
1 INTRODUCTION

This chapter presents a brief introduction to the General Relativity and Cosmology. It

gives a short review of our current understanding about the universe, its history and

present status, and the important equations that govern its evolution. Some relevant

cosmological solutions with perfect fluid and viscous fluid sources in general relativ-

ity and f(R,T) gravity theory have been introduced. Various cosmological parameters,

which describe physical and geometrical properties of the expanding universe, have been

presented. The motivation and plan of the work have also been discussed in detail.

1.1 Basic Cosmology

Cosmology deals with the large-scale structure of universe as a whole extending to dis-

tances of billions of light years,its history and extrapolation of its future course of evo-

lution. Cosmologists construct theoretical models within the framework of general rela-

tivity and study the physical behaviour of the universe. Concentrating on its large-scale

features, they compare models with the universe as observed by astronomers. Prior

to general relativity, cosmologists had tried to understand the structure of universe

through Newton’s theory of gravitation. The attempt to construct Newtonian cosmo-
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logical models led to a number of problems for dealing with the dynamics of the universe

as a whole. This theory involves instantaneous propagation of gravitational disturbance,

which is a doubtful concept especially when applied over large distances. Due to this

reason, Newtonian theory could not progress. Later on, Newtonian theory was replaced

by Einstein’s general theory of relativity. Modern cosmology found its greatest inspira-

tion in Einstein’s general theory of relativity . This theory provides, for the first time a

concept of physical and mathematical frame work of general relativity for dealing with

the problems on cosmic scale.

Matter in the universe is found to be distributed in agglomerations of stars, galaxies

and cluster of galaxies. Cosmology treats this distribution as a fine structure and the

universe is described in the continuum approximation i.e. via a cosmological fluid. The

volume occupied by the galaxies is less than or equal to 10−6 times the total volume

of the universe. This explains why galaxies are considered as points when cosmological

models are constructed. The physical viability of a cosmological models that describe

our universe and its history appropriately, is tested by cosmological parameters such

as Hubble’s parameter, density parameter,deceleration parameter, curvature etc. There

have been strong agreements between theoretical predictions and experimental observa-

tions before accepting any cosmological model.

Traditionally cosmology has excited the imagination of religious thinkers, philoso-

phers and poets besides its roots in science and astronomy. As the cosmology is the study

of large scale structure of the universe, but our tools of observations and the knowledge

of the laws of nature are not good enough and sufficiently advanced to interpret scien-

tific information about the large-scale structure of the universe. The answers to these

questions, are obvious in the remark passed by Einstein: incomprehensible thing about
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the universe is that it is incomprehensible. Einstein (1915) gave the complete theory of

gravitation, general theory of relativity, which is basically a geometrical phenomena in

which the basic interactions and trajectories of any particle are dealt with a single field

equation. Schwarzchild (1916) was the first to be obtain physically significant solution

of Einstein’s field equations. It showed how space-time is curved around a spherically

symmetric distribution of matter. The three crucial tests make us indeed confident that

relativity provides a real advancement over the Newtonian theory of gravitation, and

that it furnishes an acceptable treatment for the field in the empty space surrounding a

star out to distances of the order of the dimensions of the solar system. Thus, general

relativity certainly provides at the present time the only possible theory of gravitation

that could be applied to study the behavior of large portions of the universe, and hence

we are forced to make use of this theory if we are to carry out cosmological speculations

at all.

It is very difficult to approve any kind of cosmological theory for there are real

limitations in our observational knowledge as to the actual nature of the universe and its

contents. So there are serious gaps in the information which we could desire. Although,

we can make observations in our immediate neighborhood to greater distances, we have

no real justification for assuming that the whole universe has the same properties as

that portion which we have already seen. In general, we shall actually make great use of

homogeneous models in our studies, but we shall have to realize that we do this primarily

in order to secure a definite and relatively simple mathematical problem, rather than

to secure a correspondence with known reality. Also we have very little information as

to the density of other forms of matter and radiations in the enormous extragalactic

spaces lying between the observed nebulae. It is only due to the works of Hubble that

we could know the density of matter in the form of extragalactic dust as thousands times
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great as the averaged out density of the nebulae. This is a very serious limitation on

our knowledge, So only on the basis of dubious metaphysical predictions, we can choose

between universes which are finite or infinite in spatial extent. Due to these uncertainties

in observational knowledge, much of our actual works must necessarily consist in a study

of cosmological models, constructed in accordance with the general theory of relativity.

