CONTENTS

Page No.

1-10

11-54

CERTIFICATE	
ACKNOLEDGEMENT	i
CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xiii
LIST OF ABBREVIATION	xiv
ABSTRACT	XV

Chapter 1: INTRODUCTION

1.1 Background of Research	1
1.2 Research Problem	5
1.3 Research Objectives	6
1.4 Methodology	7
1.5 Significance of Work	9
1.6 Organization of Thesis Work	9
1.7 Scope of the Research	10

Chapter 2: LITERATURE REVIEW

2.1 Introduction	11
2.2 Blast-induced ground vibration (BIGV)	12
2.2.1 Mechanism of ground vibration	13
2.3 Seismic Waves	16
2.3 Seisine Waves	10
2.3.1 Body waves.	10
2.3.1.1 Primary Wave	16
2.3.1.2 Secondary Wave	16
2.3.2 Surface Waves	16
2.3.2.1 Rayleigh Wave	16
2.3.2.2 Love Wave	17
2.4 Seismic Wave Attenuation	18
2.4.1 Geometrical Attenuation	18
2.4.2 Anelastic Attenuation	19
2.5 Factors Affecting Ground Vibration	21
2.6 Blast Design Geometry.	21
2.6.1 Burden	22
2.6.2 Spacing	23
2.6.3 Stemming and Decking	23
2.6.4 Maximum Charge per Delay	24
2.6.5 Explosives	24
2.6.6 Blast Hole Design	25
2.6.7 Powder Factor	26
2.6.8 Initiation System and Delay Operator	27
2.6.9 Initiation Pattern	29

2.7 Instrument	31
2.7.1 Seismograph	31
2.8 Recording Parameters	32
2.8.1 Scaled Distance	32
2.8.2 Paek Particle Velocity (PPV)	33
2.8.3 Peak Vector Sum (PVS)	34
2.8.4 Dominant Frequency	35
2.9 Ground Vibration Damage at Different Level	36
2.9.1 Human Response	36
2.9.2 Structural Response	38
2.9.2.1 Induced and Natural Cracking	38
2.10 Standard Damage Criteria	39
2.10.1 United States Bureau of Mine (USBM) Damage Criteria	39
2.10.2 Indian Standard (DGMS) Damage Criteria	40
2.10.3 German Standard Damage Criteria	41
2.10.4 Australian Standard Damage Criteria	42
2.11 Approaches	42
2.11.1 Linear Regression Analysis	42
2.11.2 Site Specific Constant	42
2.11.3 Empirical Model Equations	43
2.11.3.1 Duvall-Petkof Model	43
2.11.3.2 Langefors-Khilstrom Model	43
2.11.3.3 General Predictor Model	43
2.11.3.4 Ambraseys-Hendron Model	44
2.11.3.5 Indian Standard Model	44
2.11.3.6 Ghosh-Demon Model	44
2.11.3.7 CMRI Predictor	44
2.11.4 Multivariate Regression Analysis	45
2.11.5 Fundamental of Artificial Neural Network	45
2.11.5.1 Neural Network Training	48
2.11.5.2 Neural Network Architecture	52

Chapter 3: DATA ACQUSITION AND COLLECTION

55-84

3.1 Introduction	55
3.2 Opencast Mine	55
3.2.1 Case I: Coal Mine-1 Chhattisgarh	56
3.2.1.1 Location and Geology	56
3.2.1.2 Blast Geometry and Dataset	58
3.2.2 Case II: Coal Mine-2 Madhya Pradesh	64
3.2.2.1 Location and Geology	64
3.2.2.2 Blast Geometry and Dataset	66
3.3 Limestone Quarry	71
3.3.1 Case III: Limestone quarry-3 Chhattisgarh	71
3.3.1.1 Location and Geology	71
3.3.1.2 Blast Geometry and Dataset	71

