## **Table of contents**

| Lì | St of I      | igures                                                          | XXI  |
|----|--------------|-----------------------------------------------------------------|------|
| N  | Nomenclature |                                                                 |      |
| 1  | Intr         | oduction                                                        | 1    |
|    | 1.1          | Overview                                                        | . 1  |
|    | 1.2          | Importance of the study of nonlinearity in NEMS and MEMS        | . 6  |
|    | 1.3          | Origin of nonlinearity in NEMS resonators                       | . 7  |
|    |              | 1.3.1 Nonlinearity due to external potential and geometry       | . 9  |
|    | 1.4          | Nitrogen vacancy (NV) center spin                               | . 10 |
|    |              | 1.4.1 Structure of NV center spin in Diamond                    | . 13 |
|    | 1.5          | Quantum mechanical oscillators                                  | . 14 |
|    | 1.6          | Kicked rotator                                                  | . 18 |
|    | 1.7          | Two coupled nanomechanical resonators                           | . 22 |
|    |              | 1.7.1 Experimental Setup of coupled nanomechanical resonators   | . 23 |
|    |              | 1.7.2 Theoretical Modeling of coupled nanomechanical resonators | . 23 |
|    | 1.8          | Chaos                                                           | . 26 |
|    |              | 1.8.1 Limitations of chaos theory                               | . 27 |
|    | 1.9          | Open quantum system                                             | . 28 |
|    |              | 1.9.1 Markovian Lindblad Master Equation                        | . 29 |

xviii Table of contents

|   |       | 1.9.2   | Dynamical Map                                                | 31 |
|---|-------|---------|--------------------------------------------------------------|----|
|   |       | 1.9.3   | Non-Markovian Behavior of Quantum Processes in Open Systems  | 33 |
|   | 1.10  | Entang  | glement                                                      | 36 |
|   | 1.11  | Scram   | bling in a quantum system                                    | 39 |
|   | 1.12  | Outline | e of the Thesis                                              | 41 |
| _ | ~     |         |                                                              |    |
| 2 | Gen   | eration | of coherence in an exactly solvable nonlinear nanomechanical |    |
|   | syste | em      |                                                              | 43 |
|   | 2.1   | Introdu | action                                                       | 43 |
|   | 2.2   | Theore  | etical modeling                                              | 45 |
|   |       | 2.2.1   | Classical cantilever dynamics                                | 46 |
|   | 2.3   | Quanti  | um cantilever dynamics                                       | 50 |
|   | 2.4   | Quanti  | am spin dynamics of NV center                                | 52 |
|   | 2.5   | Dissipa | ation                                                        | 60 |
|   |       | 2.5.1   | Markovian Lindblad master equation                           | 60 |
|   |       | 2.5.2   | Fluctuations due to the spin bath                            | 64 |
|   | 2.6   | Multile | evel dynamics                                                | 69 |
|   | 2.7   | Unitar  | y generation of coherence                                    | 72 |
|   | 2.8   | Conclu  | asion                                                        | 79 |
| 3 | Hvb   | rid qua | ntum-classical chaotic NEMS                                  | 81 |
|   | 3.1   |         | action                                                       | 81 |
|   | 3.2   |         | nics of the cantilever                                       | 85 |
|   |       | •       |                                                              |    |
|   | 3.3   | •       | /2 system attached to the cantilever                         | 88 |
|   |       | 3.3.1   | Evolved in time wave function                                | 88 |
|   |       | 3.3.2   | Expectation values of the NV spin components                 | 91 |
|   |       | 3.3.3   | Quantum coherence                                            | 92 |

| Table of contents | xix |
|-------------------|-----|
|                   |     |