1.1.1 Einstein’s Field Equations

In 1915, Einstein’s postulated a link between the geometry of space and the source of

gravitational field by introducing field equations for gravity within the framework of

general theory of relativity. The Einstein’s field equations are given by

Rij −
1

2
gijR = −8πG

c4
Tij, (1.1)

where G is gravitational constant; c is speed of light; Tij is stress energy tensor of the

matter field; R=gijRij is the Ricci scalar corresponding to the space-time metric gij of

signature (+,-,-,-) and Rij is the Ricci tensor corresponding to space -time metric given

by

ds2 = gijdx
idxj (i, j = 1, 2, 3, 4) (1.2)

Rij =
∂

∂xj
Γl
il −

∂

∂xl
Γl
ij + Γm

il Γ
l
mj − Γm

ijΓ
l
ml (1.3)

with

Γl
ij =

1

2
glh

(

∂gij

∂xj
+

∂gjh

∂xi
− ∂gij

∂xh

)

(1.4)

the Christofell’s symbols of second kind
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The tensor Gij defined as

Rij −
1

2
gijR = Gij (1.5)

is called Einstein’s tensor. As a result of the symmetry of Gij and Tij, actual number of

the field equations reduces to 10, although there are additional four differential identities

(the Bianchi identities), given by

G
ij
;j = 0 (1.6)

where a semicolon denotes the covariant differentiation. So covariant divergence of the

Einstein tensor vanishes, which in turn implies

T
ij
;j = 0, (1.7)

known as energy conservation equation.

Einstein field equations (1.1) provide a complicated differential equations, which can,

in general, be solved if one makes simplifying assumptions or uses numerical techniques.

The non-linearity of the Einstein’s field equations steams from the fact that masses effect

the very geometry of the space. In fact, the fundamental insight of (1.1) is that mass

curves the geometry of space-time, and the geometry of space-time, in turn tells masses

how to move.

1.1.2 Perfect Fluid Medium

The energy-momentum tensor or stress energy tensor Tij describes the source of matter

or gravitational field. It plays an important role during different epochs in the history of

the universe. The list of matter fields includes vacuum, matter fluids(perfect/imperfect),
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scalar fields, electromagnetic fields etc.. For instance,if ρ is the energy density of matter,

p is the thermodynamical pressure and ui =dxi

ds
refers to the 4-velocity vector of the

cosmic fluid satisfying giju
iuj =1, the energy momentum tensor for a perfect fluid, is

given by

Tij = (ρ+ p)uiuj − pgij (1.8)

1.1.3 Viscous Fluid Medium

The adequacy of cosmological models with perfect fluid is no basis for expecting that

it is equally suitable for describing its early stages of evolution. At the early stages

of evolution of the universe, when radiation in the form photon as well as neutrinos

decoupled, the matter behaved like a viscous fluid. The energy momentum tensor of a

fluid is given by

Tij = (ρ+ p̄)uiuj − p̄gij (1.9)

where

p̄ = p− ξui
;i. (1.10)

Here p̄ is the effective pressure and ξ (> 0) is the bulk viscosity coefficient.

1.2 Homogeneous and Isotropic Cosmological Models

The origin of modern cosmology is the Einstein’s general theory of relativity which

opens new avenues of approach to the solution of problems related to the universe on

cosmic scale. Einstein (1917) himself constructed the static cosmological models filled

with a continuous distribution of perfect fluid. However, the model is unsatisfactory

for several reasons. It contradicts the actual universe where, according to Hubble and
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L.Humason (1934), a definite redshift is observed in the light from the nebulae which

(redshift) increases atleast very closely in linear propagation with distance. Very shortly

after the presentation of Einstein’s static model, de sitter (1917) described the Einstein

static universe including a pressure term and gave the field equations for this case. The

de-sitter universe is completely empty containing neither matter nor radiation. In the

de-sitter universe we get an explanation of the actual redshift observed by Hubble and

Humason (1934). Through the de-sitter universe is completely empty, it predicts the

observed recession of nebulae. On the other hand, Einstein universe is full of matter,

but it does not predict the observed recession of nebulae . Thus, neither Einstein’s

universe nor de-sitter’s universe represent true model of the actual universe. In order

to construct a model in which advantages of the two static models of Einstein’s and de-

sitter are combined, one has to take recourse to non-static models in which the metric

tensor in intrinsically time-dependent.

