
6 Bianchi types I and V Bulk Viscous Fluid

Cosmological Models in f(R,T) Gravity Theory ∗

6.1 Introduction

The simplest model of the expanding universe is well represented by Friedmann-Robertson-

Walker models which are spatially homogeneous and isotropic. These models in some

sense are good global approximation of the present day universe, but it is unreasonable

to assume that the regular expansion predicted by these models are also suitable for de-

scribing the early stages of evolution of the universe. The aim of modern cosmology is to

study the past history, the present state and future evolution of the universe. Recent ob-

servational data indicate that our universe is accelerating (Riess et al., 1998; Perlmutter

et al., 1997). Also, observations such as cosmic microwave background radiation (Spergel

et al., 2003) and large scale structure (Tegmark, et al, 2004) provide indirect evidence

for the late time accelerated expansion of the universe.This acceleration is explained in

terms of the so-called dark energy.

In view of the late-time acceleration of the universe and the existence of the dark

∗Contents of this chapter have been published in Central European Journal of Physics
(2014), 12, 744, Springer
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energy and dark matter, several modified theories of gravitation have been proposed as

alternative to Einstein’s general theory of relativity . Noteworthy among them is the

cosmologically important f(R) gravity theory. It has been shown that f(R) gravity theory

is indeed a realistic alternative to general relativity, being consistent in dark epoch. It

has been suggested that cosmic acceleration could be achieved by replacing the Einstein’s

-Hilbert action of general relativity with a general function of Ricci scalar R. Nojiri and

Odintsov (2006a)developed a general program for unification of matter -dominated era

with accelerated epoch for scalar -tensor theory or dark fluid. Nojiri and Odintsov

(2007)presented an extensive review of modified gravity theories which is considered

as gravitational alternative for dark energy . Bertolami et al. (2007) have proposed a

generalization of f(R) gravity theory by including in the theory an explicit coupling of an

arbitrary function of Ricci scalar R with the matter Lagrangian density. Shamir (2010)

has also proposed a physically viable f(R) gravity model, presenting the unification of

early time inflation and late time acceleration, Shamir and Jhangeer (2013) investigated

static plane symmetric vacuum solutions in f(R) gravity for (n+1) dimensional space

time. Recently, Adhav (2012b) studied Bianchi type-III cosmological model in f(R)

theory of gravity in the presence of cosmic strings.

The role played by viscosity and the consequent dissipative mechanism in cosmology

have been discussed by several authors (Misner, 1967, 1968; Murphy, 1973) . The heat

represented by the large entropy per baryon in the microwave background provides a

useful clue to the early universe and a possible explanation for this huge entropy per

baryon is that it was generated by physical dissipative processes acting at the beginning

to evolution. These dissipative processes may indeed be responsible for the smoothing

out if initial anisotropics (Weinberg, 1967). Misner (1967, 1968) suggested that neutrino

viscosity acting in the early era might have considerably reduced the present anisotropy

of the black-body during the process of evolution. Bulk viscosity appears as the only
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dissipative phenomenon occurring in FRW models and plays a significance role in get-

ting accelerated expansion of the universe known as inflationary phase, as discussed by

Sheykhi (2010). Murphy (1973) has obtained a zero curvature FRW type model in the

presence of bulk viscosity alone, which exhibits an interesting property that the big-bang

singularity appears in the infinite past. Roy and Tiwari (1983) presented some plane

symmetric solutions to Einstein’s field equations representing inhomogeneous cosmolog-

ical models with viscous fluid and constant bulk viscosity. Syzlowski and Heller (1983)

constructed models of the universe filled with interacting matter and radiation includ-

ing bulk viscosity dissipation. Mohanty and Pradhan (1983) obtained a class of exact

non-static solution in closed elliptic Robertson-walker space-time filled with viscose fluid

in the presence of attractive scalar field. Goenner and Kowalewsky (1987) developed a

method for obtaining irrotational anisotropic viscous fluid solutions of Bianchi type-I

with barotropic equation of state. Banerjee and Sanyal (1988) presented an irrorational

Bianchi type V model under the influence of both shear and bulk viscosity together with

heat flow . Coley (1990); Coley and Hoogan (1994), while generalizing the work of Coley

and Tupper (1984), studied diagonal Bianchi type-V imperfect fluid models with both

viscosity and heat condition with and without the cosmological term. .Bali and Meena

(2002) have investigated tilted cosmological models filled with disordered radiation of

perfect fluid and heat flow. Tilted Bianchi type I cosmological model for perfect fluid dis-

tribution in presence of magnetic field is investigated by Bali and Sharma (2003). Also,

Bali and Anjali (2004) presented Bianchi type-I bulk viscous fluid string dust magnetized

cosmological models in general relativity. Adhav et al. (2007) studied Bianchi type-III

anisotropic cosmological models with varying Λ. Baghel and Singh (2012) considered

spatially homogeneous and anisotropic Bianchi type-V space-time with a bulk viscous

fluid source, and time varying gravitational constant G and cosmological term Λ .Sev-

eral authors have discussed the role of bulk viscosity in early evolution of the universe
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in different physical contexts.

Harko et al. (2011b) developed another modification of Einstein’s gravity theory,

known as f(R,T) gravity theory, wherein the gravitational Lagrangian is an arbitrary

function of Ricci scalar R and the trace T of the energy-momentum tensor Tij. It is

to be noted that the dependence from T may be induced by exotic imperfect fluid or

quantum effects. They have derived the field equations of f(R,T) gravity by varying the

action of the gravitational field equations with respect to the metric tensor and have

presented physically realistic model with the special choice of the function f(R,T). Sub-

sequently, several authors viz.Myrzakulov (2012); Adhav (2012a); Reddy et al. (2012b);

Chaubey and Shukla (2013); Ram et al. (2013), . Samanta (2013) studied Kantowski

-Sachs space time cosmological model filled with perfect fluid matter in f(R, T ) grav-

ity. Further, Reddy et al. (2012a); Ram and Priyanka (2013), have investigated five

dimensional Kaluza-Klein cosmological models filled with perfect fluid in f(R,T) gravity

theory. Naidu et al. (2013) investigated Bianchi type -V bulk viscous string cosmological

model in f(R,T) gravity theory. Reddy et al. (2013) considered a LRS Bianchi type II

space-time and obtained the solutions of field equations with cosmic string and bulk vis-

cous fluid within the framework f(R,T) theory of gravity. Recently, Ahmed and Pradhan

