
7 Some Kaluza- Klein Cosmological Models in

f(R,T) Gravity Theory ∗

7.1 Introduction

It is widely believed that a consistent unification of all fundamental forces in nature

would be possible within the space-time with an extra dimension beyond those four

observed so for. Higher dimensional theories of Kaluza-Klein(KK)-type have been con-

sidered to study some aspects of early Universe (Chodos and Detweiler, 1980; Freund,

1982; Shafi and Wetterich, 1984; Sahdev, 1984). In such KK theory it has been assumed

that the extra dimension form a compact manifold of very small size undetectable at

present day energies. Thus, in such higher dimensional theories one would expect that

at the grand unification scale the word manifold has more than one dimension. The

Kaluza-Klein theory is attractive because it has an elegant presentation interms of ge-

ometry. In certain sense, it looks just like ordinary gravity in free space, except that

it is phrased in five dimensions instead of four. Kaluza (1921)and (Klein, 1926a.,b) at-

tempted to unify gravitation and electromagnetism. An interesting possibility known

∗Published in Astrophys Space Sci 347, 389 (2013),(Springer) .

119



7 Some Kaluza- Klein Cosmological Models in f(R,T) Gravity Theory

as the cosmological reduction process is based on the idea that at very early stage all

dimensions in the universe are comparable. Later, the scale of the extra dimension be-

comes so small as to be unobservable by experiencing contraction. Such cosmological

models were investigated by Forgacs and Horvath (1979). Guth (1981); Alvarez (1983)

observed that during the contraction process extra dimensions produce large amount of

entropy, which provides an alternative resolution to the flatness and horizon problem,

as compared to usual inflationary scenario. Gross and Perry (1983) have shown that

the five-dimensional Kaluza-Klein theory of unified gravity and electromagnetism ad-

mits soliton solutions. Further, they explained the inequality of the gravitational and

inertial masses due to the violation of Birkoffs theorem in Kaluza-Klein theories, which

is consistent with the principle of equivalence. Appelquist and Chodos (1983) claimed

through solution of the field equations that there is an expansion of four-dimensional

space-time while fifth dimension contracts to the unobservable Plankian length scale or

remains constant as needed for the real universe.

Recent observations of type Ia Supernovae (SNe Ia)at red shift z < 1 provide startling

and puzzling evidence that the expansion of the universe at the present time appears

to be accelerating behavior, attributed to “Dark Energy” with negative pressure. These

observations (Chaterjee, 1992; Frieman and Waga, 1998; Ozer and Taha, 1987; Carvalho

et al., 1992; Ratra and Peebles, 1988), strongly favour a significant and positive value of

Λ. A number of models for dark energy to explain the late-time cosmic acceleration with-

out the cosmological constant has been proposed, for example, a canonical scalar field,

so-called quintessence, a non-canonical scalar field such as phantom, tachyon scalar field

motivated by string theories, and a fluid with a special equation of state (EoS) called as

Chaplygin gas. Nojiri and Odintsov (2003a,b) have presented a review of various modi-

fied gravities which have considered as gravitational alternative for dark energy. Nojiri

and Odintsov (2004.) proposed that dark energy may become over standard matter due
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to universe expansion. Carroll et al. (2004) explained the presence of late time cosmic

acceleration of the universe in f(R) gravity and proposed that dark energy model for

specific 1
R

modified gravity . Allemandi et al. (2005) discussed the dark energy domi-

nance cosmic acceleration in first order Palatini formalism. There also exists a proposal

of holographic dark energy. One of the most important quantity to describe the features

of dark energy models is the equation of state parameter (EoS) ω, which is the ratio

of the pressure p to the energy density ρ of dark energy, defined as ω=p

ρ
. There are

two ways to describe dark energy models. One is a fluid description and the other is

to describe the action of a scalar field theory. In both description, we can write the

gravitational field equations, so that we can describe various cosmologies, e.g., the Λ

