
2 Bianchi Type -II Inflationary Models with Stiff

Matter and Decaying Cosmological Term∗

2.1 Introduction

Inflation, the stage of accelerated expansion of the universe, has drawn attention of many

workers. Guth (1981) proposed inflationary model in the context of Grand Unified The-

ory (GUT), which has been accepted as the model of the early universe. It is believed

that the early universe evolved through some phase transitions, thereby yielding vac-

uum energy density which is at present is at least 118 orders of magnitudes smaller than

the Planck time (Weinberg, 1989). Such a discrepancy between theoretical expectations

and empirical observations constitutes a fundamental problem in the interface uniting

astrophysics, particles physics and cosmology is the cosmological constant problem. The

recent observational evidence for an accelerated phase of present universe, obtained from

distant SNe Ia,(Perlmutter et al., 1997; Riess et al., 1998) gave strong support to search

for alternative cosmologies. The state of affairs has stimulated interest in more general

models containing an extra component describing dark energy, and simultaneously ac-

∗Contents of this chapter have been Published in CHIN. PHYS. LETT. Vol. 31, No. 7
(2014) 070401(IOP)
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counting for the present accelerated phase of the universe. The observations suggest that

the universe was previously decelerating which entered into on accelerating phase. It was

decelerating when matter was dominant, but afterwards dark energy became dominant,

the phase transition took place. The most-obvious theoretical candidate of dark energy

is the cosmological term Λ. Some of the recent discussions on the cosmological constant

problems and consequences on cosmology with a time -varying cosmological term have

been investigated by Ratra and Peebles (1988); Dolgov (1983, 1990, 1997); Sahni and

Starobinsky (2000) etc. A variable Λ term or a decaying vacuum energy density is on

ingredient accounting for the accelerated phase of the present universe. Linde (1974)

suggested that Λ term is a function of temperature and related to the spontaneous

symmetry breaking, and therefore it could be a function of time.

Several ansatz have been proposed and well studied so far in which Λ term decays

with time. Some authors have argued for the dependence Λ ∼ t2 keeping in mind the

dimensional consideration in the spirits of quantum cosmology. Chen and Wu (1990)

considered Λ varying as a−2 , where ‘a’ is the scale factor of the universe.Carvalho et al.

(1992) generalized it by taking Λ= β
(

ȧ
a

)2
+ α

a2
, where α and β are adjustable dimen-

sionless parameters on the basis of quantum field estimations in the curved expanding

background, where a dot denotes time derivative. Schutzhold (2002a,b) proposed vac-

uum energy density proportional to Hubble parameter which leads to a vacuum energy

density decaying as Λ ≃ m3
(

ȧ
a

)

, where m=150 Mev. However,not all vacuum decay-

ing cosmological models, predict acceleration. Al-Rawaf and Taha (1996); Al-Rawaf

(1998); Overdin and Cooperstock (1998) proposed cosmological models with decaying

law Λ=β
(

ä
a

)

. Arbab and Cosmo (2003a,b) have discussed cosmic acceleration with pos-

itive Λ and also analyzed the implication of the models based on this ansatz. Cunha

et al. (2002) discussed the classical cosmological tests for large class of FRW type models

driven by decaying vacuum energy density.
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2.1 Introduction

Spatially homogeneous and anisotropic Bianchi type-II space-times play fundamen-

tal role in constructing cosmological models suitable for describing the early stages of

evolution of the universe. Asseo and Sol (1987) have emphasized the importance of

such space-times. A locally rotationally symmetric (LRS) Bianchi type-II space-time

has already been considered by a number of cosmologists in different physical contexts.

Lorentz (1980) discussed LRS Bianchi-type-II space-time in the presence of stiff-matter

and electromagnetic field. Hajj-Bouttros (1986b) studied LRS Bianchi type-II model

with perfect fluid by a generating technique and also constructed LRS Bianchi type-

II perfect fluid models with an equation of state, which is a function of time. Shanti

and Rao (1991) studied such space-times in Barber’s self creation theory of gravitation.