|    |                                                                             | 3.3.4 Quantum Poincaré recurrence                                   | 96  |  |  |  |  |
|----|-----------------------------------------------------------------------------|---------------------------------------------------------------------|-----|--|--|--|--|
|    |                                                                             | 3.3.5 Level statistics for spin-1/2 case                            | 99  |  |  |  |  |
|    | 3.4                                                                         | Dynamics of a three-level NV system                                 | 99  |  |  |  |  |
|    | 3.5                                                                         | Statistical average over various $I_0$ and $\theta_0$               | 104 |  |  |  |  |
|    | 3.6                                                                         | Feedback Effect                                                     | 107 |  |  |  |  |
|    | 3.7                                                                         | Conclusions                                                         | 110 |  |  |  |  |
| 4  | Scra                                                                        | mbling and quantum feedback in a nanomechanical system              | 113 |  |  |  |  |
|    | 4.1                                                                         | Introduction                                                        | 113 |  |  |  |  |
|    | 4.2                                                                         | Model                                                               | 117 |  |  |  |  |
|    | 4.3                                                                         | Results and discussion                                              | 121 |  |  |  |  |
|    |                                                                             | 4.3.1 Analytical solution in the absence of feedback                | 121 |  |  |  |  |
|    |                                                                             | 4.3.2 Autonomous case                                               | 123 |  |  |  |  |
|    |                                                                             | 4.3.3 External driving                                              | 126 |  |  |  |  |
|    | 4.4                                                                         | Inherently quantum case: Non-zero OTOC, geometric measure of entan- |     |  |  |  |  |
|    |                                                                             | glement and concurrence                                             | 127 |  |  |  |  |
|    | 4.5                                                                         | Conclusions                                                         | 132 |  |  |  |  |
| 5  | Sum                                                                         | mary and Future Plans                                               | 133 |  |  |  |  |
|    | 5.1                                                                         | Summary                                                             | 133 |  |  |  |  |
|    | 5.2                                                                         | Future Plans                                                        | 135 |  |  |  |  |
| Re | eferen                                                                      | ces                                                                 | 137 |  |  |  |  |
| АĮ | Appendix A Generation of coherence in an exactly solvable nonlinear nanome- |                                                                     |     |  |  |  |  |
|    | chan                                                                        | nical system                                                        | 155 |  |  |  |  |
|    | S-I                                                                         | Matrix elements in $G$ , $G_0$ and $G_+$ regions                    | 155 |  |  |  |  |
|    | S-II                                                                        | Eigenvectors in $G$ region                                          | 161 |  |  |  |  |

xx Table of contents

| S-III   | Coefficients of density matrix in $G$ region                                | 162 |
|---------|-----------------------------------------------------------------------------|-----|
| S-IV    | Calculation of $d c_1(t) /dt$                                               | 163 |
| S-V     | Reduced density matrix $\rho_s(t)$                                          | 164 |
| S-VI    | Eigenvalues and eigenvectors related to section 2.7                         | 165 |
| Appendi | ix B Hybrid quantum-classical chaotic NEMS                                  | 169 |
| S-I     | Normalization condition for the wave function represented in Eq.(3.16)      |     |
|         | when $G_n\{\varphi\}$ is diagonal                                           | 169 |
| S-II    | Normalization condition for the wave function represented in Eq.(3.16)      |     |
|         | when $G_n\{\varphi\}$ is non-diagonal                                       | 171 |
| S-III   | Expectation value of $\langle \sigma_{\alpha} \rangle$ , $\alpha = x, y, z$ | 175 |
| S-IV    | Elements of density matrix for Eq.(3.19)                                    | 176 |
| S-V     | Normalization constants for eigenstates of Floquet operator for Eq.(3.26)   |     |
|         | and matrix elements for Eq.(3.28)                                           | 178 |
| Appendi | ix C Scrambling and quantum feedback in a nanomechanical system             | 181 |
| S-I     | Appendix: Calculation of thermally averaged OTOC $C_{\rho}$                 | 181 |

## **List of figures**

| 1.1 | (Color online) Nanomechanical resonator of the dimensions $(L, W, T) =$        |    |
|-----|--------------------------------------------------------------------------------|----|
|     | (3000,300,30)nm attached to a single NV center electron spin with the          |    |
|     | help of magnetic tip made up of ferromagnetic material at the end of the       |    |
|     | resonator. The distance between NV center electron spin and magnetic           |    |
|     | tip is 25nm in absence of external driving. Microwave and laser fields         |    |
|     | are used to manipulate and measure the spin states. Range of Microwave         |    |
|     | frequency from 100 - 1000 GHz and Nd:YAG laser can be used                     | 8  |
| 1.2 | (Color online) Nitrogen vacancy (NV) center in a diamond lattice               | 11 |
| 1.3 | (Color online) Spin dynamics in the NV center in diamond. The transition       |    |
|     | between ground and excited state is spin conserving. The spin polarization     |    |
|     | comes from decay via the intermediate singlets state from $m_s=\pm 1$ to       |    |
|     | $m_s=0.$                                                                       | 12 |
| 1.4 | (Color online) Level diagram of the driven NV center in the electronic         |    |
|     | ground state                                                                   | 13 |
| 1.5 | The Phase space plot of Kicked rotator in (a) the regular regime $K = 0.3$     |    |
|     | (Red) where the phase space is covered by two different phase trajectories:    |    |
|     | open hyperbolic and some part of closed elliptic, and (b) the chaotic regime   |    |
|     | at $K = 1.5$ (Green) where the entire phase space is covered by a chaotic sea. | 22 |

