CERTIFICATE

It is certified that the work contained in the thesis titled "A STUDY OF THE EFFECTS OF BLASTING VIBRATIONS ON THE NEARBY STRUCTURES " by Shri ANAND KUMAR has been carried out under my/our supervision and that this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Signature:

Signature:

Prof. Sanjay Kumar Sharma (Supervisor & Chairman) Department of Mining Engineering IIT BHU, Varanasi- 221005 Dr. Nawal Kishore(Co-supervisor)Department of Mining EngineeringIIT BHU, Varanasi- 221005

DECLARATION

I, *ANAND KUMAR*, certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of *Prof. SANJAY K. SHARMA and cosupervision of Dr. NAWAL KISHORE* from *JULY 2014* to *DECEMBER 2021*, at the *DEPARTMENT OF MINING ENGINEERING*, Indian Institute of Technology, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date: December 2021

Place: Varanasi

Signature of the Student

ANAND KUMAR

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Signature:

Prof. Sanjay Kumar Sharma (Supervisor) Department of Mining Engineering IIT (BHU) Varanasi-221005 Signature:

Dr. Nawal Kishore (Co-supervisor) Department of Mining Engineering IIT (BHU) Varanasi-221005

Signature of Head of Department/Coordinator of School(s) "SEAL OF THE DEPARTMENT/SCHOOL"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: A STUDY OF THE EFFECTS OF BLASTING VIBRATIONS ON THE NEARBY STRUCTURES

Name: ANAND KUMAR

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "DOCTOR OF PHILOSOPHY"

Date: December 2021

Signature:

Place: Varanasi

Name: ANAND KUMAR

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to my Mom & My Family

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my supervisor **Prof. Sanjay Kumar Sharma**, for the continuous support of my research program for their patience, motivation, enthusiasm, and immense knowledge. Their supervision supported me during the entire research and writing of the thesis. I could not have imagined having a better supervisor and mentor for my Ph.D. program.

I would like to also express my gratitude to my co-supervisor **Dr**. Nawal Kishore, for his continuous support, encouragement, and valuable suggestions during my entire research work.

I would like to thank my research progress evaluation committee (RPEC) members, Professor P. K. Mishra, Chemical Engineering IIT (BHU) and Dr. G.S.P. Singh, Mining Engineering IIT (BHU) who's demonstrated to me that concern for global affairs supported by an engagement in comparative literature and modern technology should always transcend academia provide a quest for our times.

I am also grateful to all the faculty members and the technical, non-technical staff Mining Engineering IIT (BHU) department. They advised and assisted directly or indirectly during my research program.

I am special grateful thanks to Dr. Chandra Shekhar Singh, department of Mining Engineering IIT (BHU), for contributing to my research.

I thank my fellow lab mates in underground space technology and Rock Mechanics lab: Mr. Sunil Kumar Yadav, Pusker Singh, Brijesh Kumar, and Gagan Gupta for the stimulating discussions, for the sleepless nights we were working together, and for all the fun we had during the Ph.D. program. Also, I thank my friend's Ashish Kumar Vishvakarma, Ashwini Sonkar. I would like to give special thanks to the General Manager of (NCL) Singrauli, M.P. and the General Manager of (SECL) Korba Chhattisgarh, General Manager of stone quarry Nawada, Bihar, and the General Manager stone quarry Sonbhadra, UP to allowed field visit, accommodation, and other necessary facilities. Also, all the field members who helped me during detection.

Finally, my deep and sincere gratitude to my family for their continuous and unparalleled love, help and support. I am grateful to my sisters, Babita, and Anita and my brothers, Avaneet, Vivek, and Awadhesh for always being there for me as a friend. I am forever indebted to my Mom, Amrawati Devi and my Dad, Late Brijmohan for giving me the opportunities and experiences that have made me who I am. They selflessly encouraged me to explore new directions in life and seek my own destiny. This journey would not have been possible if not for them, and I dedicate this milestone to my Mom and my lovely Nephew Anant Aadiv.

CONTENTS

Page No.

1-10

11-54

CERTIFICATE	
ACKNOLEDGEMENT	i
CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xiii
LIST OF ABBREVIATION	xiv
ABSTRACT	XV

Chapter 1: INTRODUCTION

1.1 Background of Research	1
1.2 Research Problem	5
1.3 Research Objectives	6
1.4 Methodology	7
1.5 Significance of Work	9
1.6 Organization of Thesis Work	9
1.7 Scope of the Research	10

Chapter 2: LITERATURE REVIEW

2.1 Introduction	11
2.2 Blast-induced ground vibration (BIGV)	12
2.2.1 Mechanism of ground vibration	13
2.3 Seismic Waves	16
2.3 Seisine Waves	10
2.3.1 Body waves.	10
2.3.1.1 Primary Wave	16
2.3.1.2 Secondary Wave	16
2.3.2 Surface Waves	16
2.3.2.1 Rayleigh Wave	16
2.3.2.2 Love Wave	17
2.4 Seismic Wave Attenuation	18
2.4.1 Geometrical Attenuation	18
2.4.2 Anelastic Attenuation	19
2.5 Factors Affecting Ground Vibration	21
2.6 Blast Design Geometry.	21
2.6.1 Burden	22
2.6.2 Spacing	23
2.6.3 Stemming and Decking	23
2.6.4 Maximum Charge per Delay	24
2.6.5 Explosives	24
2.6.6 Blast Hole Design	25
2.6.7 Powder Factor	26
2.6.8 Initiation System and Delay Operator	27
2.6.9 Initiation Pattern	29

