNA isolation60
3.9.4 168	S rRNA gene sequencing and molecular identification61
3.9.5 Eff	ect of various parameters on the microbial growth
3.9.6 Ana	alysis of antioxidants activity in heavy metal exposed bacterial isolate62
3.9.7 Ana	alysis of heavy metal removal62
3.9.8 SEI	M and EDX analysis of bacterial isolate62
3.10.0 Bio	premediation of toxic metal ions from coal washery effluent (CWE) by Pleurotus
flor	<i>rida</i> 63
3.10.1 Col	llection and characterization of CWE63
3.10.2 Col	llection and preparation of the substrate for mushroom cultivation
3.10.3 Exp	perimental design for bioremediation of CWE63
3.10.3.1 Sp	bawn preparation64
3.10.3.2 Bi	ioremediation of CWE64
3.10.4 Ana	alysis of metallothionein concentration in P. florida fruit body grown
in C	WE containing substrate65

3.10.5 Analysis of antioxidant enzymatic system in P. florida grown in CWE containing	ıg
substrate	56
3.10.6 Growth modelling of <i>P. florida</i> in CWE	56
3.10.7 FTIR and SEM analysis of <i>P. florida</i> fruit body	57
3.10.8 Sample preparation for heavy metal analysis	58
3.10.9 Statistical data analysis	58
Results and Discussion	70
Chapter 4: Development of a cost-effective, recyclable and viable metal ion dope	ed
adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions71-10	2
4.1 Introduction	72
4.2 Characterization of FeRH and RH	73
4.2.1 SEM analysis	13
4.2.2 EDX analysis	74
4.2.3 FTIR	75
4.2.4 Proximate and ultimate analysis	76
4.2.5 pHpzc	77
4.2.6 BET surface area	78
4.3.0 Dimensionless numbers	79
4.4.0 ANN	30
4.5.0 Conformity of oxidation state	32
4.6.0 Proposed mechanism: surface protonation, adsorption and reduction	34
4.7.0 Adsorption study	4
4.7.1 Effect of process parameters	34
4.7.1.1 pH	34
4.7.1.2 Initial metal ion concentration	35

4.7.1.3 RH and FeRH dosage	86
4.7.1.4 Contact time	86
4.7.1.5 Temperature	87
4.7.1.6 Agitation speed	87
4.7.2.0 Isotherm study	87
4.7.3.0 Thermodynamics	92
4.7.4.0 Adsorption kinetics	94
4.7.5 Mechanistic study	95
4.8.0 Assessment of adsorption capacities	96
4.9.0 Recovery of FeRH	
4.10.0 Techno-economic analysis	101
4.11.0 Conclusion	101
Chapter 5: Synthesis of chitosan coated manganese dioxide nanoparticle	s (CMNPs) and
	()
its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa	ater103-158
its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa	ater103-158
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 	ater103-158 104 105
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 	ater103-158 104 105 105
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 	ater103-158 104 105 105 107
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastews 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 	ater103-158 104 105 105 105 107 108
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 5.2.4 EDX Analysis and Elemental mapping. 	ater103-158 104 105 105 105 107 108 109
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 5.2.4 EDX Analysis and Elemental mapping. 5.2.5 CMNPs size measurement using dynamic light scattering (DLS). 	ater103-158 104 105 105 107 107 108 109 111
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 5.2.4 EDX Analysis and Elemental mapping. 5.2.5 CMNPs size measurement using dynamic light scattering (DLS). 5.2.6 Zero point charge (pH_{zpc}). 	ater103-158 104 105 105 105 107 107 108 109 111 112
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 5.2.4 EDX Analysis and Elemental mapping. 5.2.5 CMNPs size measurement using dynamic light scattering (DLS). 5.2.6 Zero point charge (pH_{zpc}). 5.2.7 Specific surface area. 	ater103-158 104 105 105 105 107 107 108 109 111 112 114
 its application in the removal of Cr (VI), Cd (II) and Pb (II) from wastewa 5.1 Introduction. 5.2.0 Characterization of CMNPs. 5.2.1 FTIR analysis. 5.2.2 HR-TEM. 5.2.3 HR-SEM. 5.2.4 EDX Analysis and Elemental mapping. 5.2.5 CMNPs size measurement using dynamic light scattering (DLS). 5.2.6 Zero point charge (pH_{zpc}). 5.2.7 Specific surface area. 5.2.8 XPS analysis and determination of oxidation state of chromium. 	ater103-158 104 105 105 105 107 107 108 109 111 112 114 115