**xxii** List of figures

| 1.6 | The figure is taken from Sotiris C. Masmanidis et al. science.1144793                         |    |
|-----|-----------------------------------------------------------------------------------------------|----|
|     | (2007) only to depict a case of Nanomechanical piezoelectric actuation.                       |    |
|     | (A) Shows a GaAs cantilever with embedded pin diode structure. (B) Setup                      |    |
|     | for measurement used by Masmanidis et al. The bias T allows both dc and                       |    |
|     | ac signals to be applied. The measurement are performed by Masmanidis                         |    |
|     | et al. at room temperature and a pressure of 5 millitorrs. (C) Frequency                      |    |
|     | response curve near the resonance of a diode-embedded cantilever under 0                      |    |
|     | dc bias.                                                                                      | 24 |
|     |                                                                                               |    |
|     |                                                                                               |    |
|     |                                                                                               |    |
| 1.7 | (Color online) A total system divided into the system of interest, "System",                  |    |
|     | and the environment                                                                           | 29 |
|     |                                                                                               |    |
|     |                                                                                               |    |
| 1.0 |                                                                                               | 20 |
| 1.8 | Schematics representation of Entanglement                                                     | 38 |
|     |                                                                                               |    |
|     |                                                                                               |    |
|     |                                                                                               |    |
| 2.1 | Energy spectrum $E_n(l)$ of Mathieu-Schrödinger equation with varying bar-                    |    |
|     | rier height $l$ . The region where curves are split is called $G_0$ and the merging           |    |
|     | points define the boundaries of the $G$ and $G_+$ subgroups. The energy                       |    |
|     | spectrum corresponding to Mathieu function $ ce_n(l, \varphi)\rangle$ is described by         |    |
|     | Mathieu characteristic $a_n(l)$ , and the energy spectrum corresponding to                    |    |
|     | Mathieu function $ se_n(l, \varphi)\rangle$ is described by Mathieu characteristic $b_n(l)$ . |    |
|     | Barrier height $l$ is in units of $\frac{U}{\omega'}$                                         | 50 |

List of figures xxiii

| component $\langle \sigma_y \rangle$ , and (c) average longitudinal spin component $\langle \sigma_z \rangle$ , plotted for the bipartite system $\hat{\rho}_{AB}$ in the region $G_0$ for different quantum numbers $n=2,3,4$ . In all the figures blue (solid), orange (solid) and violet (dashed) lines represent $n=2,l=3.855, n=3,l=7.535$ and $n=4,l=10.785$ cases, respectively. The values of the barrier heights $l$ are chosen to be in $G_0$ region for the given $n$ . The interaction strength between the nonlinear oscillator and the NV spin is taken to be $Q=0.5$ . Time is in the units of $\omega_0^{-1}$ , which is of the order of nanoseconds | 2.2 | (a) Average transverse spin component $\langle \sigma_x \rangle$ , (b) average transverse spin                          |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------|----|
| $n=2,3,4$ . In all the figures blue (solid), orange (solid) and violet (dashed) lines represent $n=2,l=3.855,n=3,l=7.535$ and $n=4,l=10.785$ cases, respectively. The values of the barrier heights $l$ are chosen to be in $G_0$ region for the given $n$ . The interaction strength between the nonlinear oscillator and the NV spin is taken to be $Q=0.5$ . Time is in the units of                                                                                                                                                                                                                                                                              |     | component $\langle \sigma_y \rangle$ , and (c) average longitudinal spin component $\langle \sigma_z \rangle$ , plotted |    |
| lines represent $n = 2, l = 3.855, n = 3, l = 7.535$ and $n = 4, l = 10.785$ cases, respectively. The values of the barrier heights $l$ are chosen to be in $G_0$ region for the given $n$ . The interaction strength between the nonlinear oscillator and the NV spin is taken to be $Q = 0.5$ . Time is in the units of                                                                                                                                                                                                                                                                                                                                            |     | for the bipartite system $\hat{ ho}_{AB}$ in the region $G_0$ for different quantum numbers                             |    |
| cases, respectively. The values of the barrier heights $l$ are chosen to be in $G_0$ region for the given $n$ . The interaction strength between the nonlinear oscillator and the NV spin is taken to be $Q=0.5$ . Time is in the units of                                                                                                                                                                                                                                                                                                                                                                                                                           |     | n = 2, 3, 4. In all the figures blue (solid), orange (solid) and violet (dashed)                                        |    |
| $G_0$ region for the given $n$ . The interaction strength between the nonlinear oscillator and the NV spin is taken to be $Q=0.5$ . Time is in the units of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | lines represent $n = 2, l = 3.855, n = 3, l = 7.535$ and $n = 4, l = 10.785$                                            |    |
| oscillator and the NV spin is taken to be $Q = 0.5$ . Time is in the units of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | cases, respectively. The values of the barrier heights $l$ are chosen to be in                                          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | $G_0$ region for the given $n$ . The interaction strength between the nonlinear                                         |    |
| $\omega_0^{-1}$ , which is of the order of nanoseconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | oscillator and the NV spin is taken to be $Q = 0.5$ . Time is in the units of                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | $\omega_0^{-1}$ , which is of the order of nanoseconds                                                                  | 52 |