2.7 Instrument	31
2.7.1 Seismograph	31
2.8 Recording Parameters	32
2.8.1 Scaled Distance	32
2.8.2 Paek Particle Velocity (PPV)	33
2.8.3 Peak Vector Sum (PVS)	34
2.8.4 Dominant Frequency	35
2.9 Ground Vibration Damage at Different Level	36
2.9.1 Human Response	36
2.9.2 Structural Response	38
2.9.2.1 Induced and Natural Cracking	38
2.10 Standard Damage Criteria	39
2.10.1 United States Bureau of Mine (USBM) Damage Criteria	39
2.10.2 Indian Standard (DGMS) Damage Criteria	40
2.10.3 German Standard Damage Criteria	41
2.10.4 Australian Standard Damage Criteria	42
2.11 Approaches	42
2.11.1 Linear Regression Analysis	42
2.11.2 Site Specific Constant	42
2.11.3 Empirical Model Equations	43
2.11.3.1 Duvall-Petkof Model	43
2.11.3.2 Langefors-Khilstrom Model	43
2.11.3.3 General Predictor Model	43
2.11.3.4 Ambraseys-Hendron Model	44
2.11.3.5 Indian Standard Model	44
2.11.3.6 Ghosh-Demon Model	44
2.11.3.7 CMRI Predictor	44
2.11.4 Multivariate Regression Analysis	45
2.11.5 Fundamental of Artificial Neural Network	45
2.11.5.1 Neural Network Training	48
2.11.5.2 Neural Network Architecture	52

Chapter 3: DATA ACQUSITION AND COLLECTION

55-84

3.1 Introduction	55
3.2 Opencast Mine	55
3.2.1 Case I: Coal Mine-1 Chhattisgarh	56
3.2.1.1 Location and Geology	56
3.2.1.2 Blast Geometry and Dataset	58
3.2.2 Case II: Coal Mine-2 Madhya Pradesh	64
3.2.2.1 Location and Geology	64
3.2.2.2 Blast Geometry and Dataset	66
3.3 Limestone Quarry	71
3.3.1 Case III: Limestone quarry-3 Chhattisgarh	71
3.3.1.1 Location and Geology	71
3.3.1.2 Blast Geometry and Dataset	71

3.4 Stone Quarry	75
3.4.1 Case IV: Stone quarry-4 Bihar	75
3.4.1.1 Location and Geology	75
3.4.1.2 Blast Geometry and Dataset	77
3.4.2 Case V: Stone quarry-5 Uttar Pradesh	80
3.4.2.1 Location and Geology	80
3.4.2.2 Blast Geometry and Dataset	80
Chapter 4: DATA PROCESSING AND ANALYSIS	85-108
4.1 Introduction	85
4.1 Introduction 4.2 Qualitative Damage Analysis of Structures	85 87
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 	85 87 94
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 	85 87 94 95
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 4.5 Standard Limits for the Safe Level of Structures 	85 87 94 95 98
 4.1 Introduction 4.2 Qualitative Damage Analysis of Structures 4.3 Velocity Analysis 4.4 Frequency Analysis 4.5 Standard Limits for the Safe Level of Structures 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh 	85 87 94 95 98 98
 4.1 Introduction. 4.2 Qualitative Damage Analysis of Structures. 4.3 Velocity Analysis. 4.4 Frequency Analysis. 4.5 Standard Limits for the Safe Level of Structures. 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh. 4.5.2 Multivariate Regression Analysis (MVRA). 	85 87 94 95 98 98 100
 4.1 Introduction. 4.2 Qualitative Damage Analysis of Structures. 4.3 Velocity Analysis. 4.4 Frequency Analysis. 4.5 Standard Limits for the Safe Level of Structures. 4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh. 4.5.2 Multivariate Regression Analysis (MVRA). 4.5.3 Backpropagation Artificial Neural Network Technique. 	85 87 94 95 98 98 100 100

4.5.1 Case I: Damage Analysis of Coal Mine-1 Chhattisgarh	98
4.5.2 Multivariate Regression Analysis (MVRA)	100
4.5.3 Backpropagation Artificial Neural Network Technique	100
4.5.3.1 Network Training	100
4.5.3.2 Architecture of Datasets	102
4.6 Surface Coal Mine	103
4.6.1 Case II: Damage Analysis of Coal Mine-2 Madhya Pradesh	103
4.6.2 Site Specific Constant	104
4.6.3 Attenuation Model Equation	104
4.6.3.1 Predicted by Duvall-Petkof	105
4.6.3.2 Predicted by Langefors-Kihlstrom	105
4.6.3.3 Predicted by General Predictor	105
4.6.3.4 Predicted by Ambraseys-Hendron	106
4.6.3.5 Predicted by Indian Standard	106
4.7 Stone Quarry	106
4.7.1 Case III: Damage analysis of limestone quarry-3 Chhattisgarh	106
4.7.2 Case IV: Damage analysis of stone quarry-4 Bihar	107
4.7.3 Case V: Damage analysis of stone quarry-5 Uttar Pradesh	108

