TABLE OF CONTENTS

List of I	FigureXI	
List of TablesXVIII		
List of abbreviations and symbolsXIX		
Preface	XXI	
Chapter	r I1	
1. Gene	ral introduction2	
2. Types of NLBCs		
2.1	Liposomes	
2.2	Niosome	
2.3	Solid lipid nanoparticles (SLNs)9	
2.4	Nanostructured lipid carriers (NLCs)13	
2.5	Lipid polymer hybrid nanoparticles (LPHNs)14	
3. Prepa	aration methods of NLBCs16	
3.1	Double emulsion method16	
3.2	Solvent injection method18	
3.3	Micro emulsion method18	
3.4	Ultra sonication method19	
3.5	Spray-drying method19	
3.6	Emulsification solvent evaporation method19	
3.7	Supercritical fluid method20	
3.8	Hot homogenoization method20	
3.9	Cold homogenization method21	
4. Stabi	lity and Drawbacks22	
5. Lyop	hilization (Freeze-drying)24	
6. Targe	eting moieties	
6.1	Transferrin receptor	
6.2	Folate receptor	
6.3	Hyaluronic acid35	
6.4	Aptamer37	
6.5	Peptide41	

6.6	Growth factor as a target45
6.7	Galactose47
7. Challe	enges in the scale-up of lipid-nanomedicines manufacturing: from
lal	poratories to industry
8. Objec	tive and goal of the study51
9. Refer	ences
Chapte	: II
1. Introd	luction66
2. Mater	ial and methods
2.1	Materials
2.2.	Fabrication of Q laden NLBCs69
2.3	Preparatin of N-acetyl-D-glucosylated Q-loaded NLBCs70
2.4	In vitro fluorescence study using lectin-NADG nano bioconjugate71
2.5	Encapsulation efficiency and percentage of drug loading72
2.6	Scanning Elecron microscopy(SEM) of nano-bioconjgate72
2.7	Analysis of particle diameter & charge distribution73
2.8	Infrared spectroscopy (IR) characteization of nano-bioconjugate73
2.9	X-ray characterization (XRD) of nano-bioconjugate73
2.10	<i>In vitro</i> drug release study of nanobioconjugate74
2.11	Cell culture and assessment of <i>in vitro</i> cell toxicity74
2.12	2 Testing of statistical significance75
2.13	Flow cytometry analysis75
3. Result	ts and Discussions76
3.1	Fluorescence studies76
3.2	Encapsulation of drug content and drug loading77
3.3	Morphological characterization of nano-bioconjugate78
3.4	Average particle diameter and charge distribution measurement79
3.5	IR characterization of nano bio-conjugate81
3.6	X-ray characterization of nano-bioconjugate82
3.7	Drug release kinetic83
3.8	MTT assay85
3.9	Analysis of cell apoptosis86
4. Concl	usion

5. Re	eferen	ces90
Chap	ter II	I93
1.Int	rodu	ction94
2. M	ateria	ls and methods96
	2.1	Preparation Q loaded LNs96
	2.2	Surface modification of Q-LNs with maleimide97
	2.3	Preparation of BSA conjugated with modified Q-LNs
	2.4	Scanning electron microscope (SEM) studies
	2.5	Particle size, size distribution, the surface charge of bioconjugate
	2.6	Drug encapsulation efficiency99
	2.7	Fourier transformed infrared spectroscopy100
	2.8	X-ray diffraction study100
	2.9	In vitro release kinetic study101
	2.10	Cell culture101
	2.11	MTT assay101
	2.12	Confocal microscopy102
	2.13	DAPI staining102
	2.14	Propidium iodide staining102
3. Re	esults	and Discussion103
	3.1	SEM analysis103
	3.2	Size measurement analysis/ Encapsulation efficiency104
	3.3	Fourier transformed infrared spectroscopy analyasis105
	3.4	XRD analysis106
	3.5	Analysis of in vitro drug release kinetic107
	3.6	Cell viability study108
	3.7	Morphological analysis of MCF-7110
4.Cor	ıclusi	on111
5.Ref	erenc	es112
Chap	ter IV	/116
1. Int	roduc	ction117
2. Me	ethods	s and Materials119
	2.1	Materials119
	2.2	Fabrication of LPBNPs120
	2.3	Lactoferrin conjugation with MTX-LPBNPs120
	2.4	Particle size analysis and assessment of surface charge121
	2.5	Drug encapsulation efficiency (DEE)122