5.3.1 Optimization of process parameters	117
5.3.2 Isotherm	122
5.3.3 Kinetics	132
5.3.4 Thermodynamics	137
5.3.5 Dimensionless number and diffusivity coefficients	142
5.4.0 ANN Modeling	143
5.5.0 Comparison of heavy metal removal capacity	152
5.6.0 Complete removal of heavy metal ions in series batch reactor system	154
5.7.0 Desorption of heavy metal ions and regeneration of CMNPs	154
5.8.0 Techno-economic analysis	157
5.9.0 Conclusion	157
Chapter 6: Removal of Cd (II), Cr (VI) and Pb (II) by using chitosan coated	Citrus limetta
peels biomass in synthetic wastewater	159-207
 peels biomass in synthetic wastewater	159-207 160
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 	159-207 160 162
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 	159-207 160 162 162
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping 	
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping 6.2.3 Fourier transformation infra-red analysis 	
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping 6.2.3 Fourier transformation infra-red analysis. 6.2.4 Determination of pH range through point zero charge. 	
 peels biomass in synthetic wastewater	
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping. 6.2.3 Fourier transformation infra-red analysis. 6.2.4 Determination of pH range through point zero charge. 6.2.5 Atomic Force Microscopy. 6.2.6 XPS. 	
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping. 6.2.3 Fourier transformation infra-red analysis. 6.2.4 Determination of pH range through point zero charge. 6.2.5 Atomic Force Microscopy. 6.2.6 XPS. 6.3.0 Adsorption study. 	
 peels biomass in synthetic wastewater. 6.1 Introduction. 6.2.0 Characterization of the ChCLP. 6.2.1 Surface morphological of chitosan coated <i>Citrus limetta</i> peels biomass 6.2.2 Energy dispersive X- ray analysis and elemental mapping. 6.2.3 Fourier transformation infra-red analysis. 6.2.4 Determination of pH range through point zero charge. 6.2.5 Atomic Force Microscopy. 6.2.6 XPS. 6.3.0 Adsorption study. 6.3.1 Experimental parameter optimization. 	

6.3.3 Thermodynamics	185
6.3.4 Adsorption kinetic	188
6.3.5 Adsorption Dynamics and diffusivity coefficients	192
6.3.6 ANN Modeling	193
6.4.0 Complete removal of heavy metal ions in series batch reactor system	202
6.5.0 Regeneration of chitosan coated ChCLP	203
6.6.0 Techno-economic analysis	205
6.7.0 Conclusion	206
Chapter 7: Microbial Removal of Cr (VI), Pb (II) and Cd (II) by a New Bacteria	al Strain
Isolated from the Site Contaminated with Coal Mine Effluents2	208-243
7.1 Introduction	209
7.2.0 Physico-chemical characterization of wastewater (Source of water collection	210
7.3.0 Characterization of bacterial isolate	212
7.3.1 16S rRNA gene sequencing	212
7.3.2 SEM and EDX analysis	214
7.3.3 XPS analysis	
7.3.4 FTIR	220
7.4.0 Effect of pH and temperature	222
7.5.0 Bacterial growth in presence of heavy metal ions and in control	223
7.6.0 Heavy metal bioremediation mechanism	226
7.6.1 Expression of antioxidants	226
7.6.2 Heavy metal uptake dynamics	228
7.7.0 Heavy metal removal efficiency of Microbacterium paraoxydans strain	VSVM
IIT(BHU)	229
7.8.0 ANN Modeling.	233

