CONTENTS

List of Figures	XIII
List of Tables	XIX
List of Abbreviations	XX
List of Symbols	XXI

Chapter 1: Theoretical background of metamaterials and its applications

1.1		Introduction to Metamaterials	1
	1.1.1	Introduction to Metasurfaces	2
1.2		Drude-Model Characterization of Metals at Optical Frequencies	3
1.3		Waves at the Interface of Two Medias	6
1.4		Electromagnetic Wave Absorbers	8
	1.4.1	Conventional Electromagnetic Wave Absorbers	9
	1.4.2	Circuit Analog Absorbers	10
	1.4.3	Metamaterial/Metasurface Based Perfect Absorber	11
1.5		Absorption Mechanism in a Metamaterial Absorber	12
	1.5.1	Single-Layer Effective Model	12
	1.5.2	Double-Layer Effective Model	14
1.6		Metamaterial Absorber with a Transmission Band (RASORBER)	16
1.7		Dual-sided Metasurface Structures	19
1.8		Emerging Trends in the Metamaterial Absorbers	19
1.9		Terahertz Technology and its Applications	22
1.10		Motivation	24

Chapter 2: Frequency and time-domain analyses of multiple reflection and interference phenomena in a metamaterial absorber

2.1	Introduction	31
2.2	Theoretical Analysis of Absorption Based on Three-layer Model	33
2.3	Multiple Reflections Phenomenon Inside the Dielectric Layer	35
2.4	Study of Surface Current Orientations	39
2.5	Time-Domain Analysis of Multiple Reflections	41
2.6	Conclusion	45

Chapter 3: Mathematical int interpretation of wave propagation, standing wave resonance and absorption in a metasurface absorber

3.1		Introduction	47
3.2		Mathematical model of multiple reflections phenomena	48
	3.2.1	Standing wave resonance inside the dielectric	51
	3.2.2	Variation in the Standing Wave Pattern for Change in the Polarization Angle	53
3.3		Study of Electric Field and Polarization Angle on the Orientation	54
3.4		of Surface Currents Conclusions	57

Chapter 4: Structural and mathematical analyses of a dual-sided metasurface for the design of multifucntional and bidirectional optoelectronics devices

4.1		Introduction	60
4.2		Study of a dual-sided metasurface structure	61
	4.2.1	Frequency response for change in the direction of incidence	63
4.3		Multifunctionality in the light of wave-structure interaction	65
4.4		Equivalent circuit models of dual-sided metasurface structure	68
	4.4.1	Equivalent circuit models of dual-sided metasurface at low resonance frequency	70
	4.4.2	Equivalent circuit models of dual-sided metasurface at high resonance frequency	70
4.5		Realization of a bidirectional rasorber	71
4.6		Conclusions	74

Chapter 5: A metasurface based broadband cross polarization converter for far infrared region

5.1	Introduction	77
5.2	Design of the structure	79
5.3	Simulated results	82
5.4	Study of the structure under oblique incidences	86
5.5	Polarization conversion under Brewster's angle incidence	88
5.6	Conclusions	90

Chapter 6: Conclusion and Future Scope

6.1	Major Conclusions	93
6.2	Future Scope	96