(2013) investigated a to study cosmological model in f(R,T) gravity of Bianchi type-V

by assuming f(R, T ) = f1(R) + f2(T) , Chakraborty (2013) formulated an alternative

f(R,T) gravity theory and the dark energy problem. Recently, Sharif and Zubair (2012b)

studied Bianchi type-I anisotropic models in f(R,T) gravity theory.Sahoo et al. (2014)

considered an axially symmetric space -time in the presence of a perfect fluid source

within the framework of f(R,T) gravity theory. Mishra and Sahoo (2014)investigated

Bianchi type VIh cosmological model filled with perfect fluid within the framework

of f(R,T) gravity theory. The spatially homogeneous and totally anisotropic Bianchi

type-II cosmological solutions of massive strings in the presence of the magnetic field
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in f(R,T) theory of gravity have been studied by Sharma and Singh (2014). Singh and

Singh (2014) presented the cosmological viability of reconstruction of an alternative

gravitational theory, namely the modified f(R,T) gravity theory.

Motivated by the above studies, we investigate new classes of spatially homogeneous

Bianchi type I and V bulk viscous fluid cosmological models in f(R,T) theory of gravity.

We also discuss some physical and kinematical features of the cosmological models.

6.2 Field Equations

We assume the cosmic matter is represented by the energy-momentum (1.9) tensor of

an imperfect bulk viscous fluid (1.10) satisfying a linear equation of state

p = ǫρ, 0 6 ǫ 6 1. (6.1)

Here p is the equilibrium pressure, ρ is the energy density of matter, ζ is the coefficient

of bulk viscosity and ui is the flow vector of the fluid satisfying uiu
i= 1. The semicolon

stands for covariant differentiation. On thermodynamical grounds bulk viscosity coeffi-

cient ζ is positive, assuring that the viscosity pushes the dissipative pressure p̄ towards

negative values. However, correction to the thermodynamical pressure p due to bulk

viscous pressure is very small. Therefore, the dynamics of cosmic evolution does not

change fundamentally by the inclusion of viscous term in the energy-momentum tensor.

The field equations in f(R,T) gravity theory with the particular choice of the function

f(R,T) given in (5.2) when the matter source is a bulk viscous fluid, are given by Reddy

et al. (2013):

Rij −
1

2
Rgij = 8πTij + 2f

′

(T )Tij +
[

2p̄f
′

(T ) + f(T )
]

gij (6.2)
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We further take (5.6). This f(R,T) gravity model is equivalent to a cosmological

model with an effective cosmological constant Λ ∝ H2, where H is the Hubble function

(Poplawski, 2007). It is also interesting to note that generally for this choice of f(R,T)

the gravitational coupling becomes effective and time dependent coupling, of the form

Geff = G± 2f
′

(T). Thus the term 2f(T) in the gravitational action modifies the gravita-

tional interaction between matter and curvature replacing G by a running gravitational

coupling parameter.

6.3 Bianchi type-I Model

We consider a spatially homogeneous Bianchi type-I metric given as:

ds2 = dt2 − A2(t)dx2 −B2(t)dy2 − C2(t)dz2 (6.3)

where A, B and C are cosmic scale functions.

For the metric (6.3), the field equations (1.9), (5.2) and (6.2), in comoving coordi-

nates, lead to the following set equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
= λρ− (8π + 3λ)p̄, (6.4)

C̈

C
+

Ä

A
+

ĊȦ

CA
= λρ− (8π + 3λ)p̄, (6.5)

Ä

A
+

B̈

B
+

ȦḂ

AB
= λρ− (8π + 3λ)p̄. (6.6)
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ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
= (8π + 3λ)ρ− λp̄, (6.7)

These are four highly non-linear equations in six unknowns A,B, C, ρ , p̄ and ζ. Therefore

to find a consistent solution of these equations,we shall need meaningful assumptions

either on the cost of physics or simply for mathematical convenience. Subtracting Eq.

(6.5) from Eq.(6.4), Eq. (6.6) from (6.5), Eq.(6.6) from Eq.(6.4) and integrating the

resulting equations, we obtain

B

A
= d1 exp

(

c1

∫

dt

a3

)

, (6.8)

C

B
= d2 exp

(

c2

∫

dt

a3

)

, (6.9)

A

C
= d3 exp

(

c3

∫

dt

a3

)

(6.10)

where c1, c2, c3 and d1 , d2 , d3 integration constants which satisfy the relation

c1 + c2 + c3 = 0, d1d2d3 = 1. (6.11)

From Eqs. (6.8)-(6.10), we can obtain the scale factors A, B and C metric functions

explicitly as

A = ap1 exp

(

q1

∫

dt

a3

)

, (6.12)

B = ap2 exp

(

q2

∫

dt

a3

)

, (6.13)

101



6 Bianchi Types I and V Bulk Viscous Fluid Cosmological Models in f(R,T) Gravity Theory

C = ap3 exp

(

q3

∫

dt

a3

)

(6.14)

where

p1 = (d−21 d−12 )
1
3 , p2 = (d1d

−1
2 )

1
3 , p3 = (d1d

2
2)

1
3 (6.15)

and

q1 = −
2c1 + c2

3
, q2 =

c1 − c2

3
, q3 =

c1 + 2c2
3

. (6.16)

The constants p1, p2 , p3 and q1, q2, q3 satisfy the relations

p1p2p3 = 1, q1 + q2 + q3 = 0. (6.17)

It is obvious that we determine the scale factors A, B, C from Eqs. (6.12)-(6.14) the

average scale factor a(t) is known.

For constructing physically relevant cosmological models, the Hubble parameter and

deceleration parameter (DP) play important roles. It has been the common practical

to use a constant DP.Berman (1983); Berman and Gomide (1988) proposed a law of

variation of Hubble parameter in FRW model that yields a constant value of DP, which

subsequently leads to power-law and exponential forms of the average scale factor. The

recent observations of SNe Ia (Riess et al., 1998; Perlmutter et al., 1997) indicate that the

universe is presently accelerating while there was decelerated expansion in the past, and

the universe undergoes transition from decelerated expansion to accelerated expansion

and vice-versa at present. Therefore, in general DP is expected to be not a constant

but rather a function of time. Some authors proposed time-dependent forms of DP and

derived differential form of the average scale factor of the model .However, some authors
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further choose the average scale factor and then deduce the time-dependent DP, Eq.

