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Abstract

The remote sensing phenomenon is based on the principle of getting information about

the object without any physical contact. Remote sensing techniques for Earth observation

have become a reality with the development of space-borne sensors. Microwave in remote

sensing is widely promoted due to their ability to penetrate cloud, even the top layer of

the soil surface, as well as provide day and night coverage of Earth features. The use of

the microwave region of the electromagnetic spectrum in remote sensing has different

capabilities that enhance remote sensing technologies utilized in other spectral regions. For

instance, microwave interaction mechanism with different Earth surface features is usually

governed by their structural (i.e., size, shape, orientation, and density) and physical (i.e.,

leaf area index, water content, biomass, soil moisture, and dielectric constant) properties.

In microwave remote sensing, the amount of energy scattered off the target is the key

to understanding the target properties and is represented by the target scattering coefficient.

In the last few decades, significant advancements have been made in developing theoretical

microwave scattering models for interpreting experimental data and field measurements to

validate the model. Our key research interests in bistatic radars for active remote sensing

include the electromagnetic modeling, simulation, and data retrieval of vegetated fields

and rough soil surfaces.

This thesis presents an optimization technique for an indigenously designed bistatic

scatterometer system to interpret target scattering response and information retrieval of land

bio-geophysical parameters. The theoretical microwave scattering model embedded with

the geometric configuration of the bistatic scatterometer system, frequency, polarization,

and physical properties of the target is developed and used to simulate the bistatic scattering

coefficient of the target. The developed model is also utilized to interpret the experimental

results and understand the interaction mechanism for microwave electromagnetic signals



xii

with the complex targets, such as vegetated rough soil surfaces. The radiative transfer

theory has been extensively used in the interpretation of the experimental data obtained

from the vegetated rough soil surface at the ground altitude. The decomposition of the

single and multiple scattering components utilizing the radiative transfer theory allows the

interpretation of the dominant scattering component with respect to temporal change in the

physical and structural properties of the target. For vegetative terrain, volume and multiple

scattering play a crucial role at high frequencies of electromagnetic wave scattering. In

addition, at low frequencies, the rough soil surface scattering plays an important role.

The theoretical model emphasizes wave scattering from the rough surface when volume

scattering is not considered. The parametric function and empirical relations are used to

connect the scattering model with target parameters which facilitate efficient and accurate

interpretation of the target information retrieval by inverting the model. The retrieval of the

desired vegetation and land surface information helps to better understand the environmen-

tal dynamics at a local and global scale. Specifically, the possibility of bistatic radar for

vegetation biophysical and soil moisture retrieval is explored using electromagnetic scat-

tering models that give bistatic scattering simulations. The sophisticated electromagnetic

scattering models are excellent for describing the complex scattering phenomenon based

on physics, their structural properties, and mathematics, but it involves so many parameters

that do not exist for each observed pixel for retrieval. Therefore, the inversion of these

electromagnetic scattering models is computationally complex and tedious for desired

target information retrieval. In the scientific field of remote sensing, machine learning

approaches have also been employed to overcome the complexity of the electromagnetic

scattering model. In our study, the potential of machine learning technique (i.e., support

vector machine) is also evaluated for vegetation biophysical parameter retrievals.

The experimental findings presented in the thesis may be used as a reference to

find the optimum parameters, such as incidence angle, polarization, and frequency, for
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future advancements in the bistatic radar system to monitor vegetation/land scattering

response more authentically ever before. The bistatic scattering simulation finding and

retrieval of vegetation biophysical and land surface parameters utilizing the microwave

scattering model have shown excellent potential for monitoring vegetation health and

surface characteristics.

***********
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Nomenclature

List of Greek and Roman Symbols

λ Wavelength

E Energy

f Frequency

GHz Gigahertz (Unit of frequency)