7.9.0 Comparison of heavy metal removal efficiency	9
7.10.0 Conclusion	2
Chapter 8: Bioremediation of toxic metal ions from coal washery effluent by Pleurotu	S
florida244-275	;
8.1 Introduction	5
8.2.0 Physiochemical characterization of CWE	7
8.3.0 Bioaccumulation of heavy metals in the <i>P. florida</i> fruit bodies	9
8.4.0 Removal of heavy metals from substrate (paddy straw) using P. florida254	4
8.5.0 Growth modelling of <i>P. florida</i> in CWE250	6
8.5.1 Growth kinetics of <i>P. florida</i> in control and at various concentrations of CWE25	7
8.6.0 Bioaccumulation mechanism of heavy metals in the <i>P. florida</i> 25	9
8.6.1 Metallothionein concentration in the <i>P. florida</i> 26	0
8.6.2 Antioxidant enzymatic system of <i>P. florida</i> 26	1
8.6.3 FTIR analysis of <i>P. florida</i> 26	5
8.7.0 SEM and EDX Analysis	8
8.8.0 Effect of initial heavy metal concentration including other wastewater components on the	e
bioremediation efficiency and growth of <i>P. florida</i> 27	0
8.9.0 Comparison of removal efficiency in terms of heavy metal ions by <i>Pleurotus florida</i> and	d
other fungal species	Į
8.10 Conclusion	4
Chapter 9276-29	1
9.1 Disposal of used adsorbent	7

9.2 Comparative heavy metal removal	
9.3 Column study	278
9.4 Recommendations for future studies	
9.5 Life cycle assessment theoretical study for the removal of Cadmium, Lead and	l Hexavalent
Chromium from wastewater	
9.5.1 Life Cycle Assessment (LCA) framework of the study	
9.5.2 Aim and possibility description	
9.5.3 Inventory study	
9.5.4 Improvement evaluation	
Chapter 10. References	292-376
List of Publication	377-380
Conference/workshop	381
Research work under media coverage	382-384

List of Figures

Figures	Captions	Page No.
Figure 2.1.	Mechanism of heavy metal biosorption	17
Figure 2.2	Schematic representation of biosorbent preparation	19
Figure 3.1	Continuous fix bed column	59
Figure 4.1	SEM image of (a) unloaded RH (b) metal loaded RH (c)	73
	unloaded FeRH (d) metal loaded FeRH	
Figure 4.2	EDX spectra of (a) unloaded RH (b) metal loaded RH (c)	74
	unloaded FeRH (d) metal loaded FeRH	
Figure 4.3	FTIR spectra of (a) RH and FeRH (b) metal unloaded and loaded	75
	RH (c) metal unloaded and loaded FeRH	
Figure 4.4	pH _{pzc} value of FeRH	78
Figure 4.5	Performance plot of (a) RH and (b) FeRH	81
Figure 4.6	Comparison of predictive and experimental values for (c) RH	81
	and (d) FeRH using ANN	
Figure 4.7	XPS analysis of Cr (VI) loaded FeRH	82
Figure 4.8	Oxidation state of adsorbed Cr on to FeRH	83
Figure 4.9	Effect of various adsorption parameters such as adsorbent dosage	85
	(a), initial Cr (VI) concentration (b), pH (c), agitation rate (d),	
	temperature (e) and contact time (f) for Cr (VI) adsorption onto	
	RH and FeRH.	

Figure 4.10	Langmuir (a), Freundlich (b), Temkin (c), D-R (d), Halsey (e),	88
	H-R (f), Jovanovic (g) and R-P isotherm of Cr (VI) adsorption	
	onto KH.	
Figure 4.11	Langmuir (a), Freundlich (b), Temkin (c), D-R (d), Halsey (e),	89
	H-R (f), Jovanovic (g) and R-P isotherm of Cr (VI) adsorption	
	onto FeRH.	
Figure 4.12	Thermodynamic study of Cr (VI) adsorption onto RH and FeRH	93
Figure 4.13	PFO (a), PSO (b) and Elovich kinetic (c) of Cr (VI) adsorption	94
	of RH and FeRH	
Figure 4.14	Diagrammatic representation of Cr (VI) removal	99
Figure 4.15	Sequences of Cr (VI) adsorption and desorption	100
Figure 5.1	FTIR spectra of chitosan, MNPs, CMNPs (a) and heavy metal	106
	loaded CMNPs (b)	
Figure 5.2	Size and shape of CMNPs (a-b), lattice fringes indicated by	107
	arrows (c) and SAED pattern of CMNPs (d)	
Figure 5.3	HR-SEM micrographs of CMNPs (a, b)	108
Figure 5.4	EDX analysis of CMNPs before (a) and after Cr (VI) (b), Cd (II)	109-110
	(c), Pb (II) (d) and ternary (e) metal ion biosorption	
Figure 5.5	Elemental manning of CMNPs after heavy metal biosorption	111
Figure 5.5	Elemental mapping of clairer s after neavy metal biosolption.	111
	Elemental mapping representing distribution of all elements (a),	
	carbon (b), nitrogen (c), oxygen (d), Pb (II) (e), Cd (II) (f), Cr (g)	
	and Mn (h).	
Figure 5.6	DLS analysis of CMNPs	112
Figure 5.7	pH _{me} value of CMNPs	113
Figure 3.7		113