(1.31) can also be written as (5.15)

The Fig. (1) depicts the behavior of the deceleration parameter with time.

Here we use the form of a(t) given in Eq. (5.16) to determine the scale factors A,B

and C from Eqs. (6.12)-(6.14). If we use the value of a(t) in Eqs. (6.12) -(6.14) the

integration is rather difficult. Therefore, we take δ = 0 and β = 3
2
in Eq.(5.16) so that

a(t) =

(

t2 +
2α

3

)
1
3

. (6.18)

Substituting Eq. (6.18) in Eqs. (6.12)-(6.14) and integrating, we obtain expression for

the metric functions as

A = p1

(

t2 +
2α

3

)
1
3

exp

[

q1 tan
−1

(

3

2α

)
1
2

t

]

, (6.19)

B = p2

(

t2 +
2α

3

)
1
3

exp

[

q2 tan
−1

(

3

2α

)
1
2

t

]

, (6.20)

C = p3

(

t2 +
2α

3

)
1
3

exp

[

q3 tan
−1

(

3

2α

)
1
2

t

]

. (6.21)

For the model represented by metric functions in (6.19)- (6.21), the energy density

ρ and the bulk viscous pressure p̄ are given by

ρ =
1

9(8π + 2λ)(8π + 4λ)(t2 + 2α
3
)2
[t2[(8π + 3λ)(12 + 18q21)− (q21 + q23)(144π + 64λ)

−18λ(q2 + q3)]− λ(8t+ 12α(q2 + q3))],

(6.22)
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p̄ =
1

9λ(t2 + 2α
3
)2
[(18(q21 + q22 + q23)− 12 +

(8π + 3λ)

(8π + 2λ)(8π + 4λ)
(12 + 18q21(8π + 3λ))

−(q22 + q23)(144π + 64λ)− 18(q2 + q3))t
2 − (8π + 3λ)

(8π + 2λ)(8π + 4λ)
λ(8t+ 12α(q2 + q3))].

(6.23)

The Figs. (6.2) and (6.3) depict the behavior of energy density and bulk viscous

pressure with cosmic time respectively. Using the barotropic equation of state parameter

to obtain coefficient of bulk viscosity

The Coefficient of bulk viscosity from Eqs. (6.1) and (6.23), is obtained as

ζ =
t

54λ(8π + 4λ)(8π + 2λ)(t2 + 2α
3
)
∗ [ǫλ(8λ+ 3λ)(12 + 18q21)− (q21 + q22)

(144 + 64λ)− 18λ(q2 + q3)− (8π + 3λ)(12 + 18q21(8π + 3λ))− (q22 + q23)∗

(144π + 64λ)− 18(q2 + q3)]−
1

54λ(8π + 4λ)(8π + 2λ)t(t2 + 2α
3
)

∗[ǫt2(8t+ 12α(q2 + q3)) + 18(8π + 2λ)(8π + 4λ)(q21 + q22 + q23)

−12(8π + 2λ)(8π + 4λ) + (8π + 3λ)λ(8t+ 12α(q2 + q3))]

(6.24)

Fig. (6.4) shows behavior of bulk viscosity coefficient with comic time. For the model

1 the energy density conditions ρ + p ≥ 0 and ρ + 3p ≥ 0 are identically satisfied as

shown, in the Fig (5)

We now discuss the physical and kinematical behaviors of Bianchi type-I cosmolog-

ical model with metric functions given by Eqs.(6.19)- (6.21). The directional Hubble

parameters and the average Hubble parameter are given by
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H1 =
2t

3
(

t2 + 2α
3

) (3q1 + 1) , (6.25)

H2 =
2t

3
(

t2 + 2α
3

) (3q2 + 1) , (6.26)

H3 =
2t

3
(

t2 + 2α
3

) (3q3 + 1) , (6.27)

H =
2t

(

t2 + 2α
3

) . (6.28)

The expansion scalar, shear scalar and mean anisotropic parameters are found as

θ = 3H =

(

6t

t2 + 2α
3

)

. (6.29)

σ2 =

(

2t2

(t2 + 2α
3
)2

)

(

q21 + q22 + q23
)

. (6.30)

Am =
1

3

(

q21 + q22 + q23
)

. (6.31)

Figs. (6.6), (6.7) and (6.8) depict the variation of H, θ and σ respectively . We observe

that the model has no initial singularity. These parameters are decreasing function of

time which tend to zero for large time. Since σ2

θ2
6= 0, the model is anisotropic throughout

the evolution of the universe.
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6.4 Bianchi type-V Model

The diagonal form of the metric of Bianchi -type V cosmological model is given by

ds2 = dt2 − A2(t)dx2 − e2mx
[

B2(t)dy2 + C2(t)dz2
]

(6.32)

where A, B and C are also cosmic scale factors and m is any constant.

Using Eqs.(1.9), (5.2), (6.2) and (6.32) we obtain the following set of equations

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− 3m2

A2
= (8π + 3λ)ρ− λp̄, (6.33)

B̈

B
+

C̈

C
+

ḂĊ

BC
− m2

A2
= λρ− (8π + 3λ)p̄, (6.34)

C̈

C
+

Ä

A
+

ĊȦ

CA
− m2

A2
= λρ− (8π + 3λ)p̄, (6.35)

Ä

A
+

B̈

B
+

ȦḂ

AB
− m2

A2
= λρ− (8π + 3λ)p̄ (6.36)

2Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (6.37)

Integrating Eq. (6.37),provides A2 =kBC,where k is integration constant. Without

loss of generality, we take k=1.