1.2.1 Standard Model and Cosmological Constant

Using the Cosmological Principle, Friedmann (1922, 1924) solved the Einstein’s field

equations, and obtained non-static cosmological solutions, representing an expanding

universe. Therefore, the most suitable line element describing a non-static, and homo-

geneous model of the universe, is the Friedmann-Robertson-Walker (FRW) metric. In

standard spherical coordinates (xi)= (t, r, θ, φ), a spatially homogeneous and isotropic

FRW line element has the form (in units c=1)

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

(1.11)

where a(t) is cosmic scale factor, which describes how the distances (scales) change in

an expanding or contracting universe, and is related to the red shift of the 3-space; k is
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the curvature parameter, which describes the geometry of the spatial section of space-

time with closed, flat and open universes corresponding to k=-1,0,1, respectively. The

FRW models have been remarkably successful in describing the observed nature of the

universe satisfactorly.

The Einstein’s field equations (1.1),for the metric (1.11), in case of the energy-

momentum tensor (1.7), reduce to the following equations:

ȧ2

a2
=
8πG

3
ρ− k

a2
, (1.12)

ä

a
= −4πG

3
(ρ+ 3p), (1.13)

where an over dot denotes derivative with respect to the cosmic time t.

For the FRW space-time (1.11) and the perfect fluid energy-momentum tensor (1.8),

equation (1.7) yields a single conservation equation

ρ̇+ 3(ρ+ p)
ȧ

a
= 0 (1.14)

This equation is actually not independent of Friedmann equations but is required for

consistency . It implies that the universe (as specified by Hubble parametr H= ȧ
a
) can

lead to local changes in the energy density. Note that there is no notion of conservation

of “ total energy” since energy can be interchanged between matter and the space-time

geometry.

In cosmology, the Friedmann-Robertson-Walker (FRW) models play an essential role.

These models truly represent the universe, but in some sense they are good global ap-
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proximations of the present universe. FRW models are characterized by (i) the universe

being the same at all points in space (spatially homogeneous) and (ii) all spatial direc-

tions at a point being equivalent (isotropy).

In recent years, experimental studies of the cosmic microwave radiation and specu-

lation about the amount of helium formed at early stages and many other effects have

stimulated theoretical interest in anisotropic cosmological models. The spatially homo-

geneous and anisotropic Bianchi models present a medium way between FRW models

and completely inhomogeneous and anisotropic universe and thus play an important role

in current modern cosmology. A spatially homogeneous Bianchi model necessarily has a

three-dimensional groups, which acts simply transitively on space like three-dimensional

orbits.

Assumption concerning homogeneity and isotropy of the universe helps in the sense

that all spatial directions are equivalent and no part of the universe can be distinguished

from any other. The distribution of galaxies in sky along their apparent magnitudes and

red shifts, the distribution of radio sources, cosmic X-ray background, cosmic microwave

background all offer at least some circumstantial evidence that distribution of these ma-

terials on large-scale exhibit to be isotropy.

1.3 Spatially Homogeneous and Anisotropic Models

Even through the universe, on a large scale, appears isotropic and homogeneous at the

present time, there are no observational data that guarantee in an epoch prior to the

recombination. The sorts of matter fields in the early universe are uncertain. In the

early stages of evolution, the universe could not have had such a smoothed out picture
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because near the big bang singularity neither the assumption of spherical symmetry nor

of isotropy can be strictly valid.Therefore, anisotropy at early times is a very natural

phenomenon to investigate in order to sort out problems like the local anisotropies that

we observe today in galaxies, clusters and superclusters. These anisotropies may have

many possible sources; they could be associated with cosmological magnetic or electric

fields, long wavelength gravitational waves, Yang-Mills fields etc. (Barrow, 1997). More-

over, the experimental studies of the isotropy of the CMBR and speculation about the

amount of helium formed at the early stages of the evolution of universe have stimulated

theoretical interest in the cosmological models with anisotropic background. There-

fore, to describe the early evolution of universe, it appears appropriate to suppose a

geometry that is more general than just the isotropy and homogeneous FRW geometry.

Anisotropic cosmological models play significant role in understanding the behavior of

the universe at its early stages of evolution. Modern cosmology is concerned with the

through understanding and explanation of the past history, the present state and the

future evolution of the universe. Recent cosmological observations support the existence

of an anisotropic phase that approaches to isotropic one for large time.