CDM model, in which ω is a constant and exactly equal to −1 , quintessence model,

where ω is a dynamical quantity and −1 < ω < −1
3
, and phantom model, where ω

also varies in time and ω < −1. This means that one cosmology may be described

equivalently by different model descriptions discussed by Bamba et al. (2012). In view

of the late time acceleration of the universe and the existence of dark energy and dark

matter, several modified theories of gravitation have been proposed as alternative to

Einstein’s theory. Noteworthy amongst them is the f(R) gravity theory. Nojiri and

Odintsov (2006a) developed the general scheme for modified f(R) gravity reconstruction

from any realistic FRW cosmology. They have shown that the modified f(R) gravity

indeed represents the realistic alternative to general relativity, being more consistent in

dark epoch. Nojiri and Odintsov (2006b) developed a general programme for unification

of matter -dominated era with acceleration epoch for scalar -tensor theory or dark fluid.

Nojiri and Odintsov (2007) have reviewed various modified gravities considered as grav-

itational alternative for dark energy.They have considered the version of f (R), f (G) or

f (R,G) gravity, model with non-linear gravitational coupling or string inspired model

with Gauss-Bonnet-dilaton coupling in the late universe. Nojiri and Odintsov (2011),
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have studied f (R) gravity in different context. Bertolami et al. (2007)proposed a gener-

alization of f(R) theory of gravity by including in the theory an explicit coupling of an

arbitrary function of the Ricci scalar R with the matter Lagrangian density Lm. Shamir

(2010), proposed a physically viable f(R) gravity model, which show the unification of

early time inflation and the late time acceleration.

In this chapter, we present some new classes of five dimensional Kaluza-Klein cos-

mological models in the presence of a perfect fluid source in f(R,T) gravity theory. The

chapter is organized as follows: In Sect. 7.2, we revisit the field equations presented

by Reddy et al. (2012a). We then derive algorithms for generating new solutions of

the field equations in Sect.7.3 . In Sect.7.4, starting with solution of Reddy et al.

(2012a), we obtain some solutions of the field equations which represent accelerating

cosmological models. The physical and kinematical properties of the models are also

discussed.Conclusions are given in Sect.7.5. .

7.2 Metric and Field Equations

We consider a five dimensional Kaluza-Klein metric in the form

ds2 = dt2 − A2(t)(dx2 + dy2 + dz2)−B2(t)dΨ2 (7.1)

where A(t) and B(t) are the scale factors. The fifth coordinate Ψ is taken to be space-like.

The field equations in f(R,T)theory of gravity for the function f(R,T), which is given in

(5.2), when the matter source is perfect fluid (1.8), are given by Harko et al. (2011b).

The field equations (5.5) for the metric (7.1) in comoving coordinates lead to the

following equations
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3

(

Ȧ

A

)2

+ 3
ȦḂ

AB
= (8π + 3λ)ρ− pλ, (7.2)

Ä

A
+

(

Ȧ

A

)2

+ 2
ȦḂ

AB
+

B̈

B
= −(8π + 3λ)p+ ρλ, (7.3)

3
Ä

A
+ 3

(

Ȧ

A

)2

= −(8π + 3λ)p+ ρλ. (7.4)

Here an overhead over dot denotes ordinary differentiation with respect to time t.

For the metric (7.1), the spatial volume V and the average scale factor a are given

by

V = a4 = A3B (7.5)

where a is the scale factor.

The mean Hubble parameter H has the expression

H =
ȧ

a
=

1

4

(

3
Ȧ

A
+

Ḃ

B

)

(7.6)

where Hx=Hy= Hz = Ȧ
A
and HΨ = Ḃ

B
are directional Hubble parameters.

The scalar expansion θ and shear scalar σ are are given by

θ =
3

4

(

3
Ȧ

A
+

Ḃ

B

)

, (7.7)

σ2 =
3

4
θ2. (7.8)

In next Sect. we follow Hajj-Bouttros (1986a) to derive algorithms for generating
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new solutions of the field equations of KK -type perfect fluid cosmological models within

the framework of f(R,T) gravity theory .