- 2.3 (a) The amplitude and (b) frequency of  $\langle \sigma_x \rangle$  with respect to barrier height l for different values of n. The quantum numbers n and l are chosen such that the mathematical pendulum remains in  $G_0$  region. In all the figures, red (solid), violet (Dot-Dashed) and blue (dashed) lines represent n=2, n=3 and n=4 cases, respectively. The dots in the figures represent the points which are considered in Fig. 2.2. Barrier height l is in units of  $\frac{U}{\omega'}$ .

**xxiv** List of figures

2.5 Purity for the hybrid system of NV center and nonlinear oscillator. (a) Behavior of purity for a damping constant  $\gamma=0.01$  at an arbitrary interaction strength Q. The blue (solid), red (solid), yellow (solid) and purple (solid) lines represent Q=0.5, Q=5, Q=10 and Q=25 cases, respectively. (b) For an interaction strength Q=0.5 but at arbitrary damping constant  $\gamma$ . The blue (solid), red (solid), yellow (solid) and purple (solid) lines represent  $\gamma=0.01$ ,  $\gamma=0.02$ ,  $\gamma=0.03$  and  $\gamma=0.04$  cases, respectively. In  $G_0$  region for the quantum state n=4. The barrier height l=10.785 corresponds to the region  $G_0$  in the vicinity of the transition into the region  $G_0$ . Time t is in the units of  $\omega_0^{-1}$ , which is of the order of nanoseconds. . 61

List of figures xxv

| 2.7 | Longitudinal spin component $\langle \sigma_z \rangle$ of the hybrid system of NV center and       |    |
|-----|----------------------------------------------------------------------------------------------------|----|
|     | nonlinear oscillator (a). The blue (solid), red (solid) and yellow (solid)                         |    |
|     | lines represent $Q = 1$ , $Q = 5$ and $Q = 25$ cases, respectively. For different                  |    |
|     | damping coefficient $\gamma$ and fixed coupling strength $Q=0.5$ (b). The blue                     |    |
|     | (solid), red (solid), yellow (solid) and purple (solid) lines represent $\gamma$ =                 |    |
|     | $0.01$ , $\gamma = 0.02$ , $\gamma = 0.03$ and $\gamma = 0.04$ cases, respectively. Both cases are |    |
|     | in $G_0$ region for the quantum state $n = 4$ is considered. The barrier height                    |    |
|     | $l = 10.785$ corresponds to the region $G_0$ in the vicinity of the transition                     |    |
|     | to the $G$ region. Time $t$ is in the units of $\omega_0^{-1}$ , which is of the order of          |    |
|     | nanoseconds                                                                                        | 63 |

**xxvi** List of figures

| 2.10 | (a) Transverse spin component $\langle \sigma_x \rangle$ , (b) transverse spin component $\langle \sigma_y \rangle$ , |    |
|------|-----------------------------------------------------------------------------------------------------------------------|----|
|      | and (c) longitudinal spin component $\langle \sigma_z \rangle$ plotted as function of time for                        |    |
|      | the bipartite system $\hat{ ho}_{AB}$ in the region $G_0$ for different multilevel quantum                            |    |
|      | states $n = 2, 3, 4$ . The blue (solid), orange (solid) and violet (dashed) lines                                     |    |
|      | represent $n = 2, l = 3.855, n = 3, l = 7.535$ and $n = 4, l = 10.785$ cases,                                         |    |
|      | respectively. The values of barrier heights $l$ are chosen to be in the region                                        |    |
|      | $G_0$ in the vicinity to the transition into the region $G$ . The interaction                                         |    |
|      | strength between nonlinear oscillator and NV spin is $Q = 0.5$ . Time $t$ is in                                       |    |
|      | the units of $\omega_0^{-1}$ , which is of the order of nanoseconds                                                   | 72 |