3.4 Stone Quarry	75
3.4.1 Case IV: Stone quarry-4 Bihar	75
3.4.1.1 Location and Geology	75
3.4.1.2 Blast Geometry and Dataset	77
3.4.2 Case V: Stone quarry-5 Uttar Pradesh	80
3.4.2.1 Location and Geology	80
3.4.2.2 Blast Geometry and Dataset	80
Chapter 4: DATA PROCESSING AND ANALYSIS	85-108
4.1 Introduction	85
4.1 Introduction 4.2 Qualitative Damage Analysis of Structures	85 87
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 	85 87 94
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 	85 87 94 95
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 4.5 Standard Limits for the Safe Level of Structures 	85 87 94 95 98
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 4.5 Standard Limits for the Safe Level of Structures 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh 	85 87 94 95 98 98
 4.1 Introduction. 4.2 Qualitative Damage Analysis of Structures. 4.3 Velocity Analysis. 4.4 Frequency Analysis. 4.5 Standard Limits for the Safe Level of Structures. 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh. 4.5.2 Multivariate Regression Analysis (MVRA). 	85 87 94 95 98 98 100
 4.1 Introduction. 4.2 Qualitative Damage Analysis of Structures. 4.3 Velocity Analysis. 4.4 Frequency Analysis. 4.5 Standard Limits for the Safe Level of Structures. 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh. 4.5.2 Multivariate Regression Analysis (MVRA). 4.5.3 Backpropagation Artificial Neural Network Technique. 	85 87 94 95 98 98 100 100

4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh	98
4.5.2 Multivariate Regression Analysis (MVRA)	100
4.5.3 Backpropagation Artificial Neural Network Technique	100
4.5.3.1 Network Training	100
4.5.3.2 Architecture of Datasets	102
4.6 Surface Coal Mine	103
4.6.1 Case II: Damage Analysis of Coal Mine-2 Madhya Pradesh	103
4.6.2 Site Specific Constant	104
4.6.3 Attenuation Model Equation	104
4.6.3.1 Predicted by Duvall-Petkof	105
4.6.3.2 Predicted by Langefors-Kihlstrom	105
4.6.3.3 Predicted by General Predictor	105
4.6.3.4 Predicted by Ambraseys-Hendron	106
4.6.3.5 Predicted by Indian Standard	106
4.7 Stone Quarry	106
4.7.1 Case III: Damage analysis of limestone quarry-3 Chhattisgarh	106
4.7.2 Case IV: Damage analysis of stone quarry-4 Bihar	107
4.7.3 Case V: Damage analysis of stone quarry-5 Uttar Pradesh	108

Chapter 5: RESULTS AND DISCUSSION

109-160

5.1 Introduction	109
5.2 Pukka Structures	109
5.3 Kuchcha Structures	110
5.4 Structural and Human Response to the Ground Vibration	110
5.4.1 Case I: Coal Mine-1 Chhattisgarh	111
5.4.1.1 Conventional Approach	117
5.4.1.2 Multivariate Regression Analysis Approach	118
5.4.1.3 Backpropagation artificial neural network approach	118
5.4.1.4 Safe Charge Per Delay	123
5.4.1.5 Critical Distance Assumption	125

5.4.1.6 Peak Particle Velocity Assumption	127
5.4.1.7 Correlation	127
5.4.2 Case II: Coal Mine-2 Madhya Pradesh	130
5.4.2.1 Safe Charge Weight per Delay	133
5.4.2.2 Correlation	135
5.4.3 Case III: Limestone quarry-3 Chhattisgarh	139
5.4.3.1 Safe Charge Weight per Delay	142
5.4.3.2 Correlation	143
5.4.4 Case IV: Stone quary-4 Bihar	146
5.4.4.1 Safe Charge Weight	149
5.4.4.2 Correlation	150
5.4.5 Case V: Stone quarry-5 Uttar Pradesh	152
5.4.5.1 Safe Charge Weight per Delay	155
5.4.4.2 Correlation.	156
Chapter 6: CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK	161-156
6.1 Conclusions	161
6.2 Recommendation for Future Work	162