Figure 5.8	XPS of Cr (VI) (a), Cd (II) (b), Pb (II) (c) and ternary metal ion	115
	(d) biosorption on CMNPs.	
Figure 5.9	Incidence of Cr (III) and Cr (VI) after reduction	116
Figure 5.10	Effect of pH (a), initial Cr (VI) concentration (b), CMNPs dosage	117
	(c), temperature (d), contact time (e), and agitation rate (f) on Cr	
	(VI) removal using CMNPs	
Figure 5.11	Effect of pH (a), initial Pb (II) concentration (b), CMNPs dosage	118
	(c), temperature (d), contact time (e) and agitation rate (f) for Pb	
	(II) adsorption onto CMNPs	
Figure 5.12	Effect of pH (a), initial Cd (II) concentration (b), CMNPs dosage	118
	(c), temperature (d), contact time (e), and agitation rate (f) on Cd	
	(II) removal using CMNPs.	
Figure 5.13	Langmuir (a), Freundlich (b), Temkin (c), and Halsey (d)	123
	isotherms of Cr (VI) biosorption CMNPs.	
Figure 5.14	Langmuir (a), Freundlich (b), Temkin (c), and Halsey (d)	124
	isotherms of Pb (II) biosorption CMNPs.	
Figuro 5 15	Langmuir (a) Fraundlich (b) Tamkin (c) and Halsay (d)	124
Figure 5.15	Langmun (a), recurdenen (b), remkin (c), and makey (d)	127
	isotherms of Cd (II) biosorption on the surface of CMNPs.	
Figure 5.16	Langmuir (a), Freundlich (b), Temkin (c), and Halsey (d)	125
	isotherms study of Cr (VI), Cd (II) and Pb (II) biosorption in	
	ternary metal ion system onto CMNPs	
Figure 5.17	PFO (a), PSO (b) and Elovich (c) kinetic models of Cr (VI)	132
	biosorption onto CMNPs.	

Figure 5.18	PFO (a), PSO (b) and Elovich (c) kinetic models of Pb (II)	133
	biosorption onto CMNPs.	
Figure 5.19	PFO (a), PSO (b) and Elovich (c) kinetics of Cd (II) biosorption	133
	onto CMNPs.	
Figure 5.20	PFO (a), PSO (b), and Elovich (c) kinetics of Pb (II), Cd (II) and	134
	Cr (VI) biosorption in ternary metal ion system.	
Figure 5.21	Thermodynamics of Cr (VI) (a), Pb (II) (b), Cd (II) (c) and	137
	ternary (d) metal ion system on to CMNPs.	
Figure 5.22	Performance between number of epochs and the MSE for Cr (VI)	144
	ions in single metal system.	
Figure 5.23	Performance between number of epochs and the MSE for Cd (II)	144
	ions in single metal ion system.	
Figure 5.24	Performance between number of epochs and the MSE for lead	145
	ions in single metal ion system	
Figure 5.25	Performance between number of epochs and the MSE for ternary	145
	metal ion system	
Figure 5.26	Regression plot for Cr (VI) ions in single metal ion system	146
Figure 5.27	Regression plot for Cd (II) in single metal ion system	147
Figure 5.28	Regression plot for Pb (II) in single metal ion system	147
Figure 5.29	Regression plot for ternary metal ion system	148
Figure 5.30	Correlation plot for the experimental and ANN predicted values	149
	for Cr (VI) ions in single metal ion system	
Figure 5.31	Correlation plot for the experimental and ANN predicted values	149
	for Cd (II) ions in single metal ion system	