List of figures xxvii

3.1 The Phase space plot of cantilever's dynamics constructed through the recurrence relations Eq. (3.6) in (a) the regular regime K=0.5 (Blue) where the phase space is covered by two different phase trajectories: open hyperbolic and some part of closed elliptic, and (b) the chaotic regime at K=10 (Gray) where the entire phase space is covered by a chaotic sea. Topologically different phase trajectories are bordered by separatrix line. The values of parameters are:  $K=\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ ,  $\mu=\frac{\omega_r^2 m}{2a_0^2} I_0=\frac{m}{2}x_0^2\omega_r$ ,  $m=6\times 10^{-17} {\rm Kg}$ ,  $x_0=a_0=5\times 10^{-3} {\rm m}$ ,  $T=10\mu{\rm s}$ ,  $\omega_r=\omega_0=2\pi\times 5\times 10^6 {\rm Hz}$ , for chaotic case  $\varepsilon=0.003$  and for the regular case  $\varepsilon=0.0003\ldots$ 83

- 3.3 Fourier Power spectrum density for expectation values of  $\sigma_{x,y,z}$  in the regular regime ((a), (c) and (e)) at K=0.5 (Blue), and in the chaotic regime ((b), (d) and (f)) at K=10 (Gray). The parameters used for the plot are m=1, g=1,  $\omega_0=1$ ,  $\omega_r=0.2$ , T=1,  $\alpha=\pi/2$ . The values of the parameters in the real units:  $K=\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ ,  $\mu=\frac{\omega_r^2 m}{2a_0^2} I_0=\frac{m}{2}x_0^2\omega_r$ ,  $m=6\times 10^{-17}$  Kg,  $x_0=a_0=5\times 10^{-3}$  m,  $T=10\mu$ s,  $\omega_r=\omega_0=2\pi\times 5\times 10^6$  Hz, for chaotic case  $\varepsilon=0.003$  and for the regular case  $\varepsilon=0.0003$ . . . . . . . . 93