Chapter 5: RESULTS AND DISCUSSION

109-160

5.1 Introduction	109
5.2 Pukka Structures	109
5.3 Kuchcha Structures	110
5.4 Structural and Human Response to the Ground Vibration	110
5.4.1 Case I: Coal Mine-1 Chhattisgarh	111
5.4.1.1 Conventional Approach	117
5.4.1.2 Multivariate Regression Analysis Approach	118
5.4.1.3 Backpropagation artificial neural network approach	118
5.4.1.4 Safe Charge Per Delay	123
5.4.1.5 Critical Distance Assumption	125

5.4.1.6 Peak Particle Velocity Assumption	127
5.4.1.7 Correlation	127
5.4.2 Case II: Coal Mine-2 Madhya Pradesh	130
5.4.2.1 Safe Charge Weight per Delay	133
5.4.2.2 Correlation	135
5.4.3 Case III: Limestone quarry-3 Chhattisgarh	139
5.4.3.1 Safe Charge Weight per Delay	142
5.4.3.2 Correlation	143
5.4.4 Case IV: Stone quary-4 Bihar	146
5.4.4.1 Safe Charge Weight	149
5.4.4.2 Correlation	150
5.4.5 Case V: Stone quarry-5 Uttar Pradesh	152
5.4.5.1 Safe Charge Weight per Delay	155
5.4.4.2 Correlation.	156
Chapter 6: CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK	161-156
6.1 Conclusions	161
6.2 Recommendation for Future Work	162

REFERENCES	163-176
APPENDICES Appendix-A	177-204

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1.1	Flow chart of research methodology	8
Figure 2.1	Distribution of blast induced energy	13
Figure 2.2	Propagation of various seismic waves	15
Figure 2.3	After effect of explosion around blast hole	15
Figure 2.4	Conversion of mechanical energy into electrical signal	15
Figure 2.5	Longitudinal wave propagation	17
Figure 2.6	Shear wave propagation	17
Figure 2.7	Raleigh wave propagation	17
Figure 2.8	Love wave propagation	17
Figure 2.9	Geometrical attenuation of seismic wave	19
Figure 2.10	Anelastic loss of seismic waves	20
Figure 2.11	Geometry of blasting patch	22
Figure 2.12	Single and double column charged blast hole	26
Figure 2.13	Preparation of blast holes in a patch	26
Figure 2.14	Applied delay, booster, and blast holes ready for blasting	28
Figure 2.15	Rectangle pattern of blasting patch	30
Figure 2.16	Staggered initiation pattern of blasting patch	31
Figure 2.17	Installed an instrument in field and acquired digital data	32
Figure 2.18	Human response to vibrations in different time	37
Figure 2.19	Damage criteria for different houses by USBM	40
Figure 2.20	Damage criteria for different structures by IS	41
Figure 2.21	Damage criteria for different houses by DIN	41
Figure 2.22	Flow chart of BPANN technique from beginning to end of program	50
Figure 2.23	The architecture of nth layer of feed forward back propagation technique	53
Figure 2.24	Circuit Diagram of backpropagation ANN technique	53
Figure 3.1	Location map of Coal mine-1	57
Figure 3.2	Coal mine-1, geological formation	57
Figure 3.3	Staggered initiation pattern and blast hole details	59
Figure 3.4	Location map of Coal mine-2	65
Figure 3.5	Coal mine-2, geological formation	65
Figure 3.6	Staggered initiation pattern and blast hole details	66
Figure 3.7	Location map of limestone quarry-3	72
Figure 3.8	Staggered initiation pattern and blast hole details	73
Figure 3.9	Location map of stone quarry-4	76
Figure 3.10	Geological map of Bihar	76
Figure 3.11	Staggered initiation pattern and blast hole details	78
Figure 3.12	Location map of stone quarry-5	80
Figure 3.13	Staggered initiation pattern and blast hole details	82
Figure 4.1	The building event listening grid	86
Figure 4.2	The configuration of building events	86
Figure 4.3	The building event display on the monitor screen	86
Figure 4.4	Dust cloud after explosion	89
Figure 4.5	Dust cover over the region	89
Figure 4.6	Seismograph installed nearby the village	89
Figure 4.7	A view of cosmetic/hairline crack on the plaster wall	90
Figure 4.8	A view of cosmetic/hairline crack on the plaster wall	90