Figure 5.32	Correlation plot for the experimental and ANN predicted values	150
	for Pb (II) ions in single metal ion system	
Figure 5.33	Correlation plot for the experimental and ANN predicted values	150
	for ternary metal ion system	
Figure 5.34	Diagrammatic demonstration of heavy metal removal in series	154
	batch reactor system	
Figure 5.35	Cr (VI) adsorption - desorption on CMNPs	155
Figure 5.36	Pb (II) adsorption - desorption on CMNPs	155
Figure 5.37	Cd (II) adsorption - desorption on CMNPs	156
Figure 6.1	SEM image of CLP (a), ChCLP (b), ChCLP-Cr(VI) (c), ChCLP-	162
	Pb (d), ChCLP-Cd(II) (e) and ChCLP-Cr(VI)-Cd(II)-Pb(II) (f).	
Figure 6.2	The EDX analysis of selected spectrum area of ChCLP-Cr (VI)	164
	(a), ChCLP-Pb(II) (b), ChCLP-Cd(II) (c) and ChCLP-Cr(VI)-	
	Pb(II)-Cd(II) (d).	
Figure 6.3	Elemental mapping of C (a), N (b), O (c), Pb (d), Cd (e), Cr (f)	165
	and percentage wise distribution of all ternary metal ions	
	including C, N and O (g).	
Figure 6 4	FTIR spectra of CLP chitosan ChCLP and ChCLP-Cr (VI)	166
		100
	ChCLP-Cd (II), ChCLP-Pb (II) in single and ternary metal ion	
	system.	
Figure 6.5	pH value at point zero charge (pH _{pzc}) of ChCLP	167
Figure 6.6	AFM image of CLP in 2-D (a) and 3-D (b, c). AFM images of	169
	ChCLP in 2-D (d) and 3-D (e, f).	
Figure 6.7	XPS spectra of ChCLP-Cr (VI) (a), ChCLP-Pb(II) (b), ChCLP-	170
	Cd(II) (c) of single and ternary (d) metal ion system.	

Figure 6.8	Biotransformation of Cr (VI) into Cr (III) on ChCLP	171
Figure 6.9	Effect of pH (a), ChCLP dosage (b), initial Cr (VI) concentration	172
	(c) reaction temperature (d), contact time (e) and agitation rate	
	(f) on the Cr (VI) removal	
Figure 6.10	Effect of pH (a), ChCLP dosage (b), initial Cd (II) concentration	173
	(c), temperature (d), contact time (e), and agitation rate (f) on	
	removal of Cd (II).	
Figure 6.11	Effect of pH (a), ChCLP dosage (b), initial Pb (II) concentration	173
	(c), temperature (d), contact time (e), and agitation rate (f) on	
	removal of Cd (II).	
Figure 6.12	Langmuir (a) and Freundlich (b), Temkin (c) and Halsey (d)	178
	isotherm for Cr (VI) adsorption on ChCLP	
Figure 6.13	Langmuir (a) and Freundlich (b), Temkin (c) and Halsey (d)	178
	isotherm for Pb (II) adsorption on ChCLP	
Figure 6.14	Langmuir (a) and Freundlich (b), Temkin (c) and Halsey (d)	179
	isotherm for Cd (II) adsorption on ChCLP	
Figure 6.15	Langmuir (a) and Freundlich (b), Temkin (c) and Halsey (d)	179
	isotherm for adsorption of Pb (II), Cd (II) and Cr (VI) in ternary	
	metal ion system on ChCLP	
Figure 6.16	Thermodynamics of Pb (II) (a), Cd (II) (b), Cr (VI) (c) adsorption	186
	in single and ternary (d) metal ions system on ChCLP	
Figure 6.17	PFO (a) and PSO (b) and Elovich (c) kinetic model for Cr (VI)	189
	adsorption on ChCLP in single metal ion system	
Figure 6.18	PFO (a) and PSO (b) and Elovich (c) kinetic model for Pb (II)	189
	adsorption on ChCLP in single metal ion system	

