Contents

Acknowledge	ment		ix
Table of Contents			Х
List of Figures			xiv
List of Tables			xix
Symbols and Abbreviations			XX
Preface			xxiii
Chapter 1		Introduction	Page no.
	1.1	General	1
	1.2	Scouring	4
	1.3	Effects of collar on scouring	4
	1.4	Morphology of channel	5
	1.5	Organization of thesis	7
Chapter 2		Literature review	
	2.1	General	8
	2.2	Experiment work related to scouring around	8
		hydraulics structure	
	2.3	Analytical and Numerical Approach to	16
		study fluid flow characteristics around	
		structure	
	2.4	Energy loss in channel	23
	2.5	Preventive measurement of scouring	27
	2.6	Critical Observation	35
	2.7	Scope of the present investigation	35
Chapter 3		Experimental investigation	
	3.1	General	36
	3.2	Description of Experimental flume	37

	3.2.1 Flow Recirculating System	38
	3.2.2 Measurement of Discharge and depth	39
	of Water	
	3.2.3 Measurement devices of Flow	41
	Velocity and Direction	
	3.2.4 Preparation of fume bed	42
3.3	Model of Slender Structure	43
3.4	Brief description of Experimental	45
	Procedures and Program of Test	
3.5	Experimental study on scouring around	47
	slender structure	
	3.5.1 Scouring of sand bed of slender	47
	structure	
	3.5.1.1 Scour depth variation around	48
	cylindrical shape pier	
	3.5.1.2 Scour depth variation around	55
	rectangular shape pier	
	3.5.1.3 Scour depth variation around oval	58
	shape pier	
	3.5.2 Effect of shape and size of slender	61
	structure on scour depth	
	3.5.2.1 Contour of scour hole and schematic	65
	representation of development of scouring	
	3.5.3 Parametric study of Non-dimensional	69
	Scour depth around slender structure	
	3.5.3.1 Variation of Non-dimensional Scour	72
	depth around piers model	
	3.5.4 Visualization of vortex motion	76
	around pier model	

		3.5.5 Flow characteristics and sand bed	82
		formation in flume	
		3.5.6 Explanation on Development of scour	84
		hole	
	3.6	Experimental study on scouring around	85
		slender structure fitted with collar	
		3.6.1 Brief Description of experimental	86
		procedures	
		3.6.2 Test Program	86
		3.6.3 Effect of collar size on scouring	89
		3.6.4 Explanation on Development of	93
		scour hole with collar	
Chapter 4		Mathematical modelling	
	4.1	General	96
	4.2	Influence of Slender Structure in Channel	97
		Section	
		4.2.1 Efficiency of channel section with	97
		slender obstruction in flow path	
		4.2.1.1 Rectangular channel section with	98
		slender barrier	
		4.2.1.2 Trapezoidal channel section with	101
		slender barrier	
		4.2.2 Energy of flow in channel section	105
		with slender obstruction in flow path	
		4.2.2.1 Rectangular channel section with	105
		slender obstruction	
	4.3	Flow behavior around slender structure	109
		4.3.1 Flow behavior around cylindrical	111
		obstruction	

		4.3.2 Flow characteristics around slender	117
		structure with multiple obstruction in flow	
		path	
	4.4	Influence of slender structure in erodible	124
		channel section	
		4.4.1 Scouring of channel section around	124
		cylindrical pier	
		4.4.2 Bed shear stress	128
	4.5	Bed shear stresses and pier shear stress	129
Chapter 5		Study of Ganga river morphology at	
		Varanasi	
	5.1	General	133
	52	Description of area selected for	134
	5.2	morphological study	
	5.3	Methodology adopted	137
	5 /	Influence of Viswasundari Bridge piers on	138
	5.4	morphology	
		5.4.1 Morphological change of Ganga	145
		River at Varanasi	
Chapter 6		Conclusion	
	6.1	General	152
	6.2	Concluding remarks	152
		Scope of future study	154
References			155
Author's Biog	graphy	y	

Reprint

List of Figures

Figure 3.1	Photograph of Experimental Flume	38
Figure 3.2	Schematic Sketch of Experimental setup	38
Figure 3.3	Flow recirculating system	39
Figure 3.4	Venturi Meter	40
Figure 3.5	Point gauge on sliding platform	41
Figure 3.6	Acoustic Doppler Velocity (ADV) setup	42
Figure 3.7	View of sand bed	43
Figure 3.8	Cylindrical pier model	44
Figure 3.9	Rectangular pier model	44
Figure 3.10	Oval shape pier	45
Figure 3.11	Piers embedded in sand bed	46
Figure 3.12	Scour depth variation for cylindrical pier ($d= 2.25$ cm) of	48-
	different discharges with time	49
Figure 3.13	Scour depth variation for cylindrical pier ($d=3.18$ cm) of	50-
	different discharges with time	51
Figure 3.14	Scour depth variation for cylindrical pier ($d=3.86$ cm) of	52-
	different discharges with time	53
Figure 3.15	Scour depth variation for cylindrical pier ($d=4.38$ cm) of	54-
	different discharges with time	55
Figure 3.16	Scour depth variation for Rectangular pier ($R1 = 3.38 X$	55-
	3.04 cm) for different discharges with time	56
Figure 3.17	Scour depth variation for Rectangular pier ($R2 = 4.38 X$	57-
	4.04 mm) of different discharges with time	58
Figure 3.18	Scour depth variation for Oval pier ($O1 = 2.9 \text{ X } 1.5 \text{ cm}$)	58-
	of different discharges with time	59
Figure 3.19	Scour depth variation for Oval pier ($O2 = 4.7 \times 3 \text{ cm}$) of	60-
	different discharges with time	61