Figure 4.9	A view of minor crack on the plaster wall	90
Figure 4.10	A view of cosmetic/hairline to minor cracks on brick-cement wall	91
Figure 4.11	A view of hair line to minor cracks on brick-cement wall of another house	91
Figure 4.12	A view of minor to major cracks on the brick-mud mortar wall	91
Figure 4.13	A view of major cracks on the non-plaster brick-mud mortar wall	92
Figure 4.14	A typical wave signature recorded nearby the structure at 510m	92
Figure 4.15	A typical wave signature recorded nearby the structure at 520m	92
Figure 4.16	A typical wave signature recorded nearby the structure at 530m	93
Figure 4.17	A typical wave signature recorded nearby the structure at 430m	93
Figure 4.18	A typical wave signature recorded nearby the structure at 490m	93
Figure 4.19	A typical wave signature recorded nearby the structure at 425m	94
Figure 4.20	A typical wave signature recorded nearby the structure at 440m	94
Figure 4.21	Frequency wavelets in orthogonal direction at 25m distance from blast site	96
Figure 4.22	Frequency wavelets in orthogonal direction at 150m distance from blast site	96
Figure 4.23	Frequency wavelets in orthogonal direction at 300m distance from blast site	97
Figure 4.24	Frequency wavelets in orthogonal direction at 350m distance from blast site	97
Figure 4.25	Frequency vs. amplitude graph plotted at 50m distance	99
Figure 4.43	Frequency vs. amplitude graph plotted at 50m distance	99
Figure 4.61	Back propagation neural network configuration	103
Figure 4.62	Frequency vs. amplitude graph plotted at 50m distance	104
Figure 4.82	Frequency vs. amplitude graph plotted at 50m distance	107
Figure 4.102	Frequency vs. amplitude graph plotted at 50m distance	108
Figure 4.122	Frequency vs. amplitude graph plotted at 50m distance	108
Figure 5.1	Scattered graph plotted between scaled distance and measured PPV by IS	120
Figure 5.2	Scattered graph plotted between distance and measured PPV by IS	120
Figure 5.3	Scattered graph plotted between measured and predicted PPV by IS	120
Figure 5.4	Scattered graph plotted between measured and predicted PPV by MVRA	121
Figure 5.5	Scattered graph plotted between distance and predicted frequency by MVRA	121
Figure 5.6	Scattered graph plotted between measured and predicted frequency by MVRA	121
Figure 5.7	Scattered graph plotted between distance and predicted PPV by ANN	122
Figure 5.8	Scattered graph plotted between measured and predicted PPV by ANN	122
Figure 5.9	Scattered graph plotted between measured and predicted frequency by ANN	122
Figure 5.10	Measured and predicted PPV with datasets	123
Figure 5.11	Measured and predicted frequency with datasets	123
Figure 5.12	Safe charge per delay distribution by IS	124
Figure 5.13	Blast event at monitoring distance of 300m	126
Figure 5.14	Blast event at monitoring distance of 350m	126
Figure 5.15	Blast event at monitoring distance of 500m	126
Figure 5.16	Blast event at monitoring distance of 550m	126
Figure 5.17	Graph plotted between peak particle velocity and velocity components	128
Figure 5.18	Graph plotted of measured and predicted PPV with monitoring distance	128
Figure 5.19	Graph plotted of measured and predicted PPV with Scaled distance.	128
Figure 5.20	Graph plotted between monitoring distance and velocity components	129
Figure 5.21	Graph plotted between scaled distance and velocity components	129

Figure 5.22	Graph plotted between measured PPV and measured frequency	129
Figure 5.23	Safe charge per delay distribution by various models	134
Figure 5.24	Graph plotted between scaled distance and PPV by D-P	135
Figure 5.25	Graph plotted between scaled distance and PPV by L-K	136
Figure 5.26	Graph plotted between scaled distance and PPV by A-H	136
Figure 5.27	Graph plotted between scaled distance and PPV by IS	136
Figure 5.28	Measured and predicted PPV's correlation by D-P	137
Figure 5.29	Measured and predicted PPV's correlation by L-K	137
Figure 5.30	Measured and predicted PPV's correlation by GP	137
Figure 5.31	Measured and predicted PPV's correlation by A-H	138
Figure 5.32	Measured and predicted PPV's correlation by IS	138
Figure 5.33	Comparison graph between measured and predicted PPV	138
Figure 5.34	Safe charge per delay distribution by USBM	143
Figure 5.35	Graph plotted between scaled distance and measured PPV	144
Figure 5.36	Graph plotted between measured and predicted PPV	144
Figure 5.37	Graph plotted between measured and predicted PVS	144
Figure 5.38	Wavelets of measured and predicted PPV varying with datasets	145
Figure 5.39	Wavelets of PPV and PVS varying with datasets	145
Figure 5.40	Velocity and frequency building histogram varying with datasets	145
Figure 5.41	Safe charge per delay distribution by IS	150
Figure 5.42	Graph plotted between scaled distance and PPV by USBM	151
Figure 5.43	Graph plotted between scaled distance and PPV by IS	151
Figure 5.44	Graph plotted between measured and predicted PPV by USBM	151
Figure 5.45	Graph plotted between measured and predicted PPV by IS	152
Figure 5.46	Safe charge per delay distribution by IS	156
Figure 5.47	Graph plotted between scaled distance and PPV by USBM	157
Figure 5.48	Graph plotted between scaled distance and PPV by IS	157
Figure 5.49	Graph plotted between scaled distance and PPV by IS	157
Figure 5.50	Graph plotted between measured and predicted PPV by IS	158