1.3.1 Bianchi Models

The Bianchi cosmologies are spatially homogeneous space-times with a three- parameter

isometry group acting on spatial slices, which are described dynamically by the dynam-

ical system whose state space variables are independent of spatial coordinates. Bianchi

cosmologies are anisotropic generalizations of the homogeneous FRW -cosmologies, and

orthonormal frame methods have been very useful in the study of them because of the

close connection between the orthonormal frame variables and the structure constant of

the Lie algebra of the killing vector fields of the isometry group. The different group
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types correspond to different invariant of the state space and arranges the different

Bianchi types into a hierarchy of increasing complexity.

The classification of the three dimensional Lie algebra is called the Bianchi classifica-

tion, and each Lie algebra is labeled by numbers I-IX. By using one of these Lie algebras,

we can construct spatially homogeneous cosmological models. The corresponding cos-

mological models are called Bianchi models. Here it is possible to take the surface of

symmetry
∑

to be given by t=Const. and choose a frame of vector ea with component

Ei
a dependent only on spatial variables the line element of such space times is given by

ds2 = dt2 − gij(t)(E
i
µdx

µ)(Ej
νdx

ν) (1.15)

Here Ei
µ is the matrix inverse of E

µ
i . The evolution of the universe is then represented

by the time dependence of the six independent frame components gij of the metric. The

basis vectors of Ei of the Bianchi models satisfy [Ei,Ej]=C
k
ij Ek, in which Ck

ij are the

structure constants of the relevant symmetric group, and it is possible to classify this

according to the scheme given by Bianchi in 1897. Complex transformations formally

relate type VIII to type VI to VII.

The Bianchi models have been studied extensively since the late 60’s as example of

exact solutions (Stephani et al., 2003), and from a dynamical systems perspective at least

since 1971 by Collins (1971) and developed further by Bogoyavlensky (1985),Rosquist

and Jantzen (1988) and others. The book by Coley (2003) and the collaborative work,

edited by ? give detailed accounts of the uses of the dynamical system in Bianchi cos-

mologies . Worth mentioning is the proof by Ringstrom (2001) that the past asymptotic

states of Bianchi type IX models with an orthogonal perfect fluid, obeying the strong

and weak energy condition, generically are contained on the closure of the union of the
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vacuum Bianchi type I and II subsets.

In connection with data from Wilkinson microwave probe(Jafe et al., 2005; Hinshaw

et al., 2009), it has been discovered that the standard cosmological model requires pos-

itive and dynamic cosmological parameters, a case which resemble Bianchi morphology.

According to this result, the universe should achieve the following features: (i) a slightly

anisotropic geometry in spite of inflation, and (ii) a non trivial isotropization history of

the universe due to the presence of an anisotropic energy source. The advantage of these

anisotropic models are that they have a significant role in the description of evolution of

early phase of the universe and they help in finding more general cosmological models

than the isotropic FRW models.

A spatially homogeneous and anisotropic Bianchi type-I model is considered as the

simplest generalization of the FRW flat model. It is described by the line element

ds2 = dt2 − A2(t)dx2 −B2(t)dy2 − C2(t)dz2, (1.16)

where A, B and C are the metric functions or directional scale factors of cosmic time t.

If any two of the directional scale factors are equal and third one is different (say,A 6=

B=C), the space- time is said to be axially symmetric or locally rotationally symmetric

(LRS. In case A 6= B 6= C, the space-time is totally anisotropic.

1.3.2 Big-Bang Theory

This theory was first proposed by Lemaitre (1917). He put forward the idea that the

universe was once condensed into a single huge mass that became unstable and exploded.

He called it the cosmic egg and suggested the fact that galaxies can now be observed
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receding from each other was the direct result of the original explosion. The fragments

of the cosmic egg flung apart by the upheaval, have evolved into the galaxies that now

exist. It is observed that no fragment of the primeval egg are flying from the site of

an ancient explosion, but the space itself is expanding. On the process of expansion, it

carried with it the stars, galaxies and dust clouds that make up the observable universe.

All these ideas may be verified by Einstein’s theory of a space-time that can twist, bend

stretch and even expand. The space-time embedded in the fireball as it expands, the

space itself expands and the space outside the fireball is known as hyper space or super

space. This means that the picture of the expanding universe reveals the galaxies as

stationary objects apparently moving apart as the space between them expands. This

theory was strongly supported by the existence of Cosmic Microwave Background Ra-

diation (CMBR) which was discovered and identified as a faint background noise in the

electromagnetic range coming from all directions of the outer space.