2.6	Scanning electron microscopy (SEM)	122
2.7	Powder X-ray diffractometry (XRD)	123
2.8	Fourier transformed infrared spectroscopy	
2.9	Methotrexate release profile	123
2.1	0 Storage stability	124
2.1	1 Cell culture and assessment of <i>in vitro</i> cellular toxicity	124
2.1	2 Fluorescence microscopy	125
3. Result	and Discussion	126
3.1	Particle size, size distribution, surface of hybrid nano-bio- conjugate	126
3.2	2 Analysis of morphological surface	129
3.3	8 Powder X-ray characterization of hybrid-nano-bioconjugate.	131
3.4	Infrared spectroscopy analysis of hybrid-nano-bioconjugate	132
3.5	5 In vitro drug dissociation kinetics	133
3.6	5 Storage stability performance	135
3.7	7 Study of cell toxicity	136
3.8	8 Morphological analysis of MCF-7 cells induced with LPBNPs	
	MTX-LPBNPs/MTX-LLPBNPs	140
4. Conclu	sion	144
5. Referen	nces	145
Chapter V	V	149
Summary	v and Future Work	149

Figure No.	Figure description	Page No.
Figure 1.1	A pictorial representation of theranostics system including diagnosis/therapeutic agent along with nanocarrier.	4
Figure 1.2	Bar-graph showing number of research papers published each year from 2010 to 2022 in the online database "Scopus", searched using the keyword 'lipid nanocarriers and cancer theranostics'.	5
Figure 1.3	Timeline of liposome/Lipid based nanomedicine advancement. The discovery of liposomes; Enzyme entrapment into liposomes; Immunoliposomes; Procedures for liposome formation; pH-sensitive liposomes; Cationic lipids synthesized; Stealth liposomes; Transferrin receptor targeting; Temperature- sensitive liposomes; Cubosomes. The earliest approved lipid- based nanomedicine, Doxil; The earliest FDA-approved lipid - based nucleic acid (siRNA) drug Onpattro; First LNP-based mRNA vaccines for COVID-19 approved.	8
Figure 1.4	Schematic representation of five classes of lipid based nanocarriers (A) Liposomes (B) Niosomes (C) Solid lipid nanoparticles (D) Nano structured lipid carriers (E) Lipid polymer hybrid nanoparticles (LPHNs).	16
Figure 1.5	Schematic illustration of various techniques of synthesis of	17

- Figure 1.5
 Schematic illustration of various techniques of synthesis of nano-lipid based carrier (A) Double emulsion method (B)

 (B)Solvent injection method (C) Microemulsion method (D)

 Ultrasonication method.
- Figure 1.6Schematic illustration of various techniques for synthesis of
nano lipid-based carriers (A) Spray drying method
(B)Emulsification- solvent evaporation method (C) Supercritical
fluid method (D) Hot/Cold homogenization method.22
- Figure 1.7(A)The lipid bilayer exists in two phases. The lipid head group27surrounds the water channel before drying (Hexagonal phase).27The lipid bilayer is packed into a two-dimensional lattice after

drying (Ribbon phase). (B) Orientation of lipid bilayer before and after drying in the presence and absence of sugars.