7.3 Generating Technique

From Eqs. (7.3) and (7.4) we obtain

2Ä

A
+ 2

Ȧ2

A2
− 2

ȦḂ

AB
−

B̈

B
= 0. (7.9)

To treat Eq. (7.9), we introduce new functions R and S given by

R =
Ȧ

A
, S =

Ḃ

B
, (7.10)

By use of (7.10), Eq. (7.9), becomes

2Ṙ + 4R2 − 2RS − Ṡ − S2 = 0. (7.11)

The nonlinear equation. (7.11) can be treated as a Riccati equation in R or S.

If we treat Eq. (7.11) as a Riccati equation in R, it can be linearized by means of

change of function

R = R0 +
1

X
. (7.12)

where R0 is a particular solution of Eq. (7.11) . Using (7.12) in Eq. (7.11), we obtain

Ẋ + (S − 4R0)X = 2 (7.13)

Eq. (7.13) is linear first-order differential equation which has the general solution given
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by

X =
A4

0

B

(
∫

2
B

A4
0

dt+ k1

)

, (7.14)

k1 being an integration constant. From Eqs. (7.12) and (7.14), we obtain after

integration

A = A0k2 exp





dt
A4

0

B
(
∫

2 B
A4

0
dt+ k1)



 (7.15)

where k2 being another constant. Hence, from metric function [A0, B] we can generate

new function [A,B] where (A)is given by Eq.(7.15) and B remains invariable.

If (7.11) is regarded as a Riccati equation in S, we can be linearized it by the change

of function

S = S0 +
1

Y
. (7.16)

where S0 is a particular solution of (7.11).

Introducing (7.16) into Eq. (7.11), we obtain

Ẏ − (2R + 2S0)Y = 1 (7.17)

Eq. (7.17), on integration, gives

Y = A2B2
0

(
∫

dt

A2B2
0

+ k3

)

(7.18)

where k3 being a constant . From Eqs. (7.17) and (7.18), we obtain
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B = B0k4 exp

[

∫

dt

A2B2
0(
∫

dt
A2B2

0
+ k3)

]

(7.19)

where k4 is another constant of integration. Thus, from the couple [A,B0] we can

generates [A,B] where B is given by Eq.(7.19) and A remains invariable

Reddy et al.(2012a) have presented the solutions of the field equations (7.2)-(7.4) in

f(R,T) gravity theories has given by the metric

ds2 = dt2 − [kt]
2
k (dx2 + dy2 + dz2)− [kt]

2m
k dΨ2 (7.20)

where k=m2+2m−3
m−1

, m 6= 1. Starting with this metric, we now generate new solutions of

the field equations (7.2)-(7.4) by applying the generating techniques (7.15) and (7.19)

7.4 Model I

To apply our generation technique (7.19) to the metric (7.20), we take

A = (kt)
1
k , B0 = (kt)

m

k

Then, performing the integration in (7.19) , the new metric function B is obtained as

B = k4(k)
m

k [t]
k
2
−2m2

−2m+km

k(k−2m−2) (7.21)

by putting k3=0. Hence the metric of our new solution can be written in the form

ds2 = dt2 − [kt]
2
k (dx2 + dy2 + dz2)−

{

k
m

k t
k
2
−2m2

−2m+mk

k(k−2m−2)

}2

dΨ2 (7.22)

For the model (7.22) the physical and kinematical parameters are given by

126



7.4 Model I

H =
1

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k], (7.23)

θ = 3H =
3

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k], (7.24)

σ2 =
3

4
θ2 =

3

4

(

3

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k]

)2

.

(7.25)

V = k
m+3
k t

k
2
−2m−2m+mk

k(k−2m−2)
+ 3

k . (7.26)

The deceleration parameter q is defined in (1.31) which has the value given by

q =
4k

3(k − 2m− 2) + k2 − 2m2 − 2m+mk
− 1. (7.27)

The pressure and energy density are obtained as

p =

[

λ[k(k − 2m− 2)E1 − (8π + 3λ)E2m
2]

(8π + 4λ)(8π + 2λ)m2k2(k − 2m− 2)t2

]

, (7.28)

