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ABSTRACT 

Blasting was path breaking advancement in technology over its earlier options of rock-

excavations. Even today, blasting technique as adopted in mining and civil engineering 

continues to be the cheapest means of rock excavations across the world. In India, it is 

deployed over 90% of the rock excavations. Almost 100% extraction of ornamental rocks, 

construction materials, and many ore deposits from different mines are from the surface 

mines. Despite significant advancements in blasting operation and techniques, effective 

utilization of explosive energy is still lacks perfection.  In rock blasting, only 20-30 % of the 

energy produced by explosives is utilized in fragmentation and displacing of the rock mass. 

The rest of the energy is wasted producing undesirable environmental impacts like ground 

vibrations, air overpressure (AOP), fly rocks, and back-breaks. The blast induced ground 

vibrations is one of the major issues associated with blasting. They are an inescapable 

occurrence in the vicinity of mines and quarries. It at the least creates human discomfort to 

people of surrounding areas. Further, cosmetic to large scale damage to the nearby structures, 

and other environmental damages are also attributed to it. The intensity of these ground 

vibrations depends mainly on the uncontrollable (geology, physical properties of rock, etc.) 

and controllable parameters (burden, spacing, maximum charge per delay, blast-hole 

dimension, bench height, delay operator, etc.). Therefore, challenge lies in predicting and 

assessing the magnitude of the blast induced ground vibrations and its associated frequency, 

near the residential structures close to operating mines and quarries. Complexities abound 

due to insufficient data for the physical properties of the rock mass, the difficulty in accurate 

identification of the sources of vibrations and the resulting near and far-field behavior. 

Nevertheless, in spite of these obstacles, it is possible to make realistic assessments of the 

propagating waves using available empirical and numerical methods. Globally, various 

researchers have developed the different vibration attenuation equations on the basis of the 
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maximum charge per delay and the monitoring distance from the blast site to predict the PPV. 

However, the ground vibration is affected by many other factors like geology, physical 

properties of the rock mass, presence and distribution of discontinuities and their 

characteristics, blast design, bench geometry, etc. Efforts were also made to develop standard 

damage criteria for safe level of different structures according to the regional conditions. 

These criteria are based on PPV and its associated frequency. Various mathematical tools 

like ANN, FIS, SVM, ANN-PSO, Fuzzy Logy, PCA, MVRA, etc. have been deployed to predict the 

peak particle velocity (PPV) and the frequency for the appropriate prediction of the blast-

induced ground vibrations. 

In this study, the monitoring of ground vibration was conducted through peak particle 

velocity and the associated frequency and their orthogonal components with peak vector sum 

PVS using seismographs. During the study, the data acquisition of the blasting parameters, 

blast geometry, monitoring distance from the blast site from five different mine and quarry 

comprising of two opencast coal mines, one open-pit limestone mine, and two stone quarries. 

These datasets were processed through different applied models such as empirical attenuation 

model, multivariate regression analysis (MVRA), and back propagation artificial neural 

network (BPANN) approach to predict PPV and frequency. Finally, the predicted values of 

these different models were compared with the measured values and the correlation 

coefficients between the measured and the predicted values were also assessed.  

Many studies on the impact of the blast induced ground vibrations have been conducted on 

rocks of different nature and formations. This study intentionally attempted to assess the 

damage associated with variations in the rock types and success of predictor equations under 

different geo-mining conditions for BIGV. 
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During blasting operations, several negative impacts like ground vibrations, air overpressure, 

fly rocks, dust cloud of fine particles, and huge noise is produced. Of these, the blast induced 

ground vibrations is the most severe impact as it not only discomforts people but also 

damages the structures nearby the mines and quarries.  

Blast induced ground vibrations cause short durational and long durational impact as enlisted 

below: 

Short durational impacts of ground vibrations: 

 Impact on the nearby structures 

 Impact on the people 

 Environmental impacts 

Long durational impacts of ground vibrations: 

 Impact on the nearby structures 

 Gradual destabilization of the overburden dumps, if any 

 Impact on mine haul roads 

 Impact on the surface water (migration) 

 Impact on ground water (migration) 

 Impact on aquifers and reservoirs  

During blast induced ground vibrations, duration of vibrations, number of the repetitions, and 

repetition rate of ground vibrations directly contribute to the probability of the damages. The 

structures develop hairline to major cracks on the surface or even severe structural damage 

due to such blast induced ground vibrations. The problems associated with the blast induced 

ground vibrations need precise and accurate identification and possible solutions in the field 

through continuous monitoring and analysis. For minimizing these damages, suitable blast 

design, explosives, and blasting accessories needs to be selected.  
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The objectives for the present study are: 

 To qualitatively assess the impacts of BIGV on nearby structures. 

 To establish limits of the zones of destractruction for maximum charge per delay. 

 To obtain the safe charge weight per delay for different distances under observation.  

 Comparative analysis of the performance and suitability of predctor models, BPANN, 

and MVRA techniques. 

 To determine the site constants for in-situ rock mass.  

The research methodology comprised of literature review, field survey, and recording of the 

data of various parameters of ground vibrations in different mines and quarries, and the 

analysis of the data from the experimental blasts. These data were processed and analysed 

through the various models like linear regression analysis, empirical attenuation models, 

multivariate regression analysis, and back propagation artificial neural network. In order to 

identify the impacts of the blast induced ground vibrations and minimise the risk of damages 

to the structures, efforts were made to assess and predict the peak particle velocity and the 

dominant frequency. The predicted values were compared with the measured values to 

evaluate the correlation between them.  
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Fig.1. The flow chart of research methodology. 
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On the basis of the field experiments and the analysis, the research contributions are 

significant in: 

 Development of methodologies for the estimation of safe charge weight per delay in 

the selected mines and and quarries. 

 Development of methodologies to identify the significant parameters of blast-induced 

ground vibrations. 

 Qualitative and quantitative assessment of the damage level of different structures 

due to blasting.  

Based on the current work, following conclusions have been drawn: 

 The structures are continuously accumulating stress-energy of the blast-induced 

ground vibrations. The stress-energy is released in the form of strain along the 

weakest section of structures resulting in the progressive development of cracks. 

 A-H, D-P/GP, IS/L-K BIGV attenuation models gave completely different values of 

safe charge per delay with increasing distance. 

 The backpropagation ANN, and MVRA predicted BIGV PPV and the dominant 

frequency with accuracy over the attenuation models. 

 The correlation coefficient between measured and predicted PPV was 92%, 75%, 

72% by ANN, MVRA, IS, respectively.  

The major outcomes of this research work are as follows: 

 Continuous monitoring and accurate prediction of the blast-induced ground vibration 

by ANN and MVRA models. 

 Estimation of the safe charge weight per delay for the numerous blast events studied. 

 Establishment of the correlation between damages to structures and intensity of the 

blast-induced ground vibrations at different distances. 

 