A thousand millionth of a second after the big-bang its temperature was about 2

Lack million degrees Fahrenheit. A mass equivalent to that of earth would have been

squeezed into a volume no greater than an average size bucket. Such extreme conditions

meant that the only form in which matter could exist was in the form of tiny elementary

particles, the building block of the bigger particles such as proton and neutrons. In the

beginning the universe was not dominated by matter but by intense radiations ranging

over all the wavelengths of the electromagnetic spectrum. Light will only have had time

to travel the distances across an atomic nucleus in the first 100000 million, millionth

of the second. Mass equivalent to our entire galaxy crushed into volume less than four

thousandth of an inch across. Such kind of condition is called quantum era in which the

very concept of space-time cease to have any meaning. There are no words to describe

events under such conditions, and scientists trying to understand the ultimate mysteries
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of big-bang have to rely on the language of mathematics alone.

1.3.3 Non-Singular Models

It is widely believed that only cosmological models having an extremely hot, dense

initial state can explain the observed features of our universe. In large part, this is due

to the discovery of the microwave back-ground radiation. Many attempts have been

made to describe the early evolution of the universe and to deal with such problems

as the fireball spectrum, helium synthesis and so forth (Weinberg 1972). As there is

considerable uncertainty in the Hubble parameter, the deceleration parameter and the

hidden energy of the universe in neutrino, gravitons, so a wide range of models can fit

the data. Wheeler (1961) has pointed out that to allow singularities in a field theory is

really to allow anything at all. Singularities make a theory unsatisfactory. The problem

here is precisely the same as that of the final state in gravitational collapse. It is possible

to formulate a mathematically simple and attractive model avoiding initial singularity,

while still possessing hot dense state. This type of model may be possible by inclusion

of the second viscosity of the fluid filling the model. This type of model is beautifully

explained by Murphy(1973)

1.3.4 Steady State Theory

Three English astronomers, namely Hermann Bondi, Thomas Gold and Fred Hoyle

proposed a radical alternative to the big-bang theory known as the steady state theory.

They argued that despite appearances, the universe was unchanging in overall terms.

This theory says that if people could travel either backward or forward in time they

would still see the universe looking very much as it does today. The difficulty of having

to account for the origin of the universe was solved by rejecting the idea of beginning
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altogether. Bondi, Gold and Hoyle realized that the universe was not static and even

accepted that the galaxies are receding. But they believed that the observable change is

only a local phenomena and if the universe is viewed on a large enough scale, no overall

change would be taking place. They have also proved that the omnipresent creation

field never lose or gain energy, but merely shuffle it between them. Ultimately, this

theory failed because of its central idea that the universe looks the same from whatever

moment in time it is viewed. After the detection of CMBR in 1965, the steady state

theory became no longer acceptable.

1.4 Lyra’s Geometry

Einstein while discussing cosmological solutions had to introduce the cosmological con-

stant Λ into the field equations because the large scale recession of the galaxies i.e.’

the expansion of the universe had not been discovered at the time; this was discovered

later by Hubble. The theory has been successful in describing not only the gravitational

phenomena but has served as a basis for cosmological models of the universe. Grav-

itation, however, is not the only force described by classical physics, Electromagnetic

forces are also important and they are not explained by general relativity as a geometric

phenomena. Subsequently, there have been many attempts to unify electromagnetism

and gravitation. Weyl (1918) proposed a more general theory in which electromagnetism

is also described geometrically. Lyra(1951) suggested a modification of the Riemannian

geometry, which may also be considered as a modification of Weyl geometry, by introduc-

ing a gauge-function into the structure-less manifold as a result of which a displacement

field arises naturally. Halford (1972) pointed out that the constant displacement vector

field φ in Lyra’s geometry plays the role of cosmological constant in the normal gen-

eral relativistic treatment. He has also shown that the scalar-tensor treatment based
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on Lyra’s geometry predicts the same effects, within observational limits, as Einstein’s

theory. Sen(1957), Sen and Dunn(1971) proposed a scalar-tensor theory of gravitation

and constructed analogue of Einstein field equations based on Lyra’s geometry. The

field equations, in normal gauge, for Lyra’s manifold are

Rij −
1

2
gijR +

3

2
(φiφj −

1

2
gijφαφ

α) = −8πGTij (1.17)

where φ is a time-like displacement vector field defined as φi = (0, 0, 0, β(t)), and other

symbols have their usual meaning as in Riemannian geometry.