ρ =

[

3(1 + k2−2m2
−2m+mk

k(k−2m−2)
)

m2t2(8π + 3λ)
+

λ2(k(k − 2m− 2)− (8π+3λ)
λ

E2m
2)

(8π + 2λ)(8π + 3λ)(8π + 4λ)m2k2t2

]

(7.29)

where
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E1 = k(k − 2m− 2) + 3m(k2 − 2m2 − 2m+mk),

E2 =
[

2−m+ (2m− 1)(k2 − 2m2 − 2m+mk))(k(k − 2m− 2)
]

+(k2 − 2m2 − 2m+mk)

From the above results we observed that the model has initial singularity at t=0 if

k > 2(m+1) which leads to m < 1 . We see that θ, σ ,H, p and ρ have infinite value at

the initial singularity t=0. These parameters are decreasing function of time which tend

to zero for large time. Since σ2

θ2
6= 0, the model is anisotropic throughout the evolution

of the universe. We also find that the deceleration parameter q is negative , which

corresponds to an accelerating model of the universe in five-dimensional Kaluza-Klein

theory.

7.5 Model II

We apply formula (7.15) for the metric (7.20) to generate the new function A by taking

A0 = (kt)
1
k , B = (k)

m

k [t]
k
2
−2m2

−2m+km

k(k−2m−2)

Then, after integration, we obtain

A = k2(k)
1
k [t]

mk(k−2m−2)

2(m(k2−2m2
−2m+mk)+(mk−4k)(k−2m−2))

+ 1
k (7.30)

assuming k1 =0. The metric of the solution can be written in the form
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ds2 = dt2 −

{

(k)
1
k [t]

mk(k−2m−2)

2(m(k2−2m2
−2m+mk)+(km−4k)(k−2m−2))

+ 1
k

}2

(dx2 + dy2 + dz2)

−

(

k
m

k t
k
2
−2m2

−2m+mk

k(k−2m−2)

)2

dΨ2.

(7.31)

The metric (7.31) represents the five-dimensional Kaluza-Klein cosmological model

in f(R,T) gravity theory with the following physical and kinematical parameters.

V = k
m+3
k [t]

3k(k−2m−2)

2(m(k2−2m2
−2m+mk)+(m−4)k(k−2m−2))

+ k
2
−2m2

−2m+mk

k(k−2k−2) , (7.32)

H =

[

1

8t(m(k2 − 2m2 − 2m+mk) + km(k − 2m− 2)− 4k2(k − 2m− 2)2)

]

.
[

((m− 4)k(k − 2m− 2)(1 + (k − 2m− 2)((m− 4)k + 3mk2))
]

+
[

(k2 − 2m2 − 2m+ km)(2km(k − 2m− 2) + 2m2(k2 − 2m2 − 2m+ km)))
]

,

(7.33)

θ =

[

3

8t(m(k2 − 2m2 − 2m+mk) + km(k − 2m− 2)− 4k2(k − 2m− 2)2)

]

.
[

((m− 4)k(k − 2m− 2)(1 + (k − 2m− 2)((m− 4)k + 3mk2))
]

+
[

(k2 − 2m2 − 2m+ km)(2km(k − 2m− 2) + 2m2(k2 − 2m2 − 2m+ km)))
]

,

(7.34)

σ2 =
3

4
θ2, (7.35)

q = −
aä

ȧ2
= −[1 + (E3

3E4)
1
2 ], (7.36)

p = −

[

(16π + 3λ)(E2
3 + E3E4) + (8π + 3λ)(E2

4 − (E3 + E4))

t2(8π + 4λ)(8π + 2λ)

]

, (7.37)
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ρ =

[

(3E3E4)−
λ

(8π + 4λ)(8π + 2λ)
(16π + 3λ)(E2

3 + E3E4) + (8π + 3λ)(E2
4 − (E3 + E4))

]

.