Venkateswarlu and Reddy (1991) obtained cosmological solutions for stiff fluid models in

the presence of an electromagnetic field.Coley and Wainright (1991) studied LRS Bianchi

type-II models in two-fluid cosmology. Singh and Kumar (2007) presented inflationary

cosmological models of Bianchi type -II with constant deceleration parameter. Pradhan

et al. (2008) have shown that Bianchi type -II models with stiff fluid and decaying law Λ

= β
(

ä
a

)

are compatible with recent observations on accelerated universe. Verma et al.

(2011)presented anisotropic stiff-fluid model of Bianchi type -II with above decaying law

of Λ and negative deceleration parameter. Tiwari et al. (2012) studied LRS Bianchi

type-II stiff-fluid cosmological model with varying Λ term. Bali and Swati (2012) inves-

tigated Bianchi type-II inflationary universe with massless scalar field and time varying

Λ.

In this chapter, we present Einstein’s field equations for LRS Bianchi type-II space-

time in the presence of a perfect fluid and time -dependent cosmological term. We

obtain exact solutions of the flied equations by applying a special law of variation of the

Hubble’s parameter, proposed by Berman (1983), which leads to a negative deceleration

parameter. We also assume the decay law of cosmological term of the forms (i) Λ =

31



2 Bianchi Type -II Inflationary Models with Stiff Matter and Decaying Cosmological Term

β
(

ä
a

)

+ α
a2

and (ii) Λ = α
a2
. The solutions correspond to cosmological models of the

accelerating universe.

2.2 Metric and Field Equations

In an orthogonal frame, the metric for LRS Bianchi type-II is given by Lorentz (1980)

ds2 = ηijθ
iθj, ηij = diag(−1, 1, 1, 1) (2.1)

where the cartan bases θi are given by

θ0 = dt, θ1 = S(t)w1, θ2 = R(t)w2, θ3 = R(t)ω3. (2.2)

Here R(t) and S(t) are metric functions. Taking (x,y,z) as local coordinates, the invariant

basis ωi is given by

ω1 = dy + xdz, ω2 = dz, ω3 = dx. (2.3)

Einstein’s field equations are

Rij −
1

2
gijR + Λgij = −8πTij (2.4)

In comoving coordinates, Einstein’s field equations (1.8 ) lead to the following set of

three independent equations

2
ṘṠ

RS
+

Ṙ2

R2
− S2

4R4
= 8πρ+ Λ, (2.5)

2
R̈

R
+

Ṙ2

R2
− 3

4

S2

R4
= −8πp+ Λ, (2.6)
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2.2 Metric and Field Equations

S̈

S
+

R̈

R
+

ṘṠ

RS
+

S2

4R4
= −8πp+ Λ. (2.7)

The energy conservation equation T
ij
;j = 0 leads to

ρ̇+ (ρ+ p)

(

2
Ṙ

R
+

Ṡ

S

)

= − Λ̇

8π
. (2.8)

Equations (2.5)- (2.7) are coupled system of highly non-linear differential equations.

In order to obtain physically realistic solution for application in cosmology and astro-

physics, we normally assume a form for matter content or relation between metric func-

tions . The solutions to the field equations may also be generated by applying the law of

variation for Hubble’s parameter, initially proposed by Berman (1983) for FRW models,

which yields a constant value of deceleration parameter. Berman and Gomide (1988);

Johri and Desikan (1994); Reddy et al. (2006); Singh and Baghel (2009); Ram et al.

(2009) etc. have studied cosmological models with constant deceleration parameter.

We define the deceleration parameter as

q = −aä

ȧ2
= constant. (2.9)

The sign of q indicates that whether the model accelerates or not. The positive sign

corresponds to a standard decelerating model whereas the negative sign −1 6 q <

0 indicates acceleration and q=0 corresponds to expansion of universe with constant

velocity. For an accelerating model of the universe, we take the constant as negative.