Several authors have studied cosmological models based on Lyra’s geometry with a

constant displacement vector field (Ram 1985,1986; and Adhav et al. 2007). However,

the restriction of the constant displacement vector field is a coincidence and there is

no a prior reason for it. Beesham (1988) has investigated Friedmann-Robertson Walker

(FRW) cosmological models in Lyra’s geometry with time dependent displacement vector

field.

1.5 Kaluza Klein Universe

A potential way to geometrize the physics of gravity and electromagnetism was suggested

by Kaluza’s (1920), who added a fifth dimension to Einstein’s general relativity. Kaluza

showed in essence that the apparently empty 5D field equations Rij =0 (i,j=0,1,2,3,4) in

terms of the Ricci tensor, contain Einstein’s equations for gravity and Maxwell’s equa-

tions for electromagnetism. Einstein’s, after some thought, endorsed this step. However

in the 1920s, quantum mechanics was gaining a foothold in theoretical physics, and in

the 1930s there was a vast expansion of interest in this area, at the expense of general
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relativity. This explains why there was such a high degree of attention to the proposal

of Klein, who in 1926 suggested that the fifth dimension of Kaluza ought to have a

closed topology (i.e., a circle), in order to explain the fundamental quantum of electric

charge (l). Klein’s argument actually related this gravity to the momentum in the ex-

tra dimension, but in so doing introduced the fundamental unit of action (h) which is

now known as Planck’s constant. However, despite the appeal of Klein’s idea, it was

destined for failure. There are several technical reasons for this, but it is sufficient to

note here that the crude 5D gravity/quantum theory of Kaluza/Klein implied a basic

role for the mass quantum
(

hc
G

)
1

2 . This is of order 10−5g, and does not play a dominant

role in the spectrum of masses observed in the real universe. (In more modern terms,

the so-called hierarcy problem is centered on the fact that observed particle masses

are far less than the Planck mass, or any other mass derivable from a tower of states

where this is a basic unit.) Thus, we have a dead-end. This does not though imply

that, there is anything wrong with the basic proposition, which follows from the work of

Einstein and Kaluza, that matter can be geometrized with the aid of the fundamental

constants. As a simple example, an astrophysicist presented with a problem involving

a gravitationally-dominated cloud of density ρ will automatically note that the free-fall

or dynamical timescale is the inverse square root of Gρ. This tells him immediately

about the expected evolution of the cloud. Alternatively instead of taking the density as

the relevant physical quantity, we can form the length
(

c2

Gρ

)
1

2

and obtain an equivalent

description of the physics in terms of a geometrical quantity.
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1.6 Dark Energy

In 1993, when Baade and Zwicky (1934) estimated the total amount of mass in a cluster

of galaxies, known as the Coma cluster based on the motion of the galaxies near the

edge of the cluster and compared it to one based on the number of galaxies and total

brightness of the cluster, he found that 9
10
of the matter in the Coma cluster was not

luminous and therefore could not be seen. Also the gravity of the visible galaxies in the

cluster should be far too small for such fast orbits, so something extra was required.

Zwicky inferred that there must be some other form of matter existent in the cluster

which provides enough of mass and gravity to hold the cluster together, Zwicky called

this as “dark matter. Rubin and Ford (1970) played a major role in establishing the

existence of dark matter in spiral galaxies were moving much more quickly than one

would have predicted. Without dark matter, spiral galaxies could fly apart, but the

dark matter stabilizes these galaxies.

At the time while the prospect of a universe filled with dark matter has itself challenged

our understanding of the physical world; an even more starting cosmological discovery

has come to light in 1998. Until the late 1990s ,cosmologists took it for granted that

the expansion of the universe was slowing down under the influence of gravitation. A

dramatic breakthrough happened in 1998 when two independent teams of astronomers,

one led by Perlmutter et al.(1997) and the other by Riess et al.(1998), were searching for

distant supernovae hoping to measure the rate at which the expansion of the universe

was slowing down. They traced the expansion of the universe over the past five billion

years and were in a shock to find that the cosmic expansion is not slowing down but

speeding up. This discovery has created a confusing situation among the cosmologists

because although the standard cosmological models have been confirmed by data from
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Wilkinson Microwave Anisotropic Probe (WAMP) and by other telescope surveys of

the large-scale structure of the universe it was not known why the cosmic expansion is

accelerating. To unveil the truth, intensive search is going on both at theoretical and

observational level. Many researchers suggested modifications and changes to Einstein’s

general theory of relativity.