c Speed of light

ℏ Reduced Planck’s constant

µ Micro

m Meter

µm Micrometer

mm Millimeter

W Watt

kg Kilogram

K Kelevin



T Temperature

◦C Degree celcius

σ Stefan-boltzmann constant

λmax Wavelength of maximum spectral radiant exitance

Ei(λ ) Incident energy

Er(λ ) Reflected energy

Et(λ ) Transmitted energy

Ea(λ ) Absorbed energy

ρλ Reflectance

αλ Absorptance

τλ Transmittance

∆x Horizontal spacing

∆z Height spacing

p(z) Probability density function

zi(xi) Height profile at xi values

ρ(ζ ) Correlation function

k̂ Wave vector direction

∆φ Phase difference

θ Zenith angle



φ Azimuth angle

η ,ζ Vegetation density

w Scattering albedo

τ Vegetation optical depth

σpq Bistatic scattering coefficient at ‘pq’ polarization

ĥ Horizontal polarization unit vectors

v̂ Vertical polarization unit vectors

θi Zenith incidence angle

φi Azimuth incidence angle

θr Reflected receiving angle

θs Scattered receiving angle

φr Reflected azimuth angle

φr Reflected azimuth angle

Pi
p p-Polarized power of incidence plane wave

Ps
q q-Polarized power of spherically scattered wave

Gt/Gr Gain of the transmitting/receiving horn antenna

Gt0/Gr0 Maximum gain of the transmitting/receiving antenna

L Largest lateral dimension of the horn antenna

ρ0 Reflectivity



Γpq, Rpq Fresnels reflection coefficient

Ps
q(std) Reflected power from a perfectly flat aluminum sheet

φel Elevation beam-width of the horn antenna

φaz Azimuth beam-width of the horn antenna

Ri Transmitter horn antenna range in specular direction

Rs Receiver horn antenna range in specular direction

ke Extinction coefficients

ka Absorption coefficients

ks Scattering coefficients

Ii, I− Downwelling Intensity

Ir, I+ Upwelling Intensity

h Surface roughness parameter

γ2 Two-way wave attenuation in the vegetative medium

Rc Radius of curvature

f Fields in the Kirchhoffs approximation

I Ensemble average of scattered intensity

εm Soil dielectric constant

ε
′
m,ε

′ Real part of the soil dielctric constant

ε
′′
m,ε

′′ Imaginary part of the soil dielctric constant



α Shape factor

β Texture factor

ρb Bulk density

ρs Particle density

εs Solid soil matter dielctric constant

ε f w Free water dielctric constant

% Percentage

xi Input features or training datasets

yi Observables

ξi,ξ
∗
i Slack variables

ε,C,d,γ Hyper and kernel parameter of support vector regression algorithm

***********



List of Abbreviations

NASA National Aeronautics and Space Administration

SAR Synthetic-Aperture Radars

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

HySIS Hyperspectral Imaging Satellite

SLAR Side-Looking Airborne Radar

ISAR Inverse Synthetic-Aperture Radar

InSAR/IFSAR Interferometric SAR

SRTM Shuttle Radar Topography Mission

NSCAT NASA Scatterometer

ASCAT Advanced Scatterometer

SMAP Soil Moisture Active Passive

SLR Side-Looking Radar

SLAR Side-Looking Airborne Radar

ESA European Space Agency

GNSS-R Global Navigation Satellite System- Reflectometry

IEM Integral Equation Model

I2EM Improved IEM

EMSL Experimental Microwave Signature Laboratory



SPM Small Perturbation Model

PO Physical Optics

GO Geometrical Optics

BRDF Bidirectional Reflectance Distribution Function

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

PAD Polarization Analogue and Digital

LAI Leaf Area Index

PWC/VWC Plant/Vegetation Water Content

FBm Fresh Biomass

d or PH Plant Height

N Number of samples

mν Volumetric soil moisture

M Amount of radiation emitted by object per surface area of black body in a

unit time

A Weins constant

RMS Root Mean Square

s RMS height

l Surface correlation length



m RMS slope

RTM Radiative Transfer Model/Method

MRTM Modified Radiative Transfer Model/Method

RTE Radiative Transfer Equation

CCRS Canada Centre for Remote Sensing

ComRAD Combined RADar/RADiometer

UF-LARS University of Florida L band Automated Radar System

UF-LMR University of Florida L band Microwave Radiomete

BRCS Bistatic Radar Cross-Cection

FSA Forward Scattering Alignment

BSA Back Scatter Alignment

RFOV Radar Field Of View

UAVs Unmanned Aerial Vehicles

GPS Global Positioning System

DEM Digital Elevation Model

VPF Vegetation Phase Function

VOD Vegetation Optical Depth

DAS Days After Sowing

HG Henyey-Greenstein



RMSE Root Mean Square Error

R Correlation coefficient

R2 Squared Correlation coefficient

HH Horizontal transmit - Horizontal receive

VV Vertical transmit - Vertical receive

HV Horizontal transmit - Vertical receive

VH Vertical transmit - Horizontal receive

BiSCAT Bistatic Scatterometer

WFresh veg Weight of the fresh vegetation biomass

Wdry veg Weight of the dry vegetation biomass

KA Kirchhoff Approximation

DBA Distorted Born Approximation

MIMICS Michigan microwave Canopy Scattering

TOV Tor Vergata

Bi-spec Bistatic Specular

SVR Support Vector Regression

CRMSE Centered RMSE

SD Standard Deviation

***********