REFERENCES	163-176
APPENDICES Appendix-A	177-204

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1.1	Flow chart of research methodology	8
Figure 2.1	Distribution of blast induced energy	13
Figure 2.2	Propagation of various seismic waves	15
Figure 2.3	After effect of explosion around blast hole	15
Figure 2.4	Conversion of mechanical energy into electrical signal	15
Figure 2.5	Longitudinal wave propagation	17
Figure 2.6	Shear wave propagation	17
Figure 2.7	Raleigh wave propagation	17
Figure 2.8	Love wave propagation	17
Figure 2.9	Geometrical attenuation of seismic wave	19
Figure 2.10	Anelastic loss of seismic waves	20
Figure 2.11	Geometry of blasting patch	22
Figure 2.12	Single and double column charged blast hole	26
Figure 2.13	Preparation of blast holes in a patch	26
Figure 2.14	Applied delay, booster, and blast holes ready for blasting	28
Figure 2.15	Rectangle pattern of blasting patch	30
Figure 2.16	Staggered initiation pattern of blasting patch	31
Figure 2.17	Installed an instrument in field and acquired digital data	32
Figure 2.18	Human response to vibrations in different time	37
Figure 2.19	Damage criteria for different houses by USBM	40
Figure 2.20	Damage criteria for different structures by IS	41
Figure 2.21	Damage criteria for different houses by DIN	41
Figure 2.22	Flow chart of BPANN technique from beginning to end of program	50
Figure 2.23	The architecture of nth layer of feed forward back propagation technique	53
Figure 2.24	Circuit Diagram of backpropagation ANN technique	53
Figure 3.1	Location map of Coal mine-1	57
Figure 3.2	Coal mine-1, geological formation	57
Figure 3.3	Staggered initiation pattern and blast hole details	59
Figure 3.4	Location map of Coal mine-2	65
Figure 3.5	Coal mine-2, geological formation	65
Figure 3.6	Staggered initiation pattern and blast hole details	66
Figure 3.7	Location map of limestone quarry-3	72
Figure 3.8	Staggered initiation pattern and blast hole details	73
Figure 3.9	Location map of stone quarry-4	76
Figure 3.10	Geological map of Bihar	76
Figure 3.11	Staggered initiation pattern and blast hole details	78
Figure 3.12	Location map of stone quarry-5	80
Figure 3.13	Staggered initiation pattern and blast hole details	82
Figure 4.1	The building event listening grid	86
Figure 4.2	The configuration of building events	86
Figure 4.3	The building event display on the monitor screen	86
Figure 4.4	Dust cloud after explosion	89
Figure 4.5	Dust cover over the region	89
Figure 4.6	Seismograph installed nearby the village	89
Figure 4.7	A view of cosmetic/hairline crack on the plaster wall	90
Figure 4.8	A view of cosmetic/hairline crack on the plaster wall	90

Figure 4.9	A view of minor crack on the plaster wall	90
Figure 4.10	A view of cosmetic/hairline to minor cracks on brick-cement wall	91
Figure 4.11	A view of hair line to minor cracks on brick-cement wall of another house	91
Figure 4.12	A view of minor to major cracks on the brick-mud mortar wall	91
Figure 4.13	A view of major cracks on the non-plaster brick-mud mortar wall	92
Figure 4.14	A typical wave signature recorded nearby the structure at 510m	92
Figure 4.15	A typical wave signature recorded nearby the structure at 520m	92
Figure 4.16	A typical wave signature recorded nearby the structure at 530m	93
Figure 4.17	A typical wave signature recorded nearby the structure at 430m	93
Figure 4.18	A typical wave signature recorded nearby the structure at 490m	93
Figure 4.19	A typical wave signature recorded nearby the structure at 425m	94
Figure 4.20	A typical wave signature recorded nearby the structure at 440m	94
Figure 4.21	Frequency wavelets in orthogonal direction at 25m distance from blast site	96
Figure 4.22	Frequency wavelets in orthogonal direction at 150m distance from blast site	96
Figure 4.23	Frequency wavelets in orthogonal direction at 300m distance from blast site	97
Figure 4.24	Frequency wavelets in orthogonal direction at 350m distance from blast site	97
Figure 4.25	Frequency vs. amplitude graph plotted at 50m distance	99
Figure 4.43	Frequency vs. amplitude graph plotted at 50m distance	99
Figure 4.61	Back propagation neural network configuration	103
Figure 4.62	Frequency vs. amplitude graph plotted at 50m distance	104
Figure 4.82	Frequency vs. amplitude graph plotted at 50m distance	107
Figure 4.102	Frequency vs. amplitude graph plotted at 50m distance	108
Figure 4.122	Frequency vs. amplitude graph plotted at 50m distance	108
Figure 5.1	Scattered graph plotted between scaled distance and measured PPV by IS	120
Figure 5.2	Scattered graph plotted between distance and measured PPV by IS	120
Figure 5.3	Scattered graph plotted between measured and predicted PPV by IS	120
Figure 5.4	Scattered graph plotted between measured and predicted PPV by MVRA	121
Figure 5.5	Scattered graph plotted between distance and predicted frequency by MVRA	121
Figure 5.6	Scattered graph plotted between measured and predicted frequency by MVRA	121
Figure 5.7	Scattered graph plotted between distance and predicted PPV by ANN	122
Figure 5.8	Scattered graph plotted between measured and predicted PPV by ANN	122
Figure 5.9	Scattered graph plotted between measured and predicted frequency by ANN	122
Figure 5.10	Measured and predicted PPV with datasets	123
Figure 5.11	Measured and predicted frequency with datasets	123
Figure 5.12	Safe charge per delay distribution by IS	124
Figure 5.13	Blast event at monitoring distance of 300m	126
Figure 5.14	Blast event at monitoring distance of 350m	126
Figure 5.15	Blast event at monitoring distance of 500m	126
Figure 5.16	Blast event at monitoring distance of 550m	126
Figure 5.17	Graph plotted between peak particle velocity and velocity components	128
Figure 5.18	Graph plotted of measured and predicted PPV with monitoring distance	128
Figure 5.19	Graph plotted of measured and predicted PPV with Scaled distance.	128
Figure 5.20	Graph plotted between monitoring distance and velocity components	129
Figure 5.21	Graph plotted between scaled distance and velocity components	129