The same procedure as for the Bianchi type-I solution to solve these equations By

making use of Eq. (6.37), we get the constraint equations as follows:
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p1 = 1, p2 = p−13 = P, q1 = 0, q2 = −q3 = Q. (6.38)

Then, From Eqs. (6.33)- (6.38), we readily obtain

A = a, B = aP exp

[

Q

∫

dt

a3

]

, C = aP−1 exp

[

−Q
∫

dt

a3

]

(6.39)

Subsituting the value a(t) given in Eq. (6.18) into Eqs (6.33)- (6.36) into the equations

in (6.39), we obtain the metric functions A, B and C as follows:

A =

(

t2 +
2α

3

)
1
3

, (6.40)

B =

(

t2 +
2α

3

)
1
3

P exp

[

Q tan−1
(

3

2α

)
1
2

t

]

, (6.41)

C =

(

t2 +
2α

3

)
1
3

P−1 exp

[

−Q tan−1
(

3

2α

)
1
2

t

]

(6.42)

The energy density and bulk viscous pressure for Bianchi type-V space -time model

have values give as

ρ =
1

9(8π + 4λ)(8π + 2λ)(t2 + 2α
3
)2
[(8π + 3λ)(12− 36Q2)t2 − λ(12− t2(12− t2(6 + 34Q2)))

−3m2(8π + 2λ)

(t2 + 2α
3
)
1
3

],

(6.43)

107



6 Bianchi Types I and V Bulk Viscous Fluid Cosmological Models in f(R,T) Gravity Theory

p̄ =
1

9(t2 + 2α
3
)2
[

(8π + 3λ)

λ(8π + 2λ)(8π + 4λ)
[(8π + 3λ)(12− 36Q)t2 − λ(12− t2(6 + 34Q2))]

−(12− 36Q2)t2]− [
(8π + 3λ)

λ(8π + 2λ)(8π + 4λ)
− 1]

m2

3(t2 + 2α
3
)
2
3

.

(6.44)

Using equation of state (6.1), we get bulk viscosity coefficient

ζ =
1

36t(8π + 4λ)(8π + 2λ)(t2 + 2α
3
)
∗ [λ(8π + 3λ)(12− 36Q2)ǫ+ λ(8π + 2λ)(8π + 4λ)(12− 36Q2)

−(8π + 3λ)(12− 36Q2)] +
1

36λ(8π + 2λ)(8π + 4λ)(t2 + 2α
3
)t
∗ [λ(12− t2(6 + 34Q2))− λ2ǫ∗

(12− t2(6 + 34Q2))]− m2

12(8π + 2λ)(8π + 4λ)tλ(t2 + 2α
3
)
4
3

∗ [ǫ(8π + 2λ) + (8π + 3λ)]+

m2

12t(t2 + 2α
3
)
4
3

(6.45)

The directional Hubble parameters H1, H2 and H3 are given as follow:

H1 =
2t

3(t2 + 2α
3
)
, (6.46)

H2 = [3Q+ 1]
2t

3(t2 + 2α
3
)
, (6.47)

H3 = [−3Q+ 1]
2t

3(t2 + 2α
3
)
. (6.48)

The mean anisotropic parameter Am has the value
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Am = 6
(

1 + 72Q2
)

. (6.49)

The shear scalar for this model is given by

σ2 =

(

2Qt

t2 + 2α
3

)2

. (6.50)

Figs.(6.9)- (6.15) depict the variation of ρ, p̄, ζ, ρ + p, H, θ and σ with time. From

the above results it can be observed that the model has no singularity at t= 0 and the

spatial volume increase as t increases giving the accelerated expansion of the universe.

In this model, we also note that σ2, p̄, p, ρ, and ζ are finite at t= 0 while they vanish

for infinitely large t. However, σ2

θ2
6= 0, which shows that the model does not approach

isotropy for large time t. From Eq. (5.15) we see that q< 0 for t <
√
(2α) and q> 0

for t >
√
(2α) . It deserve mention that Shamir et al. (2012) have also presented exact

solutions of Bianchi type I and V models in f(R, T ) gravity theory by applying the law

of variation of Hubble,s parameter proposed by Berman (1983); Berman and Gomide

(1988) . However, our models are different than those models.

6.5 Conclusion

In this chapter, we have investigated spatially homogeneous and anisotropic cosmological

models of Bianchi type I and V filled with bulk viscous fluid in the framework of f(R,T)

gravity theory. The absence of an initial time singularity in both models is a significance

features of the results. The scale factors admits constant values at early times of the

universe (t→ 0) after that scale factors stands increasing with cosmic time without

showing any type of initial singularity and finally tends to ∞ as t → ∞. Therefore,

the universe represented by both models starts with finite volume in the initial past and
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expand exponentially approaching to infinite volume.

The expansion scalar θ and shear scalar σ are decreasing functions of time and ul-

timately become zero for large time. The ratio σ
θ
tends to a constant as t→ ∞, and

therefore the anisotropy in both models are maintained throughout the passage of time.

The deceleration parameter q is negative for t<
√
(2α) and positive for t >

√
(2α).

Therefore, the cosmological models initially accelerate for a certain period of time and

thereafter decelerate .

The behavior of the bulk viscosity, is discussed graphically in Figs.(4) and (11). The bulk

viscosity decreases with time so that, we get ultimately inflationary models Padman-

abhan and Chitre (1987). The matter pressure and energy density are monotonically

decreasing functions of time, which ultimately tend to zero for large time. Thus, the

models would essentially correspond to empty universe for large time. The conditions

(a) ρ+p > 0 (b) ρ+p > 0 are identically satisfied. Models presented in this chapter may

be useful to discuss the role of bulk viscosity in explaining the decelerating/ accelerating

behaviors and to understand structure formation in universe.
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Figure 6.1: The plot of deceleration parameter q verses cosmic time t,β=3
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Figure 6.3: The plot of bulk viscous pressure p̄ verses cosmic time t, λ =1,α=1;
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Figure 6.4: The plot of Bulk viscosity coefficient ζ verses cosmic time t, λ =1,α=1;
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Figure 6.5: The plot of Energy density condition ρ+ p verses cosmic time t, λ =1, α=1;
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Figure 6.6: The plot of Hubble parameter H verses cosmic time t, α=1;

113



6 Bianchi Types I and V Bulk Viscous Fluid Cosmological Models in f(R,T) Gravity Theory

0 20 40 60 80 100
0

1

2

3

4

5

6

cosmic time (t)

E
xp

a
n
si

o
n
 s

ca
la

r 
(t

h
e
ta

)

Figure 6.7: The plot of expansion scalar θ verses cosmic time t, α=1;
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Figure 6.8: The plot of shear scalar σ verses cosmic time t, α=1;
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Figure 6.9: The plot of density ρ verses cosmic time t, Q=1, λ=1, m=0.5, α=1;
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Figure 6.10: The plot of bulk viscous pressure p̄ verses cosmic time t,Q=1,λ=1,m=0.5,
α=1;