Some other expected a conventional explanation for the accelerating expansion of the

universe based on astrophysics, e.g. the effect of dust on difference between young and

the old supernovae. But to the cosmologists around the world, a kind of repulsive force

which acts as anti-gravity is responsible for gearing up the universe some five billion

years ago (Capozziello et al., 2006a) This hitherto unknown physical entity is dubbed

as dark energy which has negative pressure and makes up about three quarters of the

total present cosmic density. Many cosmologists like to select the cosmological constant

Λ , introduced by Einstein in his field equations, as a suitable candidate for dark energy

because of its weired repulsive gravity. The cosmological constant provides a pretty

good explanation to the expansion of the universe being accelerated. But selection of

the cosmological constant as dark energy faces some serious problems.

Einstein’s general relativity (1916) is widely accepted as a fundamental theory to

describe the geometric properties of space-time. In a homogeneous and isotropic space-

time the Einstein field equations give rise to the Friedmann equations that describe the

evolution of the universe. In fact, the standard big-bang cosmology based on radiation

and matter dominated epoch can be well described within the framework of general

relativity. However, the rapid development of observational cosmology which started

from 1990s shown that universe has undergone two phases of cosmic acceleration. The

first one is called inflation (Starobinsky, 2007; Guth, 1981) , which is believed to have
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occurred prior to radiation domination (Bassett, et al, 2006). As per Smoot (1992), this

phase is required not only to solve the flatness and horizon problems plagued in the big-

bang cosmology, but also to explain a nearly flat spectrum of temperature anisotropies

observed in (CMBR) cosmic microwave background. The second accelerating phase has

started after the matter domination. As per Huterer and Turner (1999), the unknown

component giving rise to this late -time cosmic acceleration is called dark energy (Car-

roll, 2001; Padmanabhan, 2003; Sahni and Starobinsky, 2000; Peebles and Ratra, 2003).

The existence of dark energy has been confirmed by a number of observations, such

as supernovae Ia(Perlmutter et al., 1999; Riess et al., 1998, 2004), large scale structure

(Tegmark, et al, 2004), baryon acoustic oscillations (Eisenstein et al., 2005; Percival

et al., 2007)and cosmic microwave background (CMB) (Spergel et al., 2003).

1.7 f(R) and f(R,T) Theories of Gravitation

The recent observational data on the late-time acceleration of the universe and the ex-

istence of dark matter and dark energy have posed a fundamental theoretical challenge

to gravitational theories. One possibility in explaining the observations is by assuming

that at large scales the Einstein gravity model of general relativity breaks down, and

a more general action describes the gravitational field. Theoretical models, in which

the standard Einstein-Hilbert action is replaced by an arbitrary function of Ricci scalar

R (Nojiri and Odintsov, 2007) have been extensively investigated lately. Carroll et

al.(2004) proved that the presence of a late-time cosmic acceleration of the universe can

indeed be explained by f(R) gravity. The conditions of the existence of viable cosmolog-

ical models have been found by many researchers (Capozziello et al., 2006b; Koivisto,

2007; Carloni et al., 2008; Ananda and Carloni, 2008; Guarnizo et al., 2011) and severe

20



1.7 f(R) and f(R,T) Theories of Gravitation

weak field constraints obtained from the classical tests of general relativity for the solar

system regime seem to rule out most of the models proposed so far (Chiba et al., 2007;

Nojiri and Odintsov, 2008; Capozziello et al., 2008). However,Faraoni et al. (2006) , has

proved that viable models, passing solar system tests, can be constructed.Cognola et al.

(2006),Nojiri and Odintsov (2010) considered f(R) models that satisfy local tests and

unify inflation with dark energy. In the framework of f(R) gravity models the possibil-

ity that the galactic dynamic of massive test particles can be understood without the

need for dark matter was considered by Capozziello et al. (2006c, 2007), Martins and

Salicci (2007), Boehmer et al.(2008). For reviews of f(R) generalized gravity models see

Capozziello and Faraoni (2010); Nojiri and Odintsov (2011).