Appendix-A

Figure 4.26Frequency vs. amplitude graph plotted at 100m distance1Figure 4.27Frequency vs. amplitude graph plotted at 150m distance1	77 77 77
Figure 4.27 Frequency vs. amplitude graph plotted at 150m distance 1'	77 77
	77
Figure 4.28 Frequency vs. amplitude graph plotted at 200m distance 1'	
Figure 4.29 Frequency vs. amplitude graph plotted 250m distance 1'	77
Figure 4.30 Frequency vs. amplitude graph plotted at 300m distance 1'	78
Figure 4.31 Frequency vs. amplitude graph plotted at 350m distance 1'	78
Figure 4.32 Frequency vs. amplitude graph plotted at 400m distance 1'	78
Figure 4.33 Frequency vs. amplitude graph plotted at 450m distance 1'	78
Figure 4.34 Frequency vs. amplitude graph plotted at 500m distance 1'	79
Figure 4.35 Frequency vs. amplitude graph plotted at 550m distance 1'	79
Figure 4.36 Frequency vs. amplitude graph plotted at 600m distance 1'	79
Figure 4.37 Frequency vs. amplitude graph plotted at 650m distance 1'	79
Figure 4.38 Frequency vs. amplitude graph plotted at 700m distance 1	80
Figure 4.39 Frequency vs. amplitude graph plotted at 750m distance 1	80
Figure 4.40 Frequency vs. amplitude graph plotted at 800m distance 1	80
Figure 4.41 Frequency vs. amplitude graph plotted at 850m distance 1	80
Figure 4.42 Frequency vs. amplitude graph plotted at 900m distance 1	81
Figure 4.44 Frequency vs. amplitude graph plotted at 100m distance 1	81
Figure 4.45 Frequency vs. amplitude graph plotted at 150m distance 1	81
Figure 4.46 Frequency vs. amplitude graph plotted at 200m distance 1	81
Figure 4.47 Frequency vs. amplitude graph plotted at 250m distance 1	82
Figure 4.48 Frequency vs. amplitude graph plotted at 300m distance 1	82
Figure 4.49 Frequency vs. amplitude graph plotted at 350m distance 1	82
Figure 4.50 Frequency vs. amplitude graph plotted at 400m distance 11	82
Figure 4.51 Frequency vs. amplitude graph plotted at 450m distance 1	83
Figure 4.52 Frequency vs. amplitude graph plotted at 500m distance 1	83
Figure 4.53 Frequency vs. amplitude graph plotted at 550m distance 1	83
Figure 4.54 Frequency vs. amplitude graph plotted at 600m distance 1	83
Figure 4.55 Frequency vs. amplitude graph plotted at 650m distance 1	84
Figure 4.56 Frequency vs. amplitude graph plotted at 700m distance 1	84
Figure 4.57 Frequency vs. amplitude graph plotted at 750m distance	84
Figure 4.58 Frequency vs. amplitude graph plotted at 800m distance	84
Figure 4.59 Frequency vs. amplitude graph plotted at 850m distance	85
Figure 4.60 Frequency vs. amplitude graph plotted at 900m distance 1	85
Figure 4.63 Frequency vs. amplitude graph plotted at 100m distance 1	85
Figure 4.64 Frequency vs. amplitude graph plotted at 150m distance	85
Figure 4.65 Frequency vs. amplitude graph plotted at 200m distance	86
Figure 4.66 Frequency vs. amplitude graph plotted at 250m distance	86
Figure 4.67 Frequency vs. amplitude graph plotted at 300m distance	86
Figure 4.68 Frequency vs. amplitude graph plotted at 350m distance	86
Figure 4.69 Frequency vs. amplitude graph plotted at 400m distance	87
Figure 4.70 Frequency vs. amplitude graph plotted at 450m distance	87
Figure 4.71 Frequency vs. amplitude graph plotted at 500m distance	87
Figure 4.72 Frequency vs. amplitude graph plotted at 550m distance	87
Figure 4.73 Frequency vs. amplitude graph plotted at 600m distance	88
Figure 4.74 Frequency vs. amplitude graph plotted at 650m distance 11	88