115



6 Bianchi Types I and V Bulk Viscous Fluid Cosmological Models in f(R,T) Gravity Theory

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−5

cosmic time t

(B
u
lk

 v
is

co
si

ty
 c

o
e
ff
ic

e
n
t)

ξ

Figure 6.11: The plot of Bulk viscosity coefficient ζ verses cosmic time
t,Q=1,λ=1,m=0.5, α=1;
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Figure 6.12: The plot of Energy density condition ρ+ p verses cosmic time t, Q=1λ=1,
m=0.5, α=1;
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Figure 6.13: The plot of Hubble parameter H (for second model) verses cosmic time
t,Q=1, α=1;
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Figure 6.14: The plot of expansion scalar θ (for model second) verses cosmic time t,Q=1,
α=1;

117



6 Bianchi Types I and V Bulk Viscous Fluid Cosmological Models in f(R,T) Gravity Theory

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cosmic time(t)

sh
e
a
r 

sc
a
la

r(
si

g
m

a
)

Figure 6.15: The plot of shear scalar σ cosmic time t,Q=1, α=1;
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7 Some Kaluza- Klein Cosmological Models in

f(R,T) Gravity Theory ∗

7.1 Introduction

It is widely believed that a consistent unification of all fundamental forces in nature

would be possible within the space-time with an extra dimension beyond those four

observed so for. Higher dimensional theories of Kaluza-Klein(KK)-type have been con-

sidered to study some aspects of early Universe (Chodos and Detweiler, 1980; Freund,

1982; Shafi and Wetterich, 1984; Sahdev, 1984). In such KK theory it has been assumed

that the extra dimension form a compact manifold of very small size undetectable at

present day energies. Thus, in such higher dimensional theories one would expect that

at the grand unification scale the word manifold has more than one dimension. The

Kaluza-Klein theory is attractive because it has an elegant presentation interms of ge-

ometry. In certain sense, it looks just like ordinary gravity in free space, except that

it is phrased in five dimensions instead of four. Kaluza (1921)and (Klein, 1926a.,b) at-

tempted to unify gravitation and electromagnetism. An interesting possibility known

∗Published in Astrophys Space Sci 347, 389 (2013),(Springer) .
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as the cosmological reduction process is based on the idea that at very early stage all

dimensions in the universe are comparable. Later, the scale of the extra dimension be-

comes so small as to be unobservable by experiencing contraction. Such cosmological

models were investigated by Forgacs and Horvath (1979). Guth (1981); Alvarez (1983)

observed that during the contraction process extra dimensions produce large amount of

entropy, which provides an alternative resolution to the flatness and horizon problem,

as compared to usual inflationary scenario. Gross and Perry (1983) have shown that

the five-dimensional Kaluza-Klein theory of unified gravity and electromagnetism ad-

mits soliton solutions. Further, they explained the inequality of the gravitational and

inertial masses due to the violation of Birkoffs theorem in Kaluza-Klein theories, which

is consistent with the principle of equivalence. Appelquist and Chodos (1983) claimed

through solution of the field equations that there is an expansion of four-dimensional

space-time while fifth dimension contracts to the unobservable Plankian length scale or

remains constant as needed for the real universe.

Recent observations of type Ia Supernovae (SNe Ia)at red shift z < 1 provide startling

and puzzling evidence that the expansion of the universe at the present time appears

to be accelerating behavior, attributed to “Dark Energy” with negative pressure. These

observations (Chaterjee, 1992; Frieman and Waga, 1998; Ozer and Taha, 1987; Carvalho

et al., 1992; Ratra and Peebles, 1988), strongly favour a significant and positive value of

Λ. A number of models for dark energy to explain the late-time cosmic acceleration with-

out the cosmological constant has been proposed, for example, a canonical scalar field,

so-called quintessence, a non-canonical scalar field such as phantom, tachyon scalar field

motivated by string theories, and a fluid with a special equation of state (EoS) called as

Chaplygin gas. Nojiri and Odintsov (2003a,b) have presented a review of various modi-

fied gravities which have considered as gravitational alternative for dark energy. Nojiri

and Odintsov (2004.) proposed that dark energy may become over standard matter due
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to universe expansion. Carroll et al. (2004) explained the presence of late time cosmic

acceleration of the universe in f(R) gravity and proposed that dark energy model for

specific 1
R

modified gravity . Allemandi et al. (2005) discussed the dark energy domi-

nance cosmic acceleration in first order Palatini formalism. There also exists a proposal

of holographic dark energy. One of the most important quantity to describe the features

of dark energy models is the equation of state parameter (EoS) ω, which is the ratio

of the pressure p to the energy density ρ of dark energy, defined as ω=p

ρ
. There are

two ways to describe dark energy models. One is a fluid description and the other is

to describe the action of a scalar field theory. In both description, we can write the

gravitational field equations, so that we can describe various cosmologies, e.g., the Λ

CDM model, in which ω is a constant and exactly equal to −1 , quintessence model,

where ω is a dynamical quantity and −1 < ω < −1
3
, and phantom model, where ω

also varies in time and ω < −1. This means that one cosmology may be described

equivalently by different model descriptions discussed by Bamba et al. (2012). In view

of the late time acceleration of the universe and the existence of dark energy and dark

matter, several modified theories of gravitation have been proposed as alternative to

Einstein’s theory. Noteworthy amongst them is the f(R) gravity theory. Nojiri and

Odintsov (2006a) developed the general scheme for modified f(R) gravity reconstruction

from any realistic FRW cosmology. They have shown that the modified f(R) gravity

indeed represents the realistic alternative to general relativity, being more consistent in

dark epoch. Nojiri and Odintsov (2006b) developed a general programme for unification

of matter -dominated era with acceleration epoch for scalar -tensor theory or dark fluid.

Nojiri and Odintsov (2007) have reviewed various modified gravities considered as grav-

itational alternative for dark energy.They have considered the version of f (R), f (G) or

f (R,G) gravity, model with non-linear gravitational coupling or string inspired model

with Gauss-Bonnet-dilaton coupling in the late universe. Nojiri and Odintsov (2011),

121



7 Some Kaluza- Klein Cosmological Models in f(R,T) Gravity Theory

have studied f (R) gravity in different context. Bertolami et al. (2007)proposed a gener-

alization of f(R) theory of gravity by including in the theory an explicit coupling of an

arbitrary function of the Ricci scalar R with the matter Lagrangian density Lm. Shamir

(2010), proposed a physically viable f(R) gravity model, which show the unification of

early time inflation and the late time acceleration.