Figure 6.19	PFO (a) and PSO (b) and Elovich (c) kinetic model for Cd (II)	190
	adsorption on ChCLP in single metal ion system	
Figure 6.20	PFO (a) and PSO (b) and Elovich (c) kinetic model for	190
	adsorption of Cr (VI), Cd (II) and Pb (II) in ternary metal ion	
	system on ChCLP	
Figure 6.21	Performance between number of epochs and the MSE for Cr (VI)	194
	ions in single metal system	
Figure 6.22	Performance between number of epochs and the MSE for Cd (II)	194
	ions in single metal ion system	
Figure 6.23	Performance between number of epochs and the MSE for Pb (II)	195
	ions in single metal ion system	
Figure 6.24	Performance between number of epochs and the MSE for ternary	195
	metal ion system	
Figure 6.25	Regression plot for Cr (VI) ions in single metal ion system	196
Figure 6.26	Regression plot for Cd (II) ions in single metal ion system	197
Figure 6.27	Regression plot for Pb (II) ions in single metal ion system	197
Figure 6.28	Regression plot for ternary metal ion system	198
Figure 6.29	Correlation plot for the experimental and ANN predicted values	199
	for Cr (VI) ions in single metal ion system	
Figure 6.30	Correlation plot for the experimental and ANN predicted values	199
	for Cd (II) ions in single metal ion system	
Figure 6.31	Correlation plot for the experimental and ANN predicted values	200
	for Pb (II) ions in single metal ion system	
Figure 6.32	Correlation plot for the experimental and ANN predicted values	200
	for ternary metal system	

Figure 6.33	Diagrammatic demonstration of heavy metal removal in series	202
	batch reactor system	
Figure 6.34	Adsorption and desorption of Cr (VI) on ChCLP	203
Figure 6.35	Adsorption and desorption of Cd (II) on ChCLP	204
Figure 6.36	Adsorption and desorption of Pb (II) on ChCLP	204
Figure 7.1	Gel electrophoresis image of amplified 16S rRNA gene of	212
	isolated bacteria	
Figure 7.2	Phylogenetic tree of Microbacterium paraoxydans strain VSVM	213
	IIT (BHU) (accession number (MN650647). The analysis	
	includes 18 nucleotide sequence.	
Figure 7.3	SEM of bacterial isolate of control (a), Cr (VI) (b), Cd (II) (c),	215
	Pb (II) (d) exposed in single and exposed in ternary metal ion	
	system.	
Figure 7.4	EDX analysis of control (a), and Cr (VI) (b), Pb (II) (c), Cd (II)	216-217
	(d) and ternary metal ion (e) exposed Microbacterium	
	paraoxydans strain VSVM IIT(BHU)	
Figure 7.5	XPS analysis of control (a), Cr (VI) (b), Pb (II) (c) and Cd (II)	219
	(d) exposed Microbacterium paraoxydans strain VSVM	
	IIT(BHU)	
Figure 7.6	XPS spectra of Microbacterium paraoxydans strain VSVM	220
	IIT(BHU) after exposed simultaneous in ternary metal ion	
	system of Cr (VI), Cd (II) and Pb (II).	
Figure 7.7	FTIR spectra of Pb (II) and control (a), Cd (II) and control (b),	221
	Cr (VI) and control (c), and ternary metal ions (d).	

Microbacterium paraoxydans strain VSVM IIT(BHU).Figure 7.9Effect of heavy metal on growth of Microbacterium223paraoxydansstrainVSVMIIT(BHU)at heavy metal	
Figure 7.9Effect of heavy metal on growth of Microbacterium223paraoxydansstrainVSVMIIT(BHU) at heavy metal	
paraoxydans strain VSVM IIT(BHU) at heavy metal	
concentration of 100 mg/L (a) and 200 mg/L (b).	
Figure 7.10Effect of ternary heavy metal ions on bacterial growth224	
Figure 7.11AntioxidantenzymaticactivityintheMicrobacterium227	
paraoxydans strain VSVM IIT(BHU) grown in Cr (VI) (a), Pb	
(II) (b), Cd (II) (c) and ternary metal jons (d).	
Figure 7.12 Heavy metal removal efficiency of <i>Microbacterium</i> 230	
paraoxydans strain VSVM IIT(BHU) in Cr (VI) (a), Pb (II) (b),	
Cd (II) (c) and ternary metal ion system of Cr (VI), Cd (II) and	
Pb (II) (d).	
Figure 7.13Performance between number of epochs and the MSE for Cr (VI)233	
(a), Cd (II) (b), Pb (II) (c) ions in single metal system and ternary	
metal ion system (d).	
Figure 7.14 Regression plot for Cr (VI) ions in single ion system 234	
Figure 7.15Regression plot for Cd (II) metal ion system235	
Figure 7.16Regression plot for Pb (II) in single metal ion system235	
Figure 7.17Regression plot for ternary metal ion system236	
Figure 7.18 Correlation plot for the experimental and ANN predicted values 237	
for Cr (VI) ions in single metal ion system	
Figure 7.19Correlation plot for the experimental and ANN predicted values237	