Figure 5.22	Graph plotted between measured PPV and measured frequency	129
Figure 5.23	Safe charge per delay distribution by various models	134
Figure 5.24	Graph plotted between scaled distance and PPV by D-P	135
Figure 5.25	Graph plotted between scaled distance and PPV by L-K	136
Figure 5.26	Graph plotted between scaled distance and PPV by A-H	136
Figure 5.27	Graph plotted between scaled distance and PPV by IS	136
Figure 5.28	Measured and predicted PPV's correlation by D-P	137
Figure 5.29	Measured and predicted PPV's correlation by L-K	137
Figure 5.30	Measured and predicted PPV's correlation by GP	137
Figure 5.31	Measured and predicted PPV's correlation by A-H	138
Figure 5.32	Measured and predicted PPV's correlation by IS	138
Figure 5.33	Comparison graph between measured and predicted PPV	138
Figure 5.34	Safe charge per delay distribution by USBM	143
Figure 5.35	Graph plotted between scaled distance and measured PPV	144
Figure 5.36	Graph plotted between measured and predicted PPV	144
Figure 5.37	Graph plotted between measured and predicted PVS	144
Figure 5.38	Wavelets of measured and predicted PPV varying with datasets	145
Figure 5.39	Wavelets of PPV and PVS varying with datasets	145
Figure 5.40	Velocity and frequency building histogram varying with datasets	145
Figure 5.41	Safe charge per delay distribution by IS	150
Figure 5.42	Graph plotted between scaled distance and PPV by USBM	151
Figure 5.43	Graph plotted between scaled distance and PPV by IS	151
Figure 5.44	Graph plotted between measured and predicted PPV by USBM	151
Figure 5.45	Graph plotted between measured and predicted PPV by IS	152
Figure 5.46	Safe charge per delay distribution by IS	156
Figure 5.47	Graph plotted between scaled distance and PPV by USBM	157
Figure 5.48	Graph plotted between scaled distance and PPV by IS	157
Figure 5.49	Graph plotted between scaled distance and PPV by IS	157
Figure 5.50	Graph plotted between measured and predicted PPV by IS	158