In this chapter, we present some new classes of five dimensional Kaluza-Klein cos-

mological models in the presence of a perfect fluid source in f(R,T) gravity theory. The

chapter is organized as follows: In Sect. 7.2, we revisit the field equations presented

by Reddy et al. (2012a). We then derive algorithms for generating new solutions of

the field equations in Sect.7.3 . In Sect.7.4, starting with solution of Reddy et al.

(2012a), we obtain some solutions of the field equations which represent accelerating

cosmological models. The physical and kinematical properties of the models are also

discussed.Conclusions are given in Sect.7.5. .

7.2 Metric and Field Equations

We consider a five dimensional Kaluza-Klein metric in the form

ds2 = dt2 − A2(t)(dx2 + dy2 + dz2)−B2(t)dΨ2 (7.1)

where A(t) and B(t) are the scale factors. The fifth coordinate Ψ is taken to be space-like.

The field equations in f(R,T)theory of gravity for the function f(R,T), which is given in

(5.2), when the matter source is perfect fluid (1.8), are given by Harko et al. (2011b).

The field equations (5.5) for the metric (7.1) in comoving coordinates lead to the

following equations
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3

(

Ȧ

A

)2

+ 3
ȦḂ

AB
= (8π + 3λ)ρ− pλ, (7.2)

Ä

A
+

(

Ȧ

A

)2

+ 2
ȦḂ

AB
+

B̈

B
= −(8π + 3λ)p+ ρλ, (7.3)

3
Ä

A
+ 3

(

Ȧ

A

)2

= −(8π + 3λ)p+ ρλ. (7.4)

Here an overhead over dot denotes ordinary differentiation with respect to time t.

For the metric (7.1), the spatial volume V and the average scale factor a are given

by

V = a4 = A3B (7.5)

where a is the scale factor.

The mean Hubble parameter H has the expression

H =
ȧ

a
=

1

4

(

3
Ȧ

A
+

Ḃ

B

)

(7.6)

where Hx=Hy= Hz = Ȧ
A
and HΨ = Ḃ

B
are directional Hubble parameters.

The scalar expansion θ and shear scalar σ are are given by

θ =
3

4

(

3
Ȧ

A
+

Ḃ

B

)

, (7.7)

σ2 =
3

4
θ2. (7.8)

In next Sect. we follow Hajj-Bouttros (1986a) to derive algorithms for generating
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new solutions of the field equations of KK -type perfect fluid cosmological models within

the framework of f(R,T) gravity theory .

7.3 Generating Technique

From Eqs. (7.3) and (7.4) we obtain

2Ä

A
+ 2

Ȧ2

A2
− 2

ȦḂ

AB
− B̈

B
= 0. (7.9)

To treat Eq. (7.9), we introduce new functions R and S given by

R =
Ȧ

A
, S =

Ḃ

B
, (7.10)

By use of (7.10), Eq. (7.9), becomes

2Ṙ + 4R2 − 2RS − Ṡ − S2 = 0. (7.11)

The nonlinear equation. (7.11) can be treated as a Riccati equation in R or S.

If we treat Eq. (7.11) as a Riccati equation in R, it can be linearized by means of

change of function

R = R0 +
1

X
. (7.12)

where R0 is a particular solution of Eq. (7.11) . Using (7.12) in Eq. (7.11), we obtain

Ẋ + (S − 4R0)X = 2 (7.13)

Eq. (7.13) is linear first-order differential equation which has the general solution given
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by

X =
A4

0

B

(
∫

2
B

A4
0

dt+ k1

)

, (7.14)

k1 being an integration constant. From Eqs. (7.12) and (7.14), we obtain after

integration

A = A0k2 exp





dt
A4

0

B
(
∫

2 B
A4

0
dt+ k1)



 (7.15)

where k2 being another constant. Hence, from metric function [A0, B] we can generate

new function [A,B] where (A)is given by Eq.(7.15) and B remains invariable.

If (7.11) is regarded as a Riccati equation in S, we can be linearized it by the change

of function

S = S0 +
1

Y
. (7.16)

where S0 is a particular solution of (7.11).

Introducing (7.16) into Eq. (7.11), we obtain

Ẏ − (2R + 2S0)Y = 1 (7.17)

Eq. (7.17), on integration, gives

Y = A2B2
0

(
∫

dt

A2B2
0

+ k3

)

(7.18)

where k3 being a constant . From Eqs. (7.17) and (7.18), we obtain
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B = B0k4 exp

[

∫

dt

A2B2
0(
∫

dt
A2B2

0
+ k3)

]

(7.19)

where k4 is another constant of integration. Thus, from the couple [A,B0] we can

generates [A,B] where B is given by Eq.(7.19) and A remains invariable

Reddy et al.(2012a) have presented the solutions of the field equations (7.2)-(7.4) in

f(R,T) gravity theories has given by the metric

ds2 = dt2 − [kt]
2
k (dx2 + dy2 + dz2)− [kt]

2m
k dΨ2 (7.20)

where k=m2+2m−3
m−1

, m 6= 1. Starting with this metric, we now generate new solutions of

the field equations (7.2)-(7.4) by applying the generating techniques (7.15) and (7.19)

7.4 Model I

To apply our generation technique (7.19) to the metric (7.20), we take

A = (kt)
1
k , B0 = (kt)

m

k

Then, performing the integration in (7.19) , the new metric function B is obtained as

B = k4(k)
m

k [t]
k
2
−2m2

−2m+km

k(k−2m−2) (7.21)

by putting k3=0. Hence the metric of our new solution can be written in the form

ds2 = dt2 − [kt]
2
k (dx2 + dy2 + dz2)−

{

k
m

k t
k
2
−2m2

−2m+mk

k(k−2m−2)

}2

dΨ2 (7.22)

For the model (7.22) the physical and kinematical parameters are given by
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H =
1

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k], (7.23)

θ = 3H =
3

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k], (7.24)

σ2 =
3

4
θ2 =

3

4

(

3

4mkt(k − 2m− 2)
[k2(1−m)− 2mk − 2k − 2m3 − 2m2 +m2k]

)2

.