The solution of Eq. (2.9) is then given by

a = (c1t+ c2)
1

1+q (2.10)
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where c1 and c2 are integration constants. Eq.(2.10) implies that the condition of ex-

pansion is 1+q> 0.

In order to obtain physically viable solutions of Eqs. (2.5)-(2.7), we consider the case

when space-time is filled with stiff-matter (ρ=p). In this case Eqs. (2.5) and (2.7) give

R̈

R
+

S̈

S
+

3ṘṠ

RS
+

Ṙ2

R2
= 2Λ. (2.11)

From Eqs. (2.6) and (2.7), we obtain the condition for isotropy of pressure as

R̈

R
− S̈

S
+

Ṙ2

R2
− ṘṠ

RS
− S2

R4
= 0. (2.12)

Integration of Eq. (2.11) leads to

R2Ṡ +RṘS =

∫

2Λ(R2S)dt+ h (2.13)

where h is an integration constant.

2.3 Model I with Λ=β
(

ä
a

)

+
α
a2

Inserting in Eq. (2.13) the phenomenological decay law of the form and integrating, we

obtain

R2Ṡ +RṘS =
2βqc1(c1t+ c2)

2−q

1+q

(1 + q)(q − 2)
+

2α(1 + q)(c1t+ c2)
2+q

1+q

c1(q + 2)
+ h. (2.14)
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2.3 Model I with Λ=β
(

ä
a

)

+ α
a2

Dividing by R2 S, we get

Ṙ

R
+

Ṡ

S
=

2βqc1(c1t+ c2)
−1

(1 + q)(q − 2)
+

2α(1 + q)(c1t+ c2)
q−1
1+q

c1(q + 2)
+ h(c1t+ c2)

−3
1+q . (2.15)

Eq. (2.15), on integration, provides

RS = m(c1t+ c2)
2βq

(1+q)(q−2) exp

[

α(1 + q)2(c1t+ c2)
2q
1+q

c21(2 + q)
+

h(1 + q)(c1t+ c2)
q−2
1+q

c1(q − 2)

]

(2.16)

where m is an integration constant. By using a3 = R2S and from Eq (2.10), we also

have

R2S = (c1t+ c2)
3

1+q . (2.17)

Solving Eqs. (2.16) and (2.17), we obtain the expressions of the scale factors R and S as

R =
1

m
(c1t+c2)

6−3q+2βq
(1+q)(2−q) exp

[

−α(1 + q)2(c1t+ c2)
2q
1+q

c21q(2 + q)
+

h(1 + q)(c1t+ c2)
q−2
1+q

c1(2− q)

]

, (2.18)

S = m2(c1t+ c2)
3q−6−4βq
(1+q)(2−q) exp

[

2α(1 + q)2(c1t+ c2)
2q
1+q

c21q(2 + q)
− 2h(1 + q)(c1t+ c2)

q−2
1+q

c1(2− q)

]

,

(2.19)

The cosmological term Λ(t) has the value given by

Λ = − βqc21
(1 + q)2(c1t+ c2)2

+
α

(c1t+ c2)
2

1+q

. (2.20)

Thus, the cosmological term is a decreasing function of time and approaching a small

positive value at present epoch which is corroborated by consequences from recent su-

pernovae Ia observations (Perlmutter et al., 1997; Riess et al., 1998). These observations

on magnitude and red-shift of type Ia supernovae suggested that our universe may be
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accelerating one with induced cosmological density through Λ term.

The metric (1) R(t) and S(t), given by Eqs. (2.18) and (2.19), represents an exact

stiff fluid LRS Bianchi type-II cosmological model with negative constant deceleration

parameter and time-decaying cosmological term Λ(t) given by (2.20). Obviously this is

an accelerating model of the universe.The solution of the scale factors has a combination

of power-law term and the exponential term in the product form . We observe that the

solutions are inflationary in nature. So, initially the exponential term may be more

significant and it is possible to have inflationary scenario during the evolution of the

universe. Thus, the space-time may be dominated by vacuum energy.