Figure 7.20	Correlation plot for the experimental and ANN predicted values	238
	for Pb (II) in single metal ion system	
Figure 7.21	Correlation plot for the experimental and ANN predicted values	238
	for ternary metal ion system	
Figure 8.1a	Pb (II) concentration in the mushroom fruit body grown in paddy	249
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1b	Cr concentration in the mushroom fruit body grown in paddy	250
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1c	Cd concentration in the mushroom fruit body grown in paddy	250
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1d	Zn concentration in the mushroom fruit body grown in paddy	251
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1e	As concentration in the mushroom fruit body grown in paddy	251
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1f	Mn concentration in the mushroom fruit body grown in paddy	252
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.1g	Ni concentration in the mushroom fruit body grown in paddy	252
	straw substrate containing different concentration of CWE at	
	various interval of time	

Figure 8.1h	Cr concentration in the mushroom fruit body grown in paddy	253
	straw substrate containing different concentration of CWE at	
	various interval of time	
Figure 8.2	Metallothionein concentration in the mushroom grown in the	260
	various dilutions of CWE containing medium at several interval	
	of time	
Figure 8.3a	Superoxide dismutase (SOD) concentration in the mushroom	262
	grown in the various dilutions of CWE containing medium at	
	several interval of time	
Figure 8.3b	Glutathione concentration in the mushroom grown in the various	262
	dilutions of CWE containing medium at several interval of time	
Figure 8.3c	Lipid Peroxidase concentration in the mushroom grown in the	263
	various dilutions of CWE containing medium at several interval	
	of time	
Figure 8.3d	Catalase concentration in the mushroom grown in the various	263
	dilutions of CWE containing medium at several interval of time	
Figure 8.4	Schematic diagram representing the FTIR analysis of <i>P. florida</i>	266-267
	grown in control (a) and CWE containing substrate (b)	
Figure 8.5	SEM micrograph cultivated in control and SEM micrograph (e-	268
	h) of <i>P. florida</i> (cultivated in CWE).	
Figure 8.6	EDX spectra of <i>P. florida</i> mushroom.	269
Figure 8.7	Growth of <i>P</i> florida (A-E) in the control and 100% CWE	270
I Igui e ou?		270
	containing paddy straw	
Figure 9.1	Breakthrough curve of Cr (VI) removal at flow rate 10, 20 and	279
	30 ml/min	

Figure 9.2	Breakthrough curve of Cd (II) removal at flow rate 10, 20 and 30	279
	ml/min	
Figure 9.3	Breakthrough curve of Pb (II) removal at flow rate 10, 20 and 30	280
	ml/min	
Figure 9.4	System boundary describing life cycle of production, use and	282
	recycle of the biosorbent corresponds to Cr (VI), Cd (II) and Pb	
	(II) removal for contaminated wastewater system	
Figure 9.5	Life cycle assessment four stages procedure	285

List of Tables

Table	Title	Page No.
Table 1.1	The advantage and limitations of the heavy metal removal	5-6
	method	
Table 2.1	Maximum limit of Cr (VI), Cd (II) and Pb (II) in the industrial	13
	effluent.	
Table 2.2	The maximum permissible limit of Cr (VI), Cd (II) and Pb (II)	14
Table 2.3	Cr (VI) biosorption capacity of different biosorbent derived from	20-22
	algal, fungal, plants, bacterial biomass.	
Table 2.4	Cd (II) biosorption capacity of different biosorbent derived from	22-24
	algal, fungal, plants, bacterial biomass.	
Table 2.5	Pb (II) biosorption capacity of different biosorbents	24-25
Table 2.6	Nanomaterials and their heavy metal adsorption capacity	26-28
Table 2.7	Bacterial species and their Cr (VI) efficiency.	29-30
Table 2.8	Pb (II) removal efficiency of bacterial strains.	30-32
Table 2.9	Cd (II) removal efficiency of bacterial strains.	32-33
Table 2.10	Fungi and their heavy metal removal capacities	35-37
Table 4.1	Proximate and ultimate analysis of FeRH	76-77
Table 4.2	Specific surface area of FeRH, RH and other adsorbents	79
Table 4.3	Dimensionless numbers for RH and FeRH	80
Table 4.4	Isotherms parameters and constants	90-91
Table 4.5	Thermodynamic parameters	93-94
Table 4.6	Kinetic model constants and error functions	94-95