Figure 4.75	Frequency vs. amplitude graph plotted at 700m distance	188
Figure 4.76	Frequency vs. amplitude graph plotted at 750m distance	188
Figure 4.77	Frequency vs. amplitude graph plotted at 800m distance	189
Figure 4.78	Frequency vs. amplitude graph plotted at 850m distance	189
Figure 4.79	Frequency vs. amplitude graph plotted at 900m distance	189
Figure 4.80	Frequency vs. amplitude graph plotted at 950m distance	189
Figure 4.81	Frequency vs. amplitude graph plotted at 1000m distance	190
Figure 4.83	Frequency vs. amplitude graph plotted at 100m distance	190
Figure 4.84	Frequency vs. amplitude graph plotted at 150m distance	190
Figure 4.85	Frequency vs. amplitude graph plotted at 200m distance	190
Figure 4.86	Frequency vs. amplitude graph plotted at 250m distance	191
Figure 4.87	Frequency vs. amplitude graph plotted at 300m distance	191
Figure 4.88	Frequency vs. amplitude graph plotted at 350m distance	191
Figure 4.89	Frequency vs. amplitude graph plotted at 400m distance	191
Figure 4.90	Frequency vs. amplitude graph plotted at 450m distance	192
Figure 4.91	Frequency vs. amplitude graph plotted at 500m distance	192
Figure 4.92	Frequency vs. amplitude graph plotted at 550m distance	192
Figure 4.93	Frequency vs. amplitude graph plotted at 600m distance	192
Figure 4.94	Frequency vs. amplitude graph plotted at 650m distance	193
Figure 4.95	Frequency vs. amplitude graph plotted at 700m distance	193
Figure 4.96	Frequency vs. amplitude graph plotted at 750m distance	193
Figure 4.97	Frequency vs. amplitude graph plotted at 800m distance	193
Figure 4.98	Frequency vs. amplitude graph plotted at 850m distance	194
Figure 4.99	Frequency vs. amplitude graph plotted at 900m distance	194
Figure 4.100	Frequency vs. amplitude graph plotted at 950m distance	194
Figure 4.101	Frequency vs. amplitude graph plotted at 1000m distance	194
Figure 4.103	Frequency vs. amplitude graph plotted at 100m distance	195
Figure 4.104	Frequency vs. amplitude graph plotted at 150m distance	195
Figure 4.105	Frequency vs. amplitude graph plotted at 200m distance	195
Figure 4.106	Frequency vs. amplitude graph plotted at 250m distance	195
Figure 4.107	Frequency vs. amplitude graph plotted at 300m distance	196
Figure 4.108	Frequency vs. amplitude graph plotted at 350m distance	196
Figure 4.109	Frequency vs. amplitude graph plotted at 400m distance	196
Figure 4.110	Frequency vs. amplitude graph plotted at 450m distance	196
Figure 4.111	Frequency vs. amplitude graph plotted at 500m distance	197
Figure 4.112	Frequency vs. amplitude graph plotted at 550m distance	197
Figure 4.113	Frequency vs. amplitude graph plotted at 600m distance	197
Figure 4.114	Frequency vs. amplitude graph plotted at 650m distance	197
Figure 4.115	Frequency vs. amplitude graph plotted at 700m distance	198
Figure 4.116	Frequency vs. amplitude graph plotted at 750m distance	198
Figure 4.117	Frequency vs. amplitude graph plotted at 800m distance	198
Figure 4.118	Frequency vs. amplitude graph plotted at 850m distance	198
Figure 4.119	Frequency vs. amplitude graph plotted at 900m distance	199
Figure 4.120	Frequency vs. amplitude graph plotted at 950m distance	199
Figure 4.121	Frequency vs. amplitude graph plotted at 1000m distance	199
Figure 4.123	Frequency vs. amplitude graph plotted at 100m distance	199
Figure 4.124	Frequency vs. amplitude graph plotted at 150m distance	200
Figure 4.125	Frequency vs. amplitude graph plotted at 200m distance	200
Figure 4.126	Frequency vs. amplitude graph plotted at 250m distance	200
Figure 4.127	Frequency vs. amplitude graph plotted at 300m distance	200

Figure 4.128	Frequency vs. amplitude graph plotted at 350m distance	201
Figure 4.129	Frequency vs. amplitude graph plotted at 400m distance	201
Figure 4.130	Frequency vs. amplitude graph plotted at 450m distance	201
Figure 4.131	Frequency vs. amplitude graph plotted at 500m distance	201
Figure 4.132	Frequency vs. amplitude graph plotted at 550m distance	202
Figure 4.133	Frequency vs. amplitude graph plotted at 600m distance	202
Figure 4.134	Frequency vs. amplitude graph plotted at 650m distance	202
Figure 4.135	Frequency vs. amplitude graph plotted at 700m distance	202
Figure 4.136	Frequency vs. amplitude graph plotted at 750m distance	203
Figure 4.137	Frequency vs. amplitude graph plotted at 800m distance	203
Figure 4.138	Frequency vs. amplitude graph plotted at 850m distance	203
Figure 4.139	Frequency vs. amplitude graph plotted at 900m distance	203
Figure 4.140	Frequency vs. amplitude graph plotted at 950m distance	204
Figure 4.141	Frequency vs. amplitude graph plotted at 1000m distance	204