32

41

- Figure 1.8 Schematic representation of ligand conjugated nanocarriers.
 (A)Synthesis of Tf conjugated nanocarriers and its interactions with cognate molecule. (B) The FA conjugated drug-loaded micelle and liposome and their internalization in tumor-bearing mice. (C)EDC-mediated crosslinking of HA on the surface of lipid nanocarriers. (D) RNA based aptamer and aptamer decorated nanocarrier and its interaction with the cognate receptor.
- Figure 1.9 Schematic illustration of ligand conjugated nanocarriers. (A)NGR-conjugated thermosensitive liposome containing CPPs-DOX for detection of receptor and enhancing the DOX biodistribution. (B) Schematic representation of the synthesis of Fab' conjugated nanoparticle. Initially, reduction of anti-EGFR Fab'2 to Fab' fragment through Tris/2-carboxyethyl phosphine hydrochloride (TCEP) and generating three active thiol groups (-SH), which further react with maleimide group expressed on the nanoparticle surface. (C) EGF expressed nanocarrier for cancer theranostics of curcumin and doxorubicin in A-431 tumor cells. (D) Step by step synthesis of galactosylated conjugated drug loaded SLNs. Initially ring opening of galactose molecule and further cross-linked with amino group of stearyl amine exposed on the surface of SLNs through the EDC/NHS bioconjugate chemistry.
- Figure 2.1 Schematic representation of the synthesis of N-acetyl D- 68 glucosylated Q-loaded nano lipid-based carrier and its cellular internalization through receptor-mediated endocytosis.
- Figure 2.2
 Chemical reactions for N-acetyl D-glucosamine with Poly-l
 70

 lysine.
 70
- Figure 2.3Fluorescence spectroscopy emission spectra of the lectin-NADG77complex. (a) Emission spectra of lectin reduced on gradual

xii

addition of NADG. The red curve elucidates the concentration of lectin whereas the blue curve indicates a decrease in fluorescence intensity of lectin on the reaction between 5×10^{-8} and 6×10^{-7} M of NADG. (b) Logarithmic plot of the lectin-NADG system at room temperature.

- Figure 2.4Scanning electron microscopy (SEM) photograph of the nano-79bio material (a) Q-NLBCs and (b) NADG-Q-NLBCs.
- Figure 2.5Distribution of hydrodynamic diameter in (nm) for (a) Q-NLBCs80and (b) NADG-Q-NLBCs.80
- **Figure 2.6** The infrared spectrum of Q-NLBCs and NADG-Q-NLBCs in 82 the region of 4000–400 cm⁻¹.

Figure 2.7 X-ray diffractogram of (a) NLBCs and (b) NADG-Q-NLBCs 83 between $2\theta = 2^{\circ}$ to $2\theta = 90^{\circ}$ at a scanning speed of 0.03° /second.

- **Figure 2.8** Drug release kinetics of Q from NADG-Q-NLBCs (*in vitro*) in 84 phosphate buffer saline for (a) Zero-order and (b) First-order at physiological pH with a significance level ($p \le 0.05^*$).
- Figure 2.9Cell toxicity studies on MCF-7 cells (*in vitro*). The histograms86represent the % cell viability against NLBCs, free Q, and
NADG-Q-NLBCs for five different concentrations at the cell's
density of 4×10^5 cells/well. Values are reported as (mean ±
standard error) and significance level as (***p< 0.001, **p<0.01
and *p<0.05). All experiments were performed in triplicates.</th>
- Figure 2.10 Flow cytometry images of MCF-7 cells (a) Cells treated with NLBCs for 48 h and dot quadrant Q3 showing the viable cells and Q1 represents the necrotic cells (b) Cells treated with Q-NLBCs for 48 h, quadrants Q4 and Q2 showing the early and late apoptotic cells, respectively and Q1 represents the necrotic cells (c) Cells treated with NADG-Q-NLBCs for 48 h, quadrants Q4 and Q2 indicating the early and late apoptotic cells,

respectively and Q1 represents the necrotic cells. All experiments were performed in triplicates.