**xxviii** List of figures

| 3.4 | Spin dynamics for $\langle \sigma_x \rangle$ , $\langle \sigma_y \rangle$ and $\langle \sigma_z \rangle$ in the regular regime at $K = 0.5$ (see                                                         |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (a), (c) and (e)) and $\langle \sigma_x \rangle$ , $\langle \sigma_y \rangle$ and $\langle \sigma_z \rangle$ in the chaotic regime at $K = 10$ (see                                                      |    |
|     | (b), (d) and (f)). The parameters are $m = 1$ , $g = 1$ , $\omega_0 = 1$ , $\omega_r = 0.2$ , $T = 1$ ,                                                                                                  |    |
|     | $\alpha = \pi/2$ . The values of the parameters in the real units: $K = \varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ ,                                                                               |    |
|     | $\mu = \frac{\omega_r^2 m}{2a_0^2}$ , $I_0 = \frac{m}{2} x_0^2 \omega_r$ , $m = 6 \times 10^{-17} \text{Kg}$ , $x_0 = a_0 = 5 \times 10^{-3} \text{m}$ , $T = 10 \mu \text{s}$ ,                         |    |
|     | $\omega_r = \omega_0 = 2\pi \times 5 \times 10^6 \text{Hz}$ , for chaotic $\varepsilon = 0.003$ and for regular $\varepsilon = 0.0003$ .                                                                 | 94 |
| 3.5 | The quantum coherence in (a) the regular regime at $K = 0.5$ (Blue) and                                                                                                                                  |    |
|     | (b) the chaotic regime at $K = 10$ (Gray), for the following values of the                                                                                                                               |    |
|     | parameters $m = 1, g = 1, \omega_0 = 1, \omega_r = 0.2, T = 1, \alpha = \pi/2$ . The values                                                                                                              |    |
|     | of parameters are $K = \varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ , $\mu = \frac{\omega_r^2 m}{2a_0^2} I_0 = \frac{m}{2} x_0^2 \omega_r$ , $m = 6 \times 10^{-17} \text{Kg}$ ,                     |    |
|     | $x_0 = a_0 = 5 \times 10^{-3} \text{m}$ , T=10 $\mu$ s, $\omega_r = \omega_0 = 2\pi \times 5 \times 10^6 \text{Hz}$ , for chaotic                                                                        |    |
|     | arepsilon=0.003 and for regular $arepsilon=0.0003$                                                                                                                                                       | 95 |
| 3.6 | Quantum Poincaré recurrence as a function of time (i.e., number of kicks)                                                                                                                                |    |
|     | in (a) the regular regime at $K = 0.5$ (Blue) and (b) the chaotic regime                                                                                                                                 |    |
|     | at $K = 10$ (Gray). The parameters are $m = 1$ , $g = 1$ , $\omega_0 = 1$ , $\omega_r = 0.2$ ,                                                                                                           |    |
|     | $T=1,~\alpha=\pi/2.$ The values of parameters: $K=\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2},~\mu=\frac{\omega_r^2 m}{2a_0^2}$                                                                      |    |
|     | $I_0 = \frac{m}{2}x_0^2\omega_r$ , $m = 6 \times 10^{-17}$ Kg, $x_0 = a_0 = 5 \times 10^{-3}$ m, T=10 $\mu$ s, $\omega_r =$                                                                              |    |
|     | $\omega_0=2\pi	imes5	imes10^6$ Hz, for chaotic $arepsilon=0.003$ and for regular $arepsilon=0.0003$ .                                                                                                    | 96 |
| 3.7 | Histogram plot of level statistics of Hamiltonian $\hat{H}_n$ in the regular regime                                                                                                                      |    |
|     | at $K = 0.5$ (Blue) and in the chaotic regime $K = 10$ (Gray). A reference                                                                                                                               |    |
|     | plot for poissonian statistics (Orange) is also shown. For this plot we have                                                                                                                             |    |
|     | taken upto 1000 kicks to get the ensemble. The parameters are $m = 1$ ,                                                                                                                                  |    |
|     | $g=1,\omega_0=1,\omega_r=0.2, T=1,\alpha=\pi/2.$ The values of parameters: $K=$                                                                                                                          |    |
|     | $\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_0^2}$ , $\mu = \frac{\omega_r^2 m}{2a_0^2} I_0 = \frac{m}{2} x_0^2 \omega_r$ , $m = 6 \times 10^{-17} \text{Kg}$ , $x_0 = a_0 = 5 \times 10^{-3} \text{m}$ , |    |
|     | T=10 $\mu$ s, $\omega_r = \omega_0 = 2\pi \times 5 \times 10^6$ Hz, for chaotic case $\varepsilon = 0.003$ and for                                                                                       |    |
|     | the regular case $\varepsilon=0.0003$                                                                                                                                                                    | 98 |

List of figures xxix

3.9 Spin dynamics for the components  $S_x$  and  $S_z$  for Spin-1 case in the regular regime at K=0.5 ((a) and (c)) and in the chaotic regime at K=10 ((b) and (d)). The parameters are m=1, g=1,  $\Omega=1$ ,  $\delta=1$ ,  $\omega_r=0.2$ , T=1,  $\alpha=\pi/2$ . The values of the parameters in the real units:  $K=\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ ,  $\mu=\frac{\omega_r^2 m}{2a_0^2}$ ,  $I_0=\frac{m}{2}x_0^2\omega_r$ ,  $m=6\times 10^{-17}{\rm Kg}$ ,  $x_0=a_0=5\times 10^{-3}{\rm m}$ ,  $T=10\mu{\rm s}$ ,  $\omega_r=\omega_0=2\pi\times5\times10^6{\rm Hz}$ , for chaotic  $\varepsilon=0.003$  and for regular  $\varepsilon=0.0003$ .101