LIST OF TABLES

Table No.	Title	Page No.
Table 2.1	The minimum delay intervals suggested by different researchers	29
Table 2.2	Details of monitoring Instruments	32
Table 2.3	Maximum allowable peak particle velocity for blasting vibrations	33
Table 2.4	USA standard after Siskind et al. (1980) proposed the permissible	39
	level of structures	
Table 2.5	Indian standard (DGMS circular 7 of 1997) proposed the	40
	permissible level of structures	
Table 2.6	German standard after German DIN4150 (1986) proposed the	41
	permissible level of structures	
Table 2.7	Australian Standard 2006 (AS 2187.2) proposed the permissible	42
	level of structure	
Table 2.8	Recent works on PPV prediction using soft computation techniques	54
Table 3.1	Geo-mining characteristics and quarry dimensions	56
Table 3.2	The different blast events and recording parameters	59
Table 3.3	The measured and predicted values of PPV and frequency	60
Table 3.4	The component velocities and associated frequencies	61
Table 3.5	The field blast design parameters	62
Table 3.6	The measured and predicted PPV, PVS, and frequency	62
Table 3.7	The measured PPV and frequency	67
Table 3.8	The measured field blast design parameters	68
Table 3.9	The measured and predicted value of PPV	69
Table 3.10	The Specific gravity and powder factor	73
Table 3.11	The field blast design parameters	73
Table 3.12	The measured and predicted PPV and PVS	74
Table 3.13	The measured PPV and frequency	75
Table 3.14	The measured PPV and frequency	78
Table 3.15	The blast design parameters	79
Table 3.16	The measured and predicted values	79
Table 3.17	The measured PPV and frequency	82
Table 3.18	The measured and predicted values	83
Table 4.1	The classification of damage levels	88
Table 4.2	The network architecture	102
Table 4.3	The site specific constants	104
Table 5.1	The safe charge weight per delay distribution	124
Table 5.2	Safe charge weight per delay formulae	133
Table 5.3	Obtained safe charge weight per delay using the above formulae	134
Table 5.4	Obtained safe charge weight per delay	142
Table 5.5	Safe charge weight per delay distribution	149
Table 5.6 $T_{11} = 5.7$	Safe charge weight per delay distribution	156
Table 5.7 T_{11} 5.9	Safe charge weight per delay for various mines and quarries	158
1 able 5.8	Structural response at given distances for various mines and quarries	159
Table 5.9	Correlation coefficients for various mines and quarries by different models	159

LIST OF ABBREVIATION

Symbol	Title
A, k, b, n, α , and β	Site-specific constants
A_0	Initial amplitude of seismic wave
А	Amplitude of seismic wave
ANFO	Ammonium nitrate and fuel oil
ANN	Artificial neural network
В	Burden
BIGV	Blast-induced ground vibrations
BPANN	Back-propagation artificial neural network
D	Distance
DGMS	Directorate General of Mines Safety
DIN	German standard
F	Frequency
FIM	Finite element method
HD	Hole depth
HDI	Hole diameter
HSD	High speed diesel
IS	Indian Standard
LRA	Linear regression analysis
MCPR and Q _{max}	Maximum charge per delay
MVRA	Multivariate regression analysis
NH	Number of holes
OSMRE	Office of Surface Mining Reclamation and Enforcement
PF	Powder factor
PPV	Peak particle velocity
PVS	Peak vector sum
Q	Quality factor
R	Radial velocity
RMSE	Root mean squared error
SD	Scaled distance
SSE	Summed squared error
S	Spacing
SVM	Support vector machine
Т	Transverse velocity
TB	Total booster
TC	Total charge
TL	Trunk line
TY	Total yield
USBM	United States Bureau of Mines
VOD	Velocity of detonation
V	Vertical velocity

ABSTRACT

Blasting was path breaking advancement in technology over its earlier options of rockexcavations. Even today, blasting technique as adopted in mining and civil engineering continues to be the cheapest means of rock excavations across the world. In India, it is deployed over 90% of the rock excavations. Almost 100% extraction of ornamental rocks, construction materials, and many ore deposits from different mines are from the surface mines. Despite significant advancements in blasting operation and techniques, effective utilization of explosive energy is still lacks perfection. In rock blasting, only 20-30 % of the energy produced by explosives is utilized in fragmentation and displacing of the rock mass. The rest of the energy is wasted producing undesirable environmental impacts like ground vibrations, air overpressure (AOP), fly rocks, and back-breaks. The blast induced ground vibrations is one of the major issues associated with blasting. They are an inescapable occurrence in the vicinity of mines and quarries. It at the least creates human discomfort to people of surrounding areas. Further, cosmetic to large scale damage to the nearby structures, and other environmental damages are also attributed to it. The intensity of these ground vibrations depends mainly on the uncontrollable (geology, physical properties of rock, etc.) and controllable parameters (burden, spacing, maximum charge per delay, blast-hole dimension, bench height, delay operator, etc.). Therefore, challenge lies in predicting and assessing the magnitude of the blast induced ground vibrations and its associated frequency, near the residential structures close to operating mines and quarries. Complexities abound due to insufficient data for the physical properties of the rock mass, the difficulty in accurate identification of the sources of vibrations and the resulting near and far-field behavior. Nevertheless, in spite of these obstacles, it is possible to make realistic assessments of the propagating waves using available empirical and numerical methods. Globally, various researchers have developed the different vibration attenuation equations on the basis of the maximum charge per delay and the monitoring distance from the blast site to predict the PPV. However, the ground vibration is affected by many other factors like geology, physical properties of the rock mass, presence and distribution of discontinuities and their characteristics, blast design, bench geometry, etc. Efforts were also made to develop standard damage criteria for safe level of different structures according to the regional conditions. These criteria are based on PPV and its associated frequency. Various mathematical tools like ANN, FIS, SVM, ANN-PSO, Fuzzy Logy, PCA, MVRA, etc. have been deployed to predict the peak particle velocity (PPV) and the frequency for the appropriate prediction of the blastinduced ground vibrations.