[

1

t2(8π + 3λ)

]

(7.38)

where

E3 =

[

k2(k − 2m− 2)

2(m(k2 − 2m2 − 2m+mk) +mk(k − 2m− 2)− 4k(k − 2m− 2))
+

1

k

]

,

E4 =
k2 − 2m2 − 2m+mk

k(k − 2m− 2)

From the Fig.(7.5), it is clear that the model (7.31) represents a five-dimensional

Kaluza-Klein accelerating cosmological model . The other physical and kinematical

behaviors of the model are same as model I.

7.6 Model III

We now use formula (7.15) to generate new metric function A by taking

A0 = (kt)
1
k , B = (kt)

m

k

Then performing integration in (7.15) ,we obtain

A = k2k
1
k [t]

km

2(m2
−4k+m)

+ 1
k , (7.39)

assuming k1=0 Then the metric (7.1) can be written in the form (7.40)
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where k5 is integration constant.

The metric can be written as

ds2 = dt2 −
(

k
1
k [t]

km

2(m2
−4k+m)

+ 1
k

)2

(dx2 + dy2 + dz2)− (kt)
2m
k dΨ2 (7.40)

The model (7.40) represents the five-dimensional Kaluza-Klein cosmological with

perfect fluid in f(R,T) gravity theory . The physical and the kinematical parameters of

the model (7.40) are given as follows:

V = (k)
m+3
k [t]

3+m(2m2
−5k+2m)

2k(m2
−4k+m) , (7.41)

H =
1

4tk
(3kE5 +m), (7.42)

θ = 3H =
3

4kt
(3kE5 +m), (7.43)

σ2 =
27

64t2k2
(3kE5 +m)2, (7.44)

q = −1 +

[

8(m2 − 4k −m)k

t(3k2m+ 2m(m2 − 4k +m))

]

, (7.45)

p =

[

E5((8π + 3λ)k2 + 3λkm2)− (8π + 3λ)(E5(2mk − E5) +m(m− k))− (8π + 2λ)k2E2
5

(8π + 4λ)(8π + 2λ)k2t2

]

,

(7.46)
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ρ =

[

1

(8π + 4λ)(8π + 3λ)(8π + 2λ)k2t2

]

.
[

((3E2
5(E5 − 1)2k2 + 3E5m)(8π + 4λ)(8π + 2λ)

]

+
[

λE5(8π + 3λ)k2 + 3λkm2 − λ(8π + 3λ)(m− k)m− (8π + 2λ)k2E5)
]

(7.47)

where

E5 =
k

2(m2 − 4k +m)
+

1

k
.

For the metric (7.40) the spatial volume is zero at t=0 if k <
m(m+1)

4
.The physical

and kinematical properties same as perfect fluid Model I

7.7 Model IV

We use the formula (7.19) for the metric (7.40) to generate the new function B by setting

A = k
1
k [t]

km

2(m2
−4k+m)

+ 1
k , B = (kt)

m

k .

Then, from Eq.(7.19) , the new function B is obtained as:

B = k4k
m

k [t]
mk(m2

−4k+m)

km2+2(m2
−4k+m)+(3k+2m)(m2

−4k+m)+mk(m2
−4k+m) (7.48)

taking k3=0. The metric of the solution can be written in the form

ds2 = dt2 −
[

k
1
k [t]

km

2(m2
−4k−m)

+ 1
k

]2

(dx2 + dy2 + dz2)

−

[

(k)
m

k [t]
km(m2

−4k+m)

km2+2(m2
−4k+m)(1+m+3km)

]2

dΨ2

(7.49)
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The metric (7.49) represents five-dimensional Kaluza-Klein cosmological model in

f(R,T) gravity with the following physical and kinematic parameters in the model.

