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spin, in the strong connectivity regime. The values of the parameters are:
=15 0=10,0,=15F=F=0,£=0,y=0,g=1,K =10,
o = /3. The modulation depth of energies 6 (Hyy) = 0.5, 8Hy = 1.5.
Time ¢ is in units of @, ! which is of the order of nanoseconds. . . . . . . 128
4.9 Plot of thermally averaged OTOC vs time at fixed Temperature(T). The
parameters used are g =1, wp =3, ®w =2, T = 100, n = 10(red), n =
100(Green), n = 1000(Gray), n = 10000(blue). For very large n the os-
cillations die out. Time 7 is in units of @, 1, which is of the order of
nanoseconds and Temperature is in the units of @/Kp where K is Boltz-

mann ConStant. . . . . . . . .t e e e e e e e e e 131