(7.25)

V = k
m+3
k t

k
2
−2m−2m+mk

k(k−2m−2)
+ 3

k . (7.26)

The deceleration parameter q is defined in (1.31) which has the value given by

q =
4k

3(k − 2m− 2) + k2 − 2m2 − 2m+mk
− 1. (7.27)

The pressure and energy density are obtained as

p =

[

λ[k(k − 2m− 2)E1 − (8π + 3λ)E2m
2]

(8π + 4λ)(8π + 2λ)m2k2(k − 2m− 2)t2

]

, (7.28)

ρ =

[

3(1 + k2−2m2
−2m+mk

k(k−2m−2)
)

m2t2(8π + 3λ)
+

λ2(k(k − 2m− 2)− (8π+3λ)
λ

E2m
2)

(8π + 2λ)(8π + 3λ)(8π + 4λ)m2k2t2

]

(7.29)

where
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E1 = k(k − 2m− 2) + 3m(k2 − 2m2 − 2m+mk),

E2 =
[

2−m+ (2m− 1)(k2 − 2m2 − 2m+mk))(k(k − 2m− 2)
]

+(k2 − 2m2 − 2m+mk)

From the above results we observed that the model has initial singularity at t=0 if

k > 2(m+1) which leads to m < 1 . We see that θ, σ ,H, p and ρ have infinite value at

the initial singularity t=0. These parameters are decreasing function of time which tend

to zero for large time. Since σ2

θ2
6= 0, the model is anisotropic throughout the evolution

of the universe. We also find that the deceleration parameter q is negative , which

corresponds to an accelerating model of the universe in five-dimensional Kaluza-Klein

theory.

7.5 Model II

We apply formula (7.15) for the metric (7.20) to generate the new function A by taking

A0 = (kt)
1
k , B = (k)

m

k [t]
k
2
−2m2

−2m+km

k(k−2m−2)

Then, after integration, we obtain

A = k2(k)
1
k [t]

mk(k−2m−2)

2(m(k2−2m2
−2m+mk)+(mk−4k)(k−2m−2))

+ 1
k (7.30)

assuming k1 =0. The metric of the solution can be written in the form
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ds2 = dt2 −
{

(k)
1
k [t]

mk(k−2m−2)

2(m(k2−2m2
−2m+mk)+(km−4k)(k−2m−2))

+ 1
k

}2

(dx2 + dy2 + dz2)

−
(

k
m

k t
k
2
−2m2

−2m+mk

k(k−2m−2)

)2

dΨ2.

(7.31)

The metric (7.31) represents the five-dimensional Kaluza-Klein cosmological model

in f(R,T) gravity theory with the following physical and kinematical parameters.

V = k
m+3
k [t]

3k(k−2m−2)

2(m(k2−2m2
−2m+mk)+(m−4)k(k−2m−2))

+ k
2
−2m2

−2m+mk

k(k−2k−2) , (7.32)

H =

[

1

8t(m(k2 − 2m2 − 2m+mk) + km(k − 2m− 2)− 4k2(k − 2m− 2)2)

]

.
[

((m− 4)k(k − 2m− 2)(1 + (k − 2m− 2)((m− 4)k + 3mk2))
]

+
[

(k2 − 2m2 − 2m+ km)(2km(k − 2m− 2) + 2m2(k2 − 2m2 − 2m+ km)))
]

,

(7.33)

θ =

[

3

8t(m(k2 − 2m2 − 2m+mk) + km(k − 2m− 2)− 4k2(k − 2m− 2)2)

]

.
[

((m− 4)k(k − 2m− 2)(1 + (k − 2m− 2)((m− 4)k + 3mk2))
]

+
[

(k2 − 2m2 − 2m+ km)(2km(k − 2m− 2) + 2m2(k2 − 2m2 − 2m+ km)))
]

,

(7.34)

σ2 =
3

4
θ2, (7.35)

q = −aä

ȧ2
= −[1 + (E3

3E4)
1
2 ], (7.36)

p = −
[

(16π + 3λ)(E2
3 + E3E4) + (8π + 3λ)(E2

4 − (E3 + E4))

t2(8π + 4λ)(8π + 2λ)

]

, (7.37)
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ρ =

[

(3E3E4)−
λ

(8π + 4λ)(8π + 2λ)
(16π + 3λ)(E2

3 + E3E4) + (8π + 3λ)(E2
4 − (E3 + E4))

]

.

[

1

t2(8π + 3λ)

]

(7.38)

where

E3 =

[

k2(k − 2m− 2)

2(m(k2 − 2m2 − 2m+mk) +mk(k − 2m− 2)− 4k(k − 2m− 2))
+

1

k

]

,

E4 =
k2 − 2m2 − 2m+mk

k(k − 2m− 2)

From the Fig.(7.5), it is clear that the model (7.31) represents a five-dimensional

Kaluza-Klein accelerating cosmological model . The other physical and kinematical

behaviors of the model are same as model I.

7.6 Model III

We now use formula (7.15) to generate new metric function A by taking

A0 = (kt)
1
k , B = (kt)

m

k

Then performing integration in (7.15) ,we obtain

A = k2k
1
k [t]

km

2(m2
−4k+m)

+ 1
k , (7.39)

assuming k1=0 Then the metric (7.1) can be written in the form (7.40)
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where k5 is integration constant.

The metric can be written as

ds2 = dt2 −
(

k
1
k [t]

km

2(m2
−4k+m)

+ 1
k

)2

(dx2 + dy2 + dz2)− (kt)
2m
k dΨ2 (7.40)

The model (7.40) represents the five-dimensional Kaluza-Klein cosmological with

perfect fluid in f(R,T) gravity theory . The physical and the kinematical parameters of

the model (7.40) are given as follows:

V = (k)
m+3
k [t]

3+m(2m2
−5k+2m)

2k(m2
−4k+m) , (7.41)

H =
1

4tk
(3kE5 +m), (7.42)

θ = 3H =
3

4kt
(3kE5 +m), (7.43)

σ2 =
27

64t2k2
(3kE5 +m)2, (7.44)

q = −1 +
[

8(m2 − 4k −m)k

t(3k2m+ 2m(m2 − 4k +m))

]

, (7.45)

p =

[

E5((8π + 3λ)k2 + 3λkm2)− (8π + 3λ)(E5(2mk − E5) +m(m− k))− (8π + 2λ)k2E2
5

(8π + 4λ)(8π + 2λ)k2t2

]

,

(7.46)
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ρ =

[

1

(8π + 4λ)(8π + 3λ)(8π + 2λ)k2t2

]

.
[

((3E2
5(E5 − 1)2k2 + 3E5m)(8π + 4λ)(8π + 2λ)

]

+
[

λE5(8π + 3λ)k2 + 3λkm2 − λ(8π + 3λ)(m− k)m− (8π + 2λ)k2E5)
]

(7.47)

where

E5 =
k

2(m2 − 4k +m)
+

1

k
.