Table 4.7	Mechanistic parameters	95-96
Table 4.8	Cr (VI) uptake capacities of RH and FeRH and other adsorbents.	97-98
Table 5.1	Specific surface area of CMNPs and other nanoparticles	114
Table 5.2	Isotherms parameters of Cr (VI) biosorption on CMNPs	125-126
Table 5.3	The isotherm parameters of Pb (II) biosorption at various	126-127
	temperature	
Table 5.4	The isotherm parameters of Cd (II) biosorption	127
Table 5.5	Isotherm parameters of Cr (VI), Cd (II) and Pb (II) biosorption	128-130
	in ternary metal ion system	
Table 5.6	Kinetics of Cr (VI) biosorption	134
Table 5.7	Kinetics of Pb (II) biosorption	134
Table 5.8	Kinetic of Cd (II) biosorption on to CMNPs	134-135
Table 5.9	Kinetic parameters of Pb (II), Cd (II) and Cr (VI) biosorption in	135
	ternary metal ion system	
Table 5.10	Thermodynamic data for biosorption of Cr (VI) on to CMNPs	137-138
Table 5.11	Thermodynamic data for biosorption of Pb (II) on to CMNPs	138
Table 5.12	Thermodynamic data for biosorption of Cd (II) on to CMNPs	138
Table 5.13	Thermodynamic parameters of Pb (II), Cd (II) and Cr (VI)	138-139
	biosorption on to CMNPs in ternary metal ion system	
Table 5.14	Comparative thermodynamics data present study and literature	139-141
Table 5.15	Dimensionless numbers and diffusivity coefficients for heavy	142
	metal ions in single and ternary metal ion system.	
Table 5.16	Comparison of heavy metal removal capacity of CMNPs with	152-153
	other nanoparticles	

Table 6.1	Isotherm parameters of Cr (VI), Cd (II) and Pb (II) adsorption in	180-182
	single metal ion system	
Table 6.2	The isotherm parameters of Cr (VI), Cd (II) and Pb (II) in the	182-184
	ternary metal ion system.	
Table 6.3	Thermodynamic parameters of Cr (VI), Cd (II) and Pb (II) on	186-187
	ChCLP in single metal ion system.	
Table 6.4	Thermodynamic parameters for adsorption of ternary metal ion	187
	system	
Table 6.5	Kinetic parameters of Cr (VI), Cd (II) and Pb (II) adsorption on	190-191
	ChCLP in single metal ion system	
Table 6.6	Kinetic parameters of heavy metal adsorption in ternary metal	191
	ion system.	
Table 6.7	Value of dimensionless numbers and diffusivity coefficients for	192
	metal ions in single and ternary metal ion system.	
Table 7.1	Physico-chemical characterization of wastewater	211
Table 7.2	Value of dimensionless numbers for metal ions in single and	229
	ternary metal ion system	
Table 7.3	Comparison of heavy metal removal efficiency	239-241
Table 8.1	Characterization of CWE	247-248
Table 8.2	Metals present in paddy straw $(\mu g/g)$ before and after	255
	bioremediation	
Table 8.3	Growth of <i>P. florida</i> in various concentration of CWE	257
		250
Table 8.4	Study of exponential and linear growth models of <i>P. florida</i> in	258
	varying environmental conditions.	

Table 8.5	Functional groups present in the P. florida (before and after	265-266
	bioremediation)	
Table 8.6	Heavy metal removal efficiency of <i>P. florida</i> and other fungal	271-274
	species	
Table 9.1	Comparative heavy metal removal capacity	277-278
Table 9.2	Heavy metals and its hazardous impact on community health	286-288