V = k
m+3
k

[

t
3km

2(m2
−4k+m)

+ 3
k
+m

k
+

(km(m2
−4k+m))

km2+(2+m(4+k))(m2
−4k+m)

]

, (7.50)

H =
(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)
, (7.51)

θ = 3H = 3

[

(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)

]

, (7.52)

σ2 =
27

256

[

(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)

]2

, (7.53)

q = −(1−
1

E7

), (7.54)

p = −

[

1

4m2(m2 − 4k +m)2t2(8π + 4λ)(8π + 2λ)

]

.
[

((km2 + 1)2(16π + 3λ) + ((32π + 6λ)E6

]

+
[

(km2 + 1)m(m2 − 4k +m))
]

+
[

(8π + 3λ)m(m2 − 4k +m)(km2 + 1)
]

+
[

(8π + 3λ)E6(E6 − 1)m(m2 − 4k +m))
]

,

(7.55)

133



7 Some Kaluza- Klein Cosmological Models in f(R,T) Gravity Theory

ρ =

[

3(km2 + 1)2E6(km
2 + 1)

4m2(m2 − 4k +m)2t2(8π + 3λ)

]

−

[

λ

(8π + 4λ)(8π + 3λ)(8π + 2λ)t24m2(m2 − 4k +m)2

]

.
[

((km2 + 1)2(16π + 3λ) + (32π + 6λ)E6(km
2 + 1)m(m2 − 4k +m)

]

+
[

(8π + 3λ)E6(E6 − 1)m(m2 − 4m+m))
]

(7.56)

where

E6 =
m

k
+

m2 − 4k +m

(km2 + (2 + 4km+m)(m2 − 4k +m)
,

E7 =

[

3km

2(m2 − 4k +m)
+

m

k
+

km(m2 − 4k +m)

km2 + (m2 − 4k +m)(2 + 4m+ km)

]

.

We observe that the spatial volume of the model (7.49) is zero at t=0 and increases

with time if k <
m(m+1)

4
.Therfore the model has a point type singularity at t=0 where θ,

σ2, H, p and ρ diverge . These parameters are decreasing function of time and ultimately

tend to zero for large time. The negative pressure, as shown by Fig.(7.11), indicates that

the model is accelerating .

7.8 Conclusions

The higher dimensional cosmological models are of considerable importance because of

the underlying idea that cosmos in early stages of evolution might have had a higher

dimensional era. The extra space reduces to a volume with the passage of time, which

is beyond the ablity of experimental observation at the moment Reddy (2009). It is well

known that Kaluza-Klein models represent the cosmos in its early stages of evolution.

In the present work, we have derived algorithms for generating new solutions of the field
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equations with a perfect fluid for a five dimension Kaluza-Klein space-time within the

framework of f(R,T) gravity theory proposed by Harko et al. (2011b). Starting from the

model obtained by Reddy et al. (2012a), we have presented new cosmological models

of the present-day accelerating universe. These models are expanding, shearing and

accelerating which have point-type singularity at t=0. All the physical and kinematical

parameters, being infinite at the initial singularity , are decreasing functions of time

which ultimately tend to zero for large time . The anisotropy in the cosmological models

are maintained throughout the passage of time.

Nojiri and Odintsov (2003a) studied a modify theory of gravity where the universe

interns inflates, decelerates and then accelerates in early times, radiation dominated era.

Our models are similar to the case of five dimensional f(R) gravity except the decelerating

behavior in the presence of a perfect fluid source discussed by Huang et al. (2010) and

Agmohammadi, et al. (2009). It has been observed that in the five dimensional f(R)

and f(R,T) gravity theories, the expansion and contraction of the extra dimension could

result in the present accelerated expansion of other spatial dimensions. This is possible

by cosmic re-collapse of the universe in the finite future. It follows that the the present

accelerating models of the universe are consistent with the recent observation of type-Ia

supernovae (Perlmutter et al., 1999; Riess et al., 1998).
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Figure 7.1: The plot of scalar expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.2: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.3: The plot of density ρ verses cosmic time t, m=0.5;λ=1;k=1;

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ca

la
r 

o
f 
e
xp

a
n
si

o
n
(t

h
e
ta

)

cosmic time(t)

Figure 7.4: The plot of θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.5: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.6: The plot of density ρ verses cosmic time t, m=0.5;λ =1;k=1;
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Figure 7.7: The plot of scalar expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.8: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.9: The plot of density ρ verses cosmic time t, m=0.5;λ=1; k=1;
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Figure 7.10: The plot of Scalar of expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.11: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.12: The plot of density ρ verses cosmic time t, m=0.5;λ=1;k=1;
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