The directional Hubble’s factors H1, H2 and H3 in the directions of x, y and z are

given by

H1 = H2 =
c1(6− 3q + 2βq)

(1 + q)(2− q)(c1t+ c2)
+

h

(c1t+ c2)
3

1+q

− 2α(1 + q)

(2 + q)(c1t+ c2)
1−q

1+q

, (2.21)

H3 =
c1(3q − 6− 4βq)

(1 + q)(2− q)(c1t+ c2)
− 2h

(c1t+ c2)
3

1+q

+
4α(1 + q)

(2 + q)(c1t+ c2)
1−q

1+q

, (2.22)

H =
c1

1 + q
(c1t+ c2)

−1. (2.23)

Fig. (2.1) depicts the behavior of Hubble parameter with cosmic time t

The expansion scalar θ and shear scalar σ are given by

θ =
3c1
1 + q

(c1t+ c2)
−1, (2.24)

σ =
1√
3

[

c1(4 + 2βq − 2q)

(1 + q)(2− q)(c1t+ c2)
+

3h

(c1t+ c2)
3

1+q

− 2α(1 + q)

(2 + q)(c1t+ c2)
1−q

1+q

]

. (2.25)
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2.3 Model I with Λ=β
(

ä
a

)

+ α
a2

The anisotropic parameter Am

Am =
1

3(2− q)2
[

2(6− 3q + 2βq)2 + (3q − 6− 4βq)2
]

+
20α2(1 + q)2

(2 + q)2(c1t+ c2)
2(1−q)
1+q

+

5h2

(c1t+ c2)
6

1+q

+
(36αqc1 − 72αc1 − 40αβqc1)

(4− q2)(c1t+ c2)
2

1+q

+
(36hc1 − 18hc1q + 20βqhc1)

(1 + q)(2 + q)(c1t+ c2)
4+q

1+q

+
8αh(1 + q)

(2 + q)(c1t+ c2)
4−q

1+q

− 2.

(2.26)

By the use of Eqs. (2.12) ,(2.18) and (2.19) in Eq. (2.5), we obtain the expression for

the energy density ρ as

8πρ =
M1

(c1t+ c2)2
− M2

(c1t+ c2)
2

1+q

+
M3

(c1t+ c2)
4+q

1+q

− 3h2

(c1t+ c2)
6

1+q

− 12α2(1 + q)2

(2 + q)2(c1t+ c2)
2(1−q)
1+q

+
12αh(1 + α)

(2 + q)(c1t+ c2)
4−q

1+q

.

(2.27)

Fig. (2.2) shows to variation of energy density ρ with time in model 1

where M1, M3 are constants in terms of β, q whereas M2 involves β, q and α. The

expressions of these constants are not needed in further discussions.

We observe that the spatial volume is zero at t=t0 where t0 = − c2
c1

and expands

with time t. One of the scale factors R(t) vanishes while the other one S(t) diverges at

t=t0 which means that the model has a cigar-type initial singularity at t=t0. At this

epoch the energy density ρ becomes infinite. The scalars of expansion and shear are

infinite at t=t0. These indicate that the universe starts evolving with zero volume at

t=t0 and expands with time. The model is well behaved for t<∞. The expansion scalar

θ tends to zero as t→ ∞ which shows that the universe is expanding with the increase
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of time.The shear scalar σ is non-zero for t> t0 and tends to zero as t→∞. The energy

density is zero for large time and so the model would essentially gives an empty universe

for large time. We also find that σ2

θ
does not tend to zero as t→ ∞, which means that

the model does not approach isotropy for large time. When α = 0, we obtain the model

presented by Verma et al. (2011).