Appendix-A

Figure 4.26Frequency vs. amplitude graph plotted at 100m distance1Figure 4.27Frequency vs. amplitude graph plotted at 150m distance1	77 77 77
Figure 4.27 Frequency vs. amplitude graph plotted at 150m distance 1'	77 77
	77
Figure 4.28 Frequency vs. amplitude graph plotted at 200m distance 1'	
Figure 4.29 Frequency vs. amplitude graph plotted 250m distance 1'	77
Figure 4.30 Frequency vs. amplitude graph plotted at 300m distance 1'	78
Figure 4.31 Frequency vs. amplitude graph plotted at 350m distance 1'	78
Figure 4.32 Frequency vs. amplitude graph plotted at 400m distance 1'	78
Figure 4.33 Frequency vs. amplitude graph plotted at 450m distance 1'	78
Figure 4.34 Frequency vs. amplitude graph plotted at 500m distance 1'	79
Figure 4.35 Frequency vs. amplitude graph plotted at 550m distance 1'	79
Figure 4.36 Frequency vs. amplitude graph plotted at 600m distance 1'	79
Figure 4.37 Frequency vs. amplitude graph plotted at 650m distance 1'	79
Figure 4.38 Frequency vs. amplitude graph plotted at 700m distance 1	80
Figure 4.39 Frequency vs. amplitude graph plotted at 750m distance 1	80
Figure 4.40 Frequency vs. amplitude graph plotted at 800m distance 1	80
Figure 4.41 Frequency vs. amplitude graph plotted at 850m distance 1	80
Figure 4.42 Frequency vs. amplitude graph plotted at 900m distance 1	81
Figure 4.44 Frequency vs. amplitude graph plotted at 100m distance 1	81
Figure 4.45 Frequency vs. amplitude graph plotted at 150m distance 1	81
Figure 4.46 Frequency vs. amplitude graph plotted at 200m distance 1	81
Figure 4.47 Frequency vs. amplitude graph plotted at 250m distance 1	82
Figure 4.48 Frequency vs. amplitude graph plotted at 300m distance 1	82
Figure 4.49 Frequency vs. amplitude graph plotted at 350m distance 1	82
Figure 4.50 Frequency vs. amplitude graph plotted at 400m distance 11	82
Figure 4.51 Frequency vs. amplitude graph plotted at 450m distance 1	83
Figure 4.52 Frequency vs. amplitude graph plotted at 500m distance 1	83
Figure 4.53 Frequency vs. amplitude graph plotted at 550m distance 1	83
Figure 4.54 Frequency vs. amplitude graph plotted at 600m distance 1	83
Figure 4.55 Frequency vs. amplitude graph plotted at 650m distance 1	84
Figure 4.56 Frequency vs. amplitude graph plotted at 700m distance 1	84
Figure 4.57 Frequency vs. amplitude graph plotted at 750m distance	84
Figure 4.58 Frequency vs. amplitude graph plotted at 800m distance	84
Figure 4.59 Frequency vs. amplitude graph plotted at 850m distance	85
Figure 4.60 Frequency vs. amplitude graph plotted at 900m distance 1	85
Figure 4.63 Frequency vs. amplitude graph plotted at 100m distance 1	85
Figure 4.64 Frequency vs. amplitude graph plotted at 150m distance	85
Figure 4.65 Frequency vs. amplitude graph plotted at 200m distance	86
Figure 4.66 Frequency vs. amplitude graph plotted at 250m distance	86
Figure 4.67 Frequency vs. amplitude graph plotted at 300m distance	86
Figure 4.68 Frequency vs. amplitude graph plotted at 350m distance	86
Figure 4.69 Frequency vs. amplitude graph plotted at 400m distance	87
Figure 4.70 Frequency vs. amplitude graph plotted at 450m distance	87
Figure 4.71 Frequency vs. amplitude graph plotted at 500m distance	87
Figure 4.72 Frequency vs. amplitude graph plotted at 550m distance	87
Figure 4.73 Frequency vs. amplitude graph plotted at 600m distance	88
Figure 4.74 Frequency vs. amplitude graph plotted at 650m distance 11	88