- Figure 3.1
 Schematic representation of the synthesis of BSA conjugated Q
 98

 loaded lipid nanocarriers (LNs) and its cellular internalization
 98

 through receptor mediated endocytosis.
 98
- **Figure 3.2** Chemical reactions for maleimide functionalization and BSA ¹⁰⁰ conjugation.
- Figure 3.3 SEM image of (a) void LNs (b) Q-loaded LNs (c) BSA 103 conjugated Q-LNs.
- Figure 3.4FT-IR spectra in the section of 4000–400 cm⁻¹ (a) void LNs(b)106Q-loaded LNs (c) BSA conjugated Q-LNs.
- Figure 3.5X-ray diffraction image of (a) void LNs and (b) BSA-Q-loaded107LNs.
- Figure 3.6Release kinetic studies of BSA-Q-LNs (a) Zero-order release108kinetics (b) First order release kinetic.108
- **Figure 3.7** The cytotoxic effect of free Q, Q-loaded LNs, and BSA 110 conjugated Q-LNs at various concentrations of Q on MCF-7.
- Figure 3.8The confocal image of MCF-7, Row 1 cells treated with void111LNs, Q-LNs, and BSA-Q-LNs; PI staining. Row 2 cells treatedwith void LNs, Q-LNs, and BSA-Q-LNs; DAPI staining.
- Figure 4.1Schematic illustration of the synthesis of lactoferrin conjugated121MTX-LPBNPs using one-step precipitation technique and its
cellular internalization through receptor-mediated endocytosis.121
- Figure 4.2 Distribution of hydrodynamic diameter in (nm) (A) MTX- 129 LPBNPs and (B) MTX-LLPBNPs.
- Figure 4.3 Scanning electron microscopy (SEM) photograph (A-B), and 130 EDX images of the hybrid NPs (C-D). (A) SEM showing the MTX-LPBNPs (B) SEM showing the MTX-LLPBNPs. (C)EDX chemical mapping (inlet) and elemental composition for elements presence in MTX-LPBNPs (D) EDX chemical

mapping (inlet) and elemental composition for elements presence in MTX-LLPBNPs.

- **Figure 4.4** X-ray diffractograms of the hybrid system, scanning over $2\theta = 131$ 10° to $2\theta = 80°$ at a scanning speed of 0.03°/second using Cu Ka radiation (λ =1.54Å) (A) LPBNPs and (B) MTX-LLPBNPs.
- Figure 4.5The infrared spectrum of MTX-LPBNPs (Red curve) and MTX-133LLPBNPs (Blue curve); was scanned on a scale of 4000 cm $^{-1}$ to800 cm $^{-1}$ with a resolution of 4 cm $^{-1}$.
- Figure 4.6 The MTX release profile of constructed hybrid nanobioconjugate (LLPBNPs) was performed for 200 h. Dialysis was performed against phosphate buffer saline (pH 7.4) at room temperature using a dialysis bag. UV spectrophotometer was used to quantify the amounts of MTX concentration. Data are reported as (mean ± standard error) and significance level as (p≤0.05*) (A) zero-order kinetics and (B) first-order kinetics.
- **Figure 4.7** Cell toxicity studies of LPBNPs, MTX, MTX-LPBNPs, and 139 MTX-LLPBNPs on MCF-7 for 24.0 h of incubation. Treatment was studied in the five groups. In the first, second, third, fourth, and fifth groups, the MTX concentration was taken 2.0, 4.0, 6.0, 8.0, and 10.0 μ g/mL, respectively. In the MTX-LPBNPs and MTX-LLPBNPs formulation, a similar concentration of MTX was taken in each group. However, the LPBNPs were taken as a control in the groups. Values are reported as (mean ± standard error) and significance level as (***p< 0.001, **p<0.01 and *p<0.05).
- Figure 4.8 Cell toxicity studies of LPBNPs, MTX, MTX-LPBNPs, and 140 MTX-LLPBNPs on MCF-7 for 48.0 h of incubation. Treatment was studied in the five groups. In the first, second, third, fourth, and fifth groups, the MTX concentration was taken 2.0, 4.0, 6.0, 8.0, and 10.0 μg/mL, respectively. In the MTX-LPBNPs and MTX-LLPBNPs formulation, a similar concentration of MTX was taken in each group. However, the LPBNPs were taken as a