Figure 3.20	Comparison of scour depth between Cylindrical	62
	(diameter 3.18 cm) and Rectangular (3.38 X 3.04 cm)	
	pier with different discharges with time	
Figure 3.21	Comparison of scour depth between Cylindrical	62
	(diameter 2.25 cm) and Oval (2.9 X 1.5 cm) pier for	
	different discharges with time	
Figure 3.22	Comparison of scour depth between Rectangular (3.38 X	63
	3.04 cm) and Oval (4.7 X 3 cm) for different discharges	
	with time	
Figure 3.23	Equilibrium scour depth around cylindrical pier	63-
		64
Figure 3.24	Contour of cylindrical pier for scouring, (b): Scouring	66
	sketch diagram of Contour for cylindrical pier	
Figure 3.25	Contour of rectangular pier for scouring, (b): Scouring	67
	sketch diagram of Contour for rectangular pier	
Figure 3.26	(a) Contour of Oval pier for scouring, (b): Scouring	68
	sketch diagram of Contour for oval pier	
Figure 3.27	Variation of (Dse/d) vs (Vav./Vapp.) of Cylindrical Piers	72
	with different discharges	
Figure 3.28	Variation of (Dse/d) vs (Vav./Vapp.) of Rectangular	72
	Piers (1 & 2) with different discharges	
Figure 3.29	Variation of (Dse/d) vs (Vav./Vapp.) of Oval Piers (1 &	73
	2) with different discharges	
Figure 3.30	Variation of (Dse/d) with y/b of Cylindrical Piers with	73
	different discharges	
Figure 3.31	Variation of Dse/d with y/b of Rectangular Piers with	74
	different discharges	
Figure 3.32	Variation of Dse/d with y/b of oval piers for different	74
	discharges	

Figure 3.33	Variation of (Dse/d) with Q/b of Cylindrical Piers with	74
	different discharges	
Figure 3.34	Variation of Dse/d with Q/b of Rectangular Piers (1 & 2)	75
	for different discharges	
Figure 3.35	Variation of Dse/d with Q/b of oval piers (1 & 2) for	75
	different discharges	
Figure 3.36	Visualization of vortex motion around cylindrical	77-
	slender structure	78
Figure 3.37	Visualization of vortex motion around rectangular	79-
	slender structure	80
Figure 3.38	Visualization of vortex motion around oval slender	80-
	structure	81
Figure 3.39	Scour pattern with mounds (a), depressions and ripples	82-
	(b, c) at the end of the channel	83
Figure 3.40	Schematic illustration of the scour hole development for	84
	the plain pier: (a) Scour pattern and (b) Sketches of the	
	scour hole with time	
Figure 3.41	View of scour hole around circular pier fitted with collar	86
Figure 3.42	Schematic diagram of pier with collar	89
Figure 3.43	Variation of maximum scour depth upstream of the pier	89-
	for different discharges	90
Figure 3.44	Logarithmic Variation of maximum scour depth with	91-
	time for different discharges	92
Figure 3.45	Experimental picture of (a) a pier fitted with collar (b) a	45-
	pier without collar	93
Figure 3.46	Schematic diagram of development of scour hole with	93-
	time (a & b)	94
Figure 4.1	Cross section of rectangular shape open channel with n -	98
	number barriers	

Figure 4.2	Economical Depth of flow with obstruction factor α in	101
	rectangular channel section	
Figure 4.3	Cross section of Trapezoidal shape open channel with n -	102
	number of barriers	
Figure 4.4	Economical depth for different obstruction factor	105
Figure 4.5	Energy of flow with depth of flow for α =0.05	108
Figure 4.6	Energy of flow with depth of flow for $\alpha=0.1$	108
Figure 4.7	Cylindrical structure inside the computational domain	112
Figure 4.8	Flow field around cylindrical pier at a plane 0.1m from	114
	bed level	
Figure 4.9	Flow filed around cylindrical structure of diameter 0.1 m	114-
		115
Figure 4.10	Flow filed around cylindrical structure of diameter 0.2 m	115-
		116
Figure 4.11	Flow filed around cylindrical structure of diameter 0.3 m	116-
		117
Figure 4.12	Computational domain of piers	118
Figure 4.13	Velocity contour around multiple slender structures	119-
		120
Figure 4.14	Pressure contour around multiple slender structures	120-
		121
Figure 4.15	Pressure variation at 0.2m downstream of the piers line	122
Figure 4.16	Pressure variation at 0.2m upstream of the piers line	123
Figure 4.17	Turbulence kinetic energy	123
Figure 4.18	Pier embedded in sand bed in model	125
Figure 4.19	Scour depth around pier model of diameter 2.25cm	126
Figure 4.20	Scour hole for circular pier of diameter 3.18 cm	127
Figure 4.21	Maximum scour depth with discharge	128
Figure 4.22	Maximum bed shear stress with mean velocity	129