Figure 4.75	Frequency vs. amplitude graph plotted at 700m distance	188
Figure 4.76	Frequency vs. amplitude graph plotted at 750m distance	188
Figure 4.77	Frequency vs. amplitude graph plotted at 800m distance	189
Figure 4.78	Frequency vs. amplitude graph plotted at 850m distance	189
Figure 4.79	Frequency vs. amplitude graph plotted at 900m distance	189
Figure 4.80	Frequency vs. amplitude graph plotted at 950m distance	189
Figure 4.81	Frequency vs. amplitude graph plotted at 1000m distance	190
Figure 4.83	Frequency vs. amplitude graph plotted at 100m distance	190
Figure 4.84	Frequency vs. amplitude graph plotted at 150m distance	190
Figure 4.85	Frequency vs. amplitude graph plotted at 200m distance	190
Figure 4.86	Frequency vs. amplitude graph plotted at 250m distance	191
Figure 4.87	Frequency vs. amplitude graph plotted at 300m distance	191
Figure 4.88	Frequency vs. amplitude graph plotted at 350m distance	191
Figure 4.89	Frequency vs. amplitude graph plotted at 400m distance	191
Figure 4.90	Frequency vs. amplitude graph plotted at 450m distance	192
Figure 4.91	Frequency vs. amplitude graph plotted at 500m distance	192
Figure 4.92	Frequency vs. amplitude graph plotted at 550m distance	192
Figure 4.93	Frequency vs. amplitude graph plotted at 600m distance	192
Figure 4.94	Frequency vs. amplitude graph plotted at 650m distance	193
Figure 4.95	Frequency vs. amplitude graph plotted at 700m distance	193
Figure 4.96	Frequency vs. amplitude graph plotted at 750m distance	193
Figure 4.97	Frequency vs. amplitude graph plotted at 800m distance	193
Figure 4.98	Frequency vs. amplitude graph plotted at 850m distance	194
Figure 4.99	Frequency vs. amplitude graph plotted at 900m distance	194
Figure 4.100	Frequency vs. amplitude graph plotted at 950m distance	194
Figure 4.101	Frequency vs. amplitude graph plotted at 1000m distance	194
Figure 4.103	Frequency vs. amplitude graph plotted at 100m distance	195
Figure 4.104	Frequency vs. amplitude graph plotted at 150m distance	195
Figure 4.105	Frequency vs. amplitude graph plotted at 200m distance	195
Figure 4.106	Frequency vs. amplitude graph plotted at 250m distance	195
Figure 4.107	Frequency vs. amplitude graph plotted at 300m distance	196
Figure 4.108	Frequency vs. amplitude graph plotted at 350m distance	196
Figure 4.109	Frequency vs. amplitude graph plotted at 400m distance	196
Figure 4.110	Frequency vs. amplitude graph plotted at 450m distance	196
Figure 4.111	Frequency vs. amplitude graph plotted at 500m distance	197
Figure 4.112	Frequency vs. amplitude graph plotted at 550m distance	197
Figure 4.113	Frequency vs. amplitude graph plotted at 600m distance	197
Figure 4.114	Frequency vs. amplitude graph plotted at 650m distance	197
Figure 4.115	Frequency vs. amplitude graph plotted at 700m distance	198
Figure 4.116	Frequency vs. amplitude graph plotted at 750m distance	198
Figure 4.117	Frequency vs. amplitude graph plotted at 800m distance	198
Figure 4.118	Frequency vs. amplitude graph plotted at 850m distance	198
Figure 4.119	Frequency vs. amplitude graph plotted at 900m distance	199
Figure 4.120	Frequency vs. amplitude graph plotted at 950m distance	199
Figure 4.121	Frequency vs. amplitude graph plotted at 1000m distance	199
Figure 4.123	Frequency vs. amplitude graph plotted at 100m distance	199
Figure 4.124	Frequency vs. amplitude graph plotted at 150m distance	200
Figure 4.125	Frequency vs. amplitude graph plotted at 200m distance	200
Figure 4.126	Frequency vs. amplitude graph plotted at 250m distance	200
Figure 4.127	Frequency vs. amplitude graph plotted at 300m distance	200

Figure 4.128	Frequency vs. amplitude graph plotted at 350m distance	201
Figure 4.129	Frequency vs. amplitude graph plotted at 400m distance	201
Figure 4.130	Frequency vs. amplitude graph plotted at 450m distance	201
Figure 4.131	Frequency vs. amplitude graph plotted at 500m distance	201
Figure 4.132	Frequency vs. amplitude graph plotted at 550m distance	202
Figure 4.133	Frequency vs. amplitude graph plotted at 600m distance	202
Figure 4.134	Frequency vs. amplitude graph plotted at 650m distance	202
Figure 4.135	Frequency vs. amplitude graph plotted at 700m distance	202
Figure 4.136	Frequency vs. amplitude graph plotted at 750m distance	203
Figure 4.137	Frequency vs. amplitude graph plotted at 800m distance	203
Figure 4.138	Frequency vs. amplitude graph plotted at 850m distance	203
Figure 4.139	Frequency vs. amplitude graph plotted at 900m distance	203
Figure 4.140	Frequency vs. amplitude graph plotted at 950m distance	204
Figure 4.141	Frequency vs. amplitude graph plotted at 1000m distance	204