For the metric (7.40) the spatial volume is zero at t=0 if k <
m(m+1)

4
.The physical

and kinematical properties same as perfect fluid Model I

7.7 Model IV

We use the formula (7.19) for the metric (7.40) to generate the new function B by setting

A = k
1
k [t]

km

2(m2
−4k+m)

+ 1
k , B = (kt)

m

k .

Then, from Eq.(7.19) , the new function B is obtained as:

B = k4k
m

k [t]
mk(m2

−4k+m)

km2+2(m2
−4k+m)+(3k+2m)(m2

−4k+m)+mk(m2
−4k+m) (7.48)

taking k3=0. The metric of the solution can be written in the form

ds2 = dt2 −
[

k
1
k [t]

km

2(m2
−4k−m)

+ 1
k

]2

(dx2 + dy2 + dz2)

−
[

(k)
m

k [t]
km(m2

−4k+m)

km2+2(m2
−4k+m)(1+m+3km)

]2

dΨ2

(7.49)
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7.7 Model IV

The metric (7.49) represents five-dimensional Kaluza-Klein cosmological model in

f(R,T) gravity with the following physical and kinematic parameters in the model.

V = k
m+3
k

[

t
3km

2(m2
−4k+m)

+ 3
k
+m

k
+

(km(m2
−4k+m))

km2+(2+m(4+k))(m2
−4k+m)

]

, (7.50)

H =
(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)
, (7.51)

θ = 3H = 3

[

(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)

]

, (7.52)

σ2 =
27

256

[

(3(km2 + 1) + 2m(m2 − 4k +m)E6)

8tm(m2 − 4k +m)

]2

, (7.53)

q = −(1− 1

E7

), (7.54)

p = −
[

1

4m2(m2 − 4k +m)2t2(8π + 4λ)(8π + 2λ)

]

.
[

((km2 + 1)2(16π + 3λ) + ((32π + 6λ)E6

]

+
[

(km2 + 1)m(m2 − 4k +m))
]

+
[

(8π + 3λ)m(m2 − 4k +m)(km2 + 1)
]

+
[

(8π + 3λ)E6(E6 − 1)m(m2 − 4k +m))
]

,

(7.55)
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ρ =

[

3(km2 + 1)2E6(km
2 + 1)

4m2(m2 − 4k +m)2t2(8π + 3λ)

]

−
[

λ

(8π + 4λ)(8π + 3λ)(8π + 2λ)t24m2(m2 − 4k +m)2

]

.
[

((km2 + 1)2(16π + 3λ) + (32π + 6λ)E6(km
2 + 1)m(m2 − 4k +m)

]

+
[

(8π + 3λ)E6(E6 − 1)m(m2 − 4m+m))
]

(7.56)

where

E6 =
m

k
+

m2 − 4k +m

(km2 + (2 + 4km+m)(m2 − 4k +m)
,

E7 =

[

3km

2(m2 − 4k +m)
+

m

k
+

km(m2 − 4k +m)

km2 + (m2 − 4k +m)(2 + 4m+ km)

]

.

We observe that the spatial volume of the model (7.49) is zero at t=0 and increases

with time if k <
m(m+1)

4
.Therfore the model has a point type singularity at t=0 where θ,

σ2, H, p and ρ diverge . These parameters are decreasing function of time and ultimately

tend to zero for large time. The negative pressure, as shown by Fig.(7.11), indicates that

the model is accelerating .

7.8 Conclusions

The higher dimensional cosmological models are of considerable importance because of

the underlying idea that cosmos in early stages of evolution might have had a higher

dimensional era. The extra space reduces to a volume with the passage of time, which

is beyond the ablity of experimental observation at the moment Reddy (2009). It is well

known that Kaluza-Klein models represent the cosmos in its early stages of evolution.

In the present work, we have derived algorithms for generating new solutions of the field
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equations with a perfect fluid for a five dimension Kaluza-Klein space-time within the

framework of f(R,T) gravity theory proposed by Harko et al. (2011b). Starting from the

model obtained by Reddy et al. (2012a), we have presented new cosmological models

of the present-day accelerating universe. These models are expanding, shearing and

accelerating which have point-type singularity at t=0. All the physical and kinematical

parameters, being infinite at the initial singularity , are decreasing functions of time

which ultimately tend to zero for large time . The anisotropy in the cosmological models

are maintained throughout the passage of time.

Nojiri and Odintsov (2003a) studied a modify theory of gravity where the universe

interns inflates, decelerates and then accelerates in early times, radiation dominated era.

Our models are similar to the case of five dimensional f(R) gravity except the decelerating

behavior in the presence of a perfect fluid source discussed by Huang et al. (2010) and

Agmohammadi, et al. (2009). It has been observed that in the five dimensional f(R)

and f(R,T) gravity theories, the expansion and contraction of the extra dimension could

result in the present accelerated expansion of other spatial dimensions. This is possible

by cosmic re-collapse of the universe in the finite future. It follows that the the present

accelerating models of the universe are consistent with the recent observation of type-Ia

supernovae (Perlmutter et al., 1999; Riess et al., 1998).
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Figure 7.1: The plot of scalar expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.2: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.3: The plot of density ρ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.4: The plot of θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.5: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.6: The plot of density ρ verses cosmic time t, m=0.5;λ =1;k=1;
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Figure 7.7: The plot of scalar expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.8: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.9: The plot of density ρ verses cosmic time t, m=0.5;λ=1; k=1;

0 20 40 60 80 100
0

10

20

30

40

50

60

cosmic time(t)

S
ca

la
r 

o
f 
e
xp

a
n
si

o
n
(t

h
e
ta

)

Figure 7.10: The plot of Scalar of expansion θ verses cosmic time t, m=0.5;λ=1;k=1;
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Figure 7.11: The plot of pressure p verses cosmic time t, m=0.5;λ=1;k=1;

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

cosmic time(t)

d
e
n
si

ty
(r

h
o
)

Figure 7.12: The plot of density ρ verses cosmic time t, m=0.5;λ=1;k=1;
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