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PREFACE 

In view of drug delivery, diverse delivery vehicles including natural and synthetic polymeric 

nanoparticles have been greatly investigated till date. In general, micelles, dendrimers, 

cellulose, gelatin, lipid, chitosan, alginate, poly (D, L-lactide), poly (D, L-glycoside), 

poly(lactide-co-glycoside), and poly-caprolactone have been employed as drug delivery 

vehicles. However, we are interested to select lipid-based nanoparticle/nanocarrier for targeted 

anticancer drug delivery. Cancer is one of the major health-related issues affecting the 

population worldwide and subsequently accounts for the second-largest death. Genetic and 

epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems 

that lead to the initiation and progression of cancer. Therefore, in view of cancer burden 

worldwide, we have targeted the cancer cells for drug delivery. Conventional methods, 

including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are 

being widely used for theranostics of cancer patients. Surgery is useful in treating localized 

tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and 

result in a high recurrence rate and death. Also, the therapeutic application of free drugs is 

related to substantial issues such as poor absorption, solubility, bioavailability, high 

degradation rate, short shelf-life, and low therapeutic index. Therefore, these limitations can 

be sorted out using NLBCs as promising drug delivery carriers. Still, at most, they fail to 

achieve site targeted drug delivery and detection. This can be achieved by using the concept of 

theranostics which is a combination of diagnostic and therapeutic agents. Selecting a specific 

ligand/antibody as a diagnostic tool is being highly utilized since its cognate receptor molecule 

is expressed on the surface of the cancer cell.  

We have designed the study in four different sections, where in the first part; we have 

developed N-acetyl-D-glucosamine (NADG) coupled quercetin-loaded (Q) nano-lipid-based 

carriers (NADG-Q-NLBCs) where NADG has been covalently conjugated on the surface of 

NLBCs containing quercetin as anti-cancer drugs. The constructed nano-bioconjugate was 
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characterized by various techniques, and the in vitro drug release profiles were examined using 

zero and first-order kinetic models. The characterization data confirmed the morphology, size, 

charge distribution, crystallinity, and chemical interactions among the various moieties of the 

nano-bioconjugate. Further, the synthesized NADG-Q-NLBCs were applied to target the 

human breast cancer cells (MCF-7), which interestingly showed a more cytotoxic effect 

compared to the lone NLBCs and free Quercetin. The flow cytometry study confirmed that 

NADG-Q-NLBCs induced apoptosis in MCF-7 cells in a targeted manner. The percentage of 

early apoptotic cells was found to be 25% in the case of NADG-Q-NLBCs, which is almost 

2.5 times higher than the Q-NLBCs. However, the number of viable cells reached the maximum 

when treated with NLBCs. The present investigation suggests that the constructed nano-

bioconjugate could be a capable carrier of drugs with sustained pharmacokinetics and improved 

physicochemical properties.  

In the next section, we have attempted to conjugate BSA to maleimide functionalized 

lipid surface for cancer theranostics. The BSA was conjugated with C1 carbon of maleimide 

through a thiol reaction. The BSA conjugated quercetin-loaded lipid nanocarriers (BSA-Q-

LNs) were spherical in structure with a shell size of 296.43 ± 4.90 nm. The encapsulation 

efficiency of BSA-Q-LNs was found to be 76 ± 0.3%. Further, BSA conjugation on carrier 

surface was confirmed from the shift in FT-IR, XRD peak. The release kinetic of Q- loaded 

LNs formulation was best fitted in a first-order kinetic model suggesting an early burst of Q 

followed by sustain rate of release. The Q-loaded LNs and BSA-Q-LNs displayed improved 

cytotoxicity in the human breast cancer cell line (MCF-7) as compared to free Q. 

Further, we have designed and developed a new system that further improves the 

stability, and crystallinity, and releases the kinetic profile of the free drugs. In this system, lipid 

and polycaprolactone (PCL) were blended and then lactoferrin as a diagnostic agent has been 

conjugated on the surface of the hybrid system using covalent bonding.  A lactoferrin-

conjugated lipid polymer-based nanoparticles (LLPBNPs) encapsulating methotrexate (MTX) 
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as a potential anticancer drug candidate was constructed via a facile one-step precipitation 

method. The designed hybrid-nano-bioconjugate exploits both the characteristic features of 

natural lipids and the biocompatible polymer. The physiochemical properties of the constructed 

hybrid-nano-bioconjugate were thoroughly characterized by Infrared Spectroscopy, Scanning 

Electron Microscopy, EDX, Dynamic Light Scattering, and X-ray Diffraction techniques. The 

general sizes of the particles are obtained in the range of 520-650 nm with a polydispersity of 

0.140-0.163 that does not possess a broad size distribution. Further, the encapsulation 

efficiency of the MTX in LLPBNPs systems was assessed, which was found to be 84.0 ± 1.5 

%. The in vitro drug release kinetics were analytically examined using the zero and first-order 

kinetic models. These models revealed that the drug dissociation initially shows the first-order 

model followed by a sustained rate of drug delivery. The morphological changes of the nucleus 

and F-actin cytoskeleton of the cancer cells were studied using molecular binding probes DAPI 

and rhodamine-conjugated phalloidin, respectively.  

Thus, this work is a concept-based comparative investigation of N-acetyl-d-

glucosamine decorated nano-lipid-based carriers, BSA conjugated quercetin-loaded lipid 

nanocarriers, and lactoferrin conjugated lipid-polymer nano-bio-hybrid for cancer theranostics. 

In the future, the constructed system may overcome the problem of multiple drug resistance. 

 

 

 