LIST OF TABLES

Table No.	Title	Page No.
Table 2.1	The minimum delay intervals suggested by different researchers	29
Table 2.2	Details of monitoring Instruments	32
Table 2.3	Maximum allowable peak particle velocity for blasting vibrations	33
Table 2.4	USA standard after Siskind et al. (1980) proposed the permissible	39
	level of structures	
Table 2.5	Indian standard (DGMS circular 7 of 1997) proposed the	40
	permissible level of structures	
Table 2.6	German standard after German DIN4150 (1986) proposed the	41
	permissible level of structures	
Table 2.7	Australian Standard 2006 (AS 2187.2) proposed the permissible	42
	level of structure	
Table 2.8	Recent works on PPV prediction using soft computation techniques	54
Table 3.1	Geo-mining characteristics and quarry dimensions	56
Table 3.2	The different blast events and recording parameters	59
Table 3.3	The measured and predicted values of PPV and frequency	60
Table 3.4	The component velocities and associated frequencies	61
Table 3.5	The field blast design parameters	62
Table 3.6	The measured and predicted PPV, PVS, and frequency	62
Table 3.7	The measured PPV and frequency	67
Table 3.8	The measured field blast design parameters	68
Table 3.9	The measured and predicted value of PPV	69
Table 3.10	The Specific gravity and powder factor	73
Table 3.11	The field blast design parameters	73
Table 3.12	The measured and predicted PPV and PVS	74
Table 3.13	The measured PPV and frequency	75
Table 3.14	The measured PPV and frequency	78
Table 3.15	The blast design parameters	79
Table 3.16	The measured and predicted values	79
Table 3.17	The measured PPV and frequency	82
Table 3.18	The measured and predicted values	83
Table 4.1	The classification of damage levels	88
Table 4.2	The network architecture	102
Table 4.3	The site specific constants	104
Table 5.1	The safe charge weight per delay distribution	124
Table 5.2	Safe charge weight per delay formulae	133
Table 5.3	Obtained safe charge weight per delay using the above formulae	134
Table 5.4	Obtained safe charge weight per delay	142
Table 5.5	Safe charge weight per delay distribution	149
Table 5.6 $T_{11} = 5.7$	Safe charge weight per delay distribution	156
Table 5.7 T_{11} 5.9	Safe charge weight per delay for various mines and quarries	158
1 able 5.8	Structural response at given distances for various mines and quarries	159
Table 5.9	Correlation coefficients for various mines and quarries by different models	159

LIST OF ABBREVIATION

Symbol	Title
A, k, b, n, α , and β	Site-specific constants
A_0	Initial amplitude of seismic wave
А	Amplitude of seismic wave
ANFO	Ammonium nitrate and fuel oil
ANN	Artificial neural network
В	Burden
BIGV	Blast-induced ground vibrations
BPANN	Back-propagation artificial neural network
D	Distance
DGMS	Directorate General of Mines Safety
DIN	German standard
F	Frequency
FIM	Finite element method
HD	Hole depth
HDI	Hole diameter
HSD	High speed diesel
IS	Indian Standard
LRA	Linear regression analysis
MCPR and Q _{max}	Maximum charge per delay
MVRA	Multivariate regression analysis
NH	Number of holes
OSMRE	Office of Surface Mining Reclamation and Enforcement
PF	Powder factor
PPV	Peak particle velocity
PVS	Peak vector sum
Q	Quality factor
R	Radial velocity
RMSE	Root mean squared error
SD	Scaled distance
SSE	Summed squared error
S	Spacing
SVM	Support vector machine
Т	Transverse velocity
TB	Total booster
TC	Total charge
TL	Trunk line
TY	Total yield
USBM	United States Bureau of Mines
VOD	Velocity of detonation
V	Vertical velocity