control in the groups. Values are reported as (mean \pm standard error) and significance level as (***p< 0.001, **p<0.01 and *p<.005.

- Fluorescence microscopy photographs of the MCF-7 after 24.0 Figure 4.9 142 h of treatment with LPBNPs, MTX-LPBNPs, and MTX-LLPBNPs at equivalent MTX, 10.0 (µg/mL). The fluorescence signals from the cells were illustrated in Row 1-3 after 24.0 h of incubation. (Row1-A) DAPI staining, blue signals show the nucleus induced with LPBNPs. (Row 1-B) rhodamineconjugated phalloidin staining, red signals show the cytoskeleton induced with LPBNPs. (Row 1-C) merged distribution of DAPI & rhodamine-conjugated phalloidin. (Row 2-A) DAPI staining, blue signals show the nucleus induced with MTX-LPBNPs. (Row 2-B) rhodamine-conjugated phalloidin staining, red signals show the cytoskeleton induced with MTX-LPBNPs. (Row 2-C) merged distribution of DAPI & rhodamineconjugated phalloidin. (Row 3-A) DAPI staining, blue signals show the nucleus induced with LLPBNPs. (Row 3-B) rhodamine-conjugated phalloidin staining, red signals show cytoskeleton induced with MTX-LLPBNPs. (Row 3-C) merged distribution of DAPI & rhodamine-conjugated phalloidin. The scale bar is 50 µm for fluorescence images.
- Figure 4.10 Fluorescence microscopy photographs of the MCF-7 after 48.0 143 h of treatment with LPBNPs, MTX-LPBNPs, and MTX-LLPBNPs at equivalent MTX, 10.0 (μg/mL). The fluorescence signals from the cells were illustrated in Row 1-3 after 48.0 h of incubation. (Row1-A) DAPI staining, blue signals show the nucleus induced with LPBNPs. (Row 1-B) rhodamine-conjugated phalloidin staining, red signals show the cytoskeleton induced with LPBNPs. (Row 1-C) merged distribution of DAPI & rhodamine-conjugated phalloidin. (Row 2-A) DAPI staining, blue signals show the nucleus induced with MTX-LPBNPs. (Row 2-B) rhodamine-conjugated phalloidin

xvi

staining, red signals show the cytoskeleton induced with MTX-LPBNPs. (**Row 2-C**) merged distribution of DAPI & rhodamineconjugated phalloidin. (**Row 3-A**) DAPI staining, blue signals show the nucleus induced with LLPBNPs. (**Row 3-B**) rhodamine-conjugated phalloidin staining, red signals show cytoskeleton induced with MTX-LLPBNPs. (**Row 3-C**) merged distribution of DAPI & rhodamine-conjugated phalloidin. The scale bar is 50 µm for fluorescence images

Table No.	Table description	Page No.
Table 1.1	List of various types of lipid-based nanocarriers.	11
Table 1.2	List of ligands and their target molecules with nanocarriers.	28
Table 2.1	Determination of amount of Q in the designed nanobioconjugate.	78
Table 3.1	Particle size distribution and encapsulation efficiency.	105
Table 4.1	Particle size, size distributionzetapotential, and drugencapsulation	127
	efficiency of MTX-LPBNPs and MTX-LLPBNPs and data represent	
	mean \pm SD, n=3.	
Table 4.2	Storage stability performance of optimized MTX-LLPBNPs	135