2.4 Model II with Λ= α
a2

and β = 0

In this case the solutions for the scale factors R and S are given as

R =
1

m
(c1t+ c2)

3
1+q exp

[

−α
c21

(1 + q)2

q(q + 2)
(c1t+ c2)

2q
1+q − h(1 + q)

c1(q − 2)
(c1t+ c2)

q−2
1+q

]

, (2.28)

S = m2(c1t+ c2)
−3
1+q exp

[

2α

c21

(1 + q)2

q(q + 2)
(c1t+ c2)

2q
1+q +

2h(1 + q)

c1(q − 2)
(c1t+ c2)

q−2
1+q

]

. (2.29)

The cosmological term has the value given by

Λ =
α

(c1t+ c2)
2

1+q

. (2.30)

The directional Hubble’s parameters H1, H2 and H3 have values given by Eqs.(2.21),

(2.22) and (2.23) with β = 0

8πρ =
12c21(2q + 1)

(1 + q)2(c1t+ c2)2
+

N1

(c1t+ c2)
2

1+q

+
N2

(c1t+ c2)
4+q

1+q

+
N3h

2

(c1t+ c2)
6

1+q

+
N4

(c1t+ c2)
2
q−1
1+q

+
N5

(c1t+ c2)
4+q

1+q

+
64αh(q − 2)

c1(q + 2)(c1t+ c2)
4−q

1+q

.

(2.31)

The behavior of energy density of this model II is shown in the Fig. (2.3)
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2.5 Conclusion

The physical and dynamical behaviors of this model is similar to that of the model with

β 6= 0 . where, N1 ,N2,N3 ,N4 and N5 are constant involving q, h, α and β.

We now evaluate the relationship between the cosmological time t and BKL time

τ . Such a relationship is of much significance, since the domain of the cosmological

time is finite as the BKL time τ runs from minus infinity to infinity. Burd and Tavakol

(1993); Wu (2010) have provided a new interpretation of zero Lyapunov exponents in

BKL time for Mixmaster cosmology. Belinski and Khalatnikov (1976)have introduced a

relationship between t and τ of the form

dt = V dτ. (2.32)

Substituting the value of V in (2.32) and integrating we obtain

τ =

(

(1 + q)(c1t+ c2)
q−2
1+q

c1(q − 2)

)

. (2.33)

2.5 Conclusion

In this chapter, we have analyzed Einstein’s field equations for LRS Bianchi type-II

space-time in the presence of a stiff fluid and time decaying cosmological terms of the

forms (i) Λ =β
(

ä
a

)

+ α
a2

and (ii) Λ = α
a2
. There are recent observational evidences for

the accelerated state of the present universe. It is held that the deceleration parameter

q was positive in the early phases of matter dominated era which becomes negative

during the later stages of the evolution. Therefore to obtain exact solutions to the field

equations, which would correspond to an accelerated universe, we have applied special

law of variation of parameter, proposed by Berman (1983). Two classes of anisotropic

cosmological models far the different forms of Λ are presented. The expressions for some

39



2 Bianchi Type -II Inflationary Models with Stiff Matter and Decaying Cosmological Term

important physical and kinematical parameters have been obtained and their behaviors

are discussed. The solutions from the scale factors have combination of power law

term and the exponential term in the product form. Initially the exponential term is

more significance and it is possible to have inflationary scenario during the evolution

of the universe. The interesting feature of the solution is that it is possible to exit

from exponential scenario if β=0 and h=0. After some inflation time, the universe will

continue to expand with power-law expansion. The cosmological models have singularity

at the epoch t=− c2
c1

which expand indefinitely with acceleration expansion. As time t

increases the physical parameters decrease and ultimately tend to zero for large time.

Thus, the universe would give essentially empty space for large time. It is seen that

σ2

θ
does not tend to zero as t → ∞, which means that the anisotropy in the universe

is maintained throughout the passage of time. As the deceleration parameter always

negative, the present models represent accelerated expanding universe. The cosmological

models presented in this paper are new an may be useful for better understanding of the

inflationary scenario of universe.
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Figure 2.1: Hubble’s parameter H verses cosmic time t, β=0.2; α=1; h=0.1
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Figure 2.2: Density ρ verses cosmic time t for model 1 with β=0.2; α=1; h=0.1
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Figure 2.3: Density ρ verses cosmic time t for model 2 with β=0.2; α=1; h=0.1
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