Figure 4.23	Channel cross section with pier at the middle of the	130
	channel	
Figure 4.24	Bed shear stress at mid of rectangular channel with mean	130
	velocity of flow	
Figure 4.25	Maximum bed shear stress variation with mean	131
	flow velocity for rectangular channel section	
Figure 4.26	Maximum shear stress variation at pier surface	131
	with mean flow velocity in rectangular channel section	
Figure 4.27	Maximum bed shear stress variation with mean velocity	132
Figure 4.28	Maximum pier shear stress variation with mean velocity	132
Figure 5.1	The River Ganga basin	135
Figure 5.2	Satellite image of River Ganga near Varanasi with	136
	meander bend	
Figure 5.3	Two Reverse bend near Varanasi Bend1 and Bend2	136
Figure 5.4	Determination of radius of curvature	137
Figure 5.5	Satellite image of Viswasundari Bridge on Ganga River	139
	at Varanasi	
Figure 5.6	Photograph of Viswasundari Bridge with bridge piers	139
Figure 5.7	Planform of the Ganga river in downstream of	140
	Viswasundari bridge	
Figure 5.8	Ganga river at four different cross section downstream of	141-
	Viswasundari bridge	144
Figure 5.9	Historical and recent courses of the River Ganga, 1988-	145
	2013.	
Figure 5.10	Movement of the meander bends of the River Ganga at	146
	Varanasi [2002-2013].	
Figure 5.11	Sand deposition on Bend1 in year 2001	148
Figure 5.12	Sand deposition on Bend1 in year 2012	148
Figure 5.13	Comparison of sand deposition at both bends in bank of	151
	Ganga River at Varanasi.	

List of Tables

Table 3.1	Analysis data for Pier 1	69
Table 3.2	Analysis data for Pier 2	69
Table 3.3	Analysis data for Pier 3	70
Table 3.4	Analysis data for Pier 4	70
Table 3.5	Analysis data for Pier 5	70
Table 3.6	Analysis data for Pier 6	71
Table 3.7	Analysis data for Pier 7	71
Table 3.8	Analysis data for Pier 8	71
Table 3.9	Summary of Test Program	88
Table 4.1:	Input parameters	125
Table 4.2:	Output Parameters for pier diameter 2.25cm	126
Table 4.3:	Output Parameters for pier diameter 3.18cm	126
Table 4.4:	Output Parameters for rectangular pier 3.38 x 3.04m	127
Table 4.5:	Comparative result of experimental study and HEC-RAS	128
Table 5.1:	Siltation on downstream and upstream side	149
Table 5.2:	Variation of sinuosity and sand deposition from	150
	2002 to 2013.	

List of Symbols and Abbreviations

List of symbols

Strouhal number	St
Drag coefficient,	CD
RMS lift coefficient	C_{L}
multiple channel roughness coefficient Manning's	n
Chezy's	С
Darcy-Weisbatch coefficient	f
Scour depth	D_{sc}
Equilibrium Scour depth	D _{se}
Pier diameter	D
Discharge	Q
Depth of flow	Y
Channel width	В
Froude no.	Fr
Average velocity	V_{av}
Approach velocity	V_{app}
Per unit width of discharge	Q/b
Collar width	W

Collar elevation relative to the channel bed	Уc
% Finer	Ν
Corresponds to 50% of the sample finer in weight on the grain size distribution curve.	D50
Median particle size	d ₅₀
Coefficient of uniformity	Cu
Coefficient of curvature	Cc
List of abbreviation	
Computational Fluid Dynamics	CFD
Acoustic-Doppler Velocity-Profiler	ADVP
Shallow Water Equations	SWEs
Mean/Root-Mean-Square	RMS
Root Mean Squared Error	RMSE
Surface Gradient Upwind Method	SGUM
Generalised Likelihood Uncertainty Estimation	GLUE
Hydrologic Engineering Center's River Analysis System	HEC-RAS
Large-Eddy Simulation	LES
Shiono and Knight Method	SKM

Horseshoe Vortex	HV
Partially Averaged Navier-Stokes approach	PANS
Reynolds Averaged Navier-Stokes	RANS
Horse Power	HP