3.10 Histogram plot of level statistics of Hamiltonian  $\hat{H}_n = \hat{H}_{NV} + g\hat{V}_{c,NV}$  for spin-1 system (a) in the regular regime at K = 0.5 (Blue) and (b) in the chaotic regime K = 10 (Gray). A reference plot for Poissonian statistics (Orange) and Gaussian statistics (Red) is also shown. 1000 kicks are considered. The parameters are m = 1, g = 1,  $\Omega = 1$ ,  $\delta = 1$ ,  $\omega_r = 0.2$ , T=1,  $\alpha = \pi/2$ . The values of parameters:  $K = \varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_0^2}$ ,  $\mu = \frac{\omega_r^2 m}{2a_0^2} I_0 = \frac{m}{2} x_0^2 \omega_r$ ,  $m = 6 \times 10^{-17} \text{Kg}$ ,  $x_0 = a_0 = 5 \times 10^{-3} \text{m}$ , T=10 $\mu$ s,  $\omega_r = \omega_0 = 2\pi \times 5 \times 10^6 \text{Hz}$ , for chaotic case  $\varepsilon = 0.003$  and for the regular case  $\varepsilon = 0.0003$ . . 103

List of figures

3.11 Statistical average of spin dynamics (Spin-1/2 system) for  $\langle\langle\sigma_x\rangle\rangle$ ,  $\langle\langle\sigma_y\rangle\rangle$  and  $\langle\langle\sigma_z\rangle\rangle$  in the regular regime at K=0.5 ((a), (c) and (e)) and in the chaotic regime at K=10 ((b), (d) and (f)). For calculating statistical average of spin dynamics (Spin-1/2 system) we have taken 15 different sets of  $(I_0,\theta_0)$ . The parameters are m=1, g=1,  $\omega_0=1$ ,  $\omega_r=0.2$ , T=1,  $\alpha=\pi/2$ . The values of the parameters in the real units:  $K=\varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ ,  $\mu=\frac{\omega_r^2m}{2a_0^2}$ ,  $I_0=\frac{m}{2}x_0^2\omega_r$ ,  $m=6\times 10^{-17}{\rm Kg}$ ,  $x_0=a_0=5\times 10^{-3}{\rm m}$ ,  $T=10\mu{\rm s}$ ,  $\omega_r=\omega_0=2\pi\times5\times10^6{\rm Hz}$ , for chaotic  $\varepsilon=0.003$  and for regular  $\varepsilon=0.0003.105$ 

List of figures xxxi

| 3.14 | Spin dynamics with feedback (Solid) and without feedback (Dashed) for                                                                                                                     |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | $\langle \sigma_z \rangle$ in the regular regime at $K=0.5$ (see (a)) and $\langle \sigma_z \rangle$ in the chaotic                                                                       |     |
|      | regime at $K = 10$ (see (b)). The parameters are $m = 1$ , $g = 1$ , $\omega_0 = 1$ ,                                                                                                     |     |
|      | $\omega_r = 0.2, T = 1, \alpha = \pi/2$ . The values of the parameters in the real                                                                                                        |     |
|      | units: $K = \varepsilon I_0 T \frac{6\pi\mu}{m^2\omega_r^2}$ , $\mu = \frac{\omega_r^2 m}{2a_0^2}$ , $I_0 = \frac{m}{2}x_0^2\omega_r$ , $m = 6 \times 10^{-17} \text{Kg}$ , $x_0 = a_0 =$ |     |
|      | $5 \times 10^{-3}$ m, $T = 10 \mu$ s, $\omega_r = \omega_0 = 2\pi \times 5 \times 10^6$ Hz, for chaotic $\varepsilon = 0.003$                                                             |     |
|      | and for regular $\varepsilon=0.0003.$                                                                                                                                                     | 109 |
|      |                                                                                                                                                                                           |     |
| 4.1  | (Color online) Schematics of two NV electron spins coupled via coupled                                                                                                                    |     |
|      | oscillators. Oscillators are coupled to each other directly while NV electron                                                                                                             |     |
|      | spins are not.                                                                                                                                                                            | 116 |
|      |                                                                                                                                                                                           |     |
| 4.2  | Autonomous linear oscillators and weak connectivity regime: Position                                                                                                                      |     |
|      | and phase space plots in (a) and (b), and spin dynamics and OTOC in (c)                                                                                                                   |     |
|      | and (d). Inset in (d) shows two-point time ordered correlation. The values                                                                                                                |     |
|      | of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0$ , $\xi = 0$ ,                                                                              |     |
|      | $\gamma = 0, g = 1, K = 0.1, \alpha = \pi/3$ . Time t is in units of $\omega_0^{-1}$ , which is of the                                                                                    |     |
|      | order of nanoseconds.                                                                                                                                                                     | 118 |
|      |                                                                                                                                                                                           |     |
| 4.3  | Autonomous linear oscillators and strong connectivity regime: Position                                                                                                                    |     |
|      | and phase space plots in (a) and (b), and spin dynamics and OTOC in (c)                                                                                                                   |     |
|      | and (d). Inset in (d) shows two-point time ordered correlation. The values                                                                                                                |     |
|      | of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0$ , $\xi = 0$ ,                                                                              |     |
|      | $\gamma = 0$ , $g = 1$ , $K = 10$ , $\alpha = \pi/3$ . Time is in units of $\omega_0^{-1}$ , which is of the                                                                              |     |
|      | order of nanoseconds                                                                                                                                                                      | 110 |