In this study, the monitoring of ground vibration was conducted through peak particle velocity and the associated frequency and their orthogonal components with peak vector sum PVS using seismographs. During the study, the data acquisition of the blasting parameters, blast geometry, monitoring distance from the blast site from five different mine and quarry comprising of two opencast coal mines, one open-pit limestone mine, and two stone quarries. These datasets were processed through different applied models such as empirical attenuation model, multivariate regression analysis (MVRA), and back propagation artificial neural network (BPANN) approach to predict PPV and frequency. Finally, the predicted values of these different models were compared with the measured values and the correlation coefficients between the measured and the predicted values were also assessed.

Many studies on the impact of the blast induced ground vibrations have been conducted on rocks of different nature and formations. This study intentionally attempted to assess the damage associated with variations in the rock types and success of predictor equations under different geo-mining conditions for BIGV.

During blasting operations, several negative impacts like ground vibrations, air overpressure, fly rocks, dust cloud of fine particles, and huge noise is produced. Of these, the blast induced ground vibrations is the most severe impact as it not only discomforts people but also damages the structures nearby the mines and quarries.

Blast induced ground vibrations cause short durational and long durational impact as enlisted below:

Short durational impacts of ground vibrations:

- Impact on the nearby structures
- Impact on the people
- Environmental impacts

Long durational impacts of ground vibrations:

- Impact on the nearby structures
- Gradual destabilization of the overburden dumps, if any
- Impact on mine haul roads
- Impact on the surface water (migration)
- Impact on ground water (migration)
- Impact on aquifers and reservoirs

During blast induced ground vibrations, duration of vibrations, number of the repetitions, and repetition rate of ground vibrations directly contribute to the probability of the damages. The structures develop hairline to major cracks on the surface or even severe structural damage due to such blast induced ground vibrations. The problems associated with the blast induced ground vibrations need precise and accurate identification and possible solutions in the field through continuous monitoring and analysis. For minimizing these damages, suitable blast design, explosives, and blasting accessories needs to be selected.

The objectives for the present study are:

- To qualitatively assess the impacts of BIGV on nearby structures.
- To establish limits of the zones of destractruction for maximum charge per delay.
- To obtain the safe charge weight per delay for different distances under observation.
- Comparative analysis of the performance and suitability of predctor models, BPANN, and MVRA techniques.
- To determine the site constants for in-situ rock mass.

The research methodology comprised of literature review, field survey, and recording of the data of various parameters of ground vibrations in different mines and quarries, and the analysis of the data from the experimental blasts. These data were processed and analysed through the various models like linear regression analysis, empirical attenuation models, multivariate regression analysis, and back propagation artificial neural network. In order to identify the impacts of the blast induced ground vibrations and minimise the risk of damages to the structures, efforts were made to assess and predict the peak particle velocity and the dominant frequency. The predicted values were compared with the measured values to evaluate the correlation between them.

Fig.1. The flow chart of research methodology.

On the basis of the field experiments and the analysis, the research contributions are significant in:

- Development of methodologies for the estimation of safe charge weight per delay in the selected mines and and quarries.
- Development of methodologies to identify the significant parameters of blast-induced ground vibrations.
- Qualitative and quantitative assessment of the damage level of different structures due to blasting.

Based on the current work, following conclusions have been drawn:

- The structures are continuously accumulating stress-energy of the blast-induced ground vibrations. The stress-energy is released in the form of strain along the weakest section of structures resulting in the progressive development of cracks.
- A-H, D-P/GP, IS/L-K BIGV attenuation models gave completely different values of safe charge per delay with increasing distance.
- The backpropagation ANN, and MVRA predicted BIGV PPV and the dominant frequency with accuracy over the attenuation models.
- The correlation coefficient between measured and predicted PPV was 92%, 75%, 72% by ANN, MVRA, IS, respectively.

The major outcomes of this research work are as follows:

- Continuous monitoring and accurate prediction of the blast-induced ground vibration by ANN and MVRA models.
- Estimation of the safe charge weight per delay for the numerous blast events studied.
- Establishment of the correlation between damages to structures and intensity of the blast-induced ground vibrations at different distances.