**xxxii** List of figures

| 4.4 | Autonomous nonlinear oscillators and weak connectivity regime: Position                                         |     |
|-----|-----------------------------------------------------------------------------------------------------------------|-----|
|     | and phase space plots in (a) and (b), and spin dynamics and OTOC in (c)                                         |     |
|     | and (d). Inset in (d) shows two-point time ordered correlation. The values                                      |     |
|     | of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0$ , $\xi = 1$ ,    |     |
|     | $\gamma = 0, g = 1, K = 0.1, \alpha = \pi/3$ . Time t is in units of $\omega_0^{-1}$ , which is of the          |     |
|     | order of nanoseconds.                                                                                           | 122 |
|     |                                                                                                                 |     |
| 4.5 | Autonomous nonlinear oscillators and strong connectivity regime: Position                                       |     |
|     | and phase space plots in (a) and (b), and spin dynamics and OTOC in (c)                                         |     |
|     | and (d). Inset in (d) shows two-point time ordered correlation. The                                             |     |
|     | values of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0$ ,         |     |
|     | $\xi = 1, \gamma = 0, g = 1, K = 10, \alpha = \pi/3$ . Time t is in units of $\omega_0^{-1}$ , which is         |     |
|     | of the order of nanoseconds                                                                                     | 124 |
|     |                                                                                                                 |     |
| 4.6 | Driven nonlinear oscillators and weak connectivity regime: Position and                                         |     |
|     | phase space plots in (a) and (b), and spin dynamics and OTOC in (c)                                             |     |
|     | and (d). Inset in (d) shows two-point time ordered correlation. The                                             |     |
|     | values of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0.5$ ,       |     |
|     | $\xi = 1, \gamma = 0.15, g = 1, K = 0.1, \alpha = \pi/3$ . Time <i>t</i> is in units of $\omega_0^{-1}$ , which |     |
|     | is of the order of nanoseconds                                                                                  | 125 |
|     |                                                                                                                 |     |
| 4.7 | Driven nonlinear oscillators and strong connectivity regime: Position                                           |     |
|     | and phase space plots in (a) and (b), and spin dynamics and OTOC in                                             |     |
|     | (c) and (d). Inset in (d) shows two-point time ordered correlation. The                                         |     |
|     | values of the parameters are $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0.5$ ,       |     |
|     | $\xi = 1, \gamma = 0.15, g = 1, K = 10, \alpha = \pi/3$ . Time <i>t</i> is in units of $\omega_0^{-1}$ , which  |     |
|     | is of the order of nanoseconds                                                                                  | 127 |

List of figures xxxiii

| 4.8 | Plot of average energy versus time for (a) the oscillator and (b) the NV                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------|
|     | spin, in the strong connectivity regime. The values of the parameters are:                                                 |
|     | $\omega_0 = 1.5$ , $\omega_1 = 1.0$ , $\omega_2 = 1.5$ , $F_1 = F_1 = 0$ , $\xi = 0$ , $\gamma = 0$ , $g = 1$ , $K = 10$ , |
|     | $\alpha = \pi/3$ . The modulation depth of energies $\delta \langle H_{NV} \rangle = 0.5$ , $\delta H_0 = 1.5$ .           |
|     | Time t is in units of $\omega_0^{-1}$ , which is of the order of nanoseconds 128                                           |
| 4.9 | Plot of thermally averaged OTOC vs time at fixed Temperature(T). The                                                       |
|     | parameters used are $g = 1$ , $\omega_0 = 3$ , $\omega = 2$ , $T = 100$ , $n = 10$ (red), $n = 10$                         |
|     | 100(Green), $n = 1000$ (Gray), $n = 10000$ (blue). For very large $n$ the os-                                              |
|     | cillations die out. Time $t$ is in units of $\omega_0^{-1}$ , which is of the order of                                     |
|     | nanoseconds and Temperature is in the units of $\omega/K_B$ where $K_B$ is Boltz-                                          |
|     | mann constant                                                                                                              |