Bertolami et al. (2007) proposed a generalization of f(R) modified theories gravity

by including in the theory an explicit coupling of an arbitrary function of Ricci scalar

R with matter Lagrangian density Lm. As a result of the coupling the motion of the

massive particles is non-geodesic and extra force orthogonal to four velocity arises. The

connections with modified Newtonian dynamics (MOND) and pioneer anomaly were also

explored. Harko (2008) extended this model to the case of the arbitrary couplings in

both geometry and matter. Harko and Lobo (2010) and Harko et al. (2011a) investi-

gated astrophysical and cosmological implications of the non-minimal matter -geometry

coupling and Palatini formulation. Poplawski (2011) proposed specific application of the

f(R,Lm) gravity which has considered as a relativistic covariant model of interacting dark

energy based on the principle of least action. This model was known as Λ(T ) gravity

model. This Λ(T ) gravity is more general than Palatini f(R)gravity and reduces to later

when we neglect pressure of matter. Sharif and Shamir (2009, 2010) have studied the

solutions of Bianchi type-I and V space-times in the framework of f (R) gravity. Shamir

(2010) studied the exact vacuum solutions of Bianchi type I, III and Kantowski-Sachs
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space-times in the metric version of f (R) gravity.

Harko et al. (2011b) considered another extension of standard general relativity which

is known as f(R,T) modified theories of gravity. In this f(R,T) gravity theory the grav-

itational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the

trace T of the stress-energy tensor. Note that the dependence from T may be induced

by exotic imperfect fluids or quantum effects. The field equations of f(R,T) gravity

model are derived from Hilbert-Einstein type variational principle. The f(R,T) gravity

model depends on a source term representing the variation of the matter stress-energy

tensor with respect to the metric. A general expression for this source term is obtained

as a function of the matter Lagrangian Lm which would generate a specific set of field

equations.

In f(R,T) gravity theory models, the field equations are obtained from the Hilbert-

Einstein type variational principle.

S =

∫ √
−gdx4

(

1

16π
f(R, T ) + Lm

)

. (1.18)

Here f(R,T) is an arbitrary function of the Ricci scalar R and of the trace T of the

stress-energy tensor of the matter Tij. The stress-energy tensor of matter is

Tij = −
2√−g

δ(
√−gLm)

δgij
(1.19)

The corresponding field equations of the f(R,T) gravity are found by varying the action
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with respect to the metric gij Harko et al. (2011b):

fR(R, T )Rij −
1

2
f(R, T )gij + (gij�−∇i∇j)fR(R, T ) = 8πTij − fT (R, T )Tij − fT (R, T )⊖ij,

(1.20)

where

fR =
δf(R, T )

δR
, fT =

δf(R, T )

δT
, � ≡ ∇i∇j,

∇i is the covariant derivative and Tij is the standard matter energy-momentum tensor

derived from the Lagrangian Lm.

By contracting (1.20), we get

fR(R, T )R + 3�fR(R, T )− 2f(R, T ) = 8πT − fT (R, T )T − f(T )(R, T )⊖ . (1.21)

Generally, the field equations depend through the tensor θij on the physical nature of

the matter field. Hence in the case of f(R,T) gravity theoretical models corresponding

to different matter contributions for f(R,T) gravity are possible.

Harko et al. (2011b) gave three classes of these models:

f(R, T ) =























R + 2f(T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

(1.22)

Harko et al. (2011b) have presented some particular models corresponding to the

choices of the f(R,T)=R+2f(T). Subsequently Adhav (2012), Reddy et al. (2012a),

Chaubey and Shukala (2013) Chandel and Ram (2013), presented Bianchi types cos-

mological models in the presence of bulk viscous fluid within the framework of f(R,T)
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gravity theory. Recently, Reddy et al. (2012b), investigated a five dimensional Kaluza-

Klein space-time in the presence of a perfect fluid source in f (R,T ) theory of gravitation

with negative constant deceleration parameter.

1.8 Cosmological Parameters

In this section, we discuss some observational parameters which are of great importance

in cosmology. A cosmological model may have many versions, each of which could be

correct. Observations must be used to determine, which one is correct. This is attempted

by defining a few measurable cosmological parameters, which are closely related to the

thesis work.

1.8.1 Average Scale Factor(a) and Volume Scalar (V)

The volume scalar V, which deals the volume element of the universe, can be expressed

in terms of the average scale factor and metric functions (1.16 ) which is given by the

relation as

a3 = V = ABC. (1.23)

1.8.2 Expansion Scalar (θ)

The expression for the expansion scalar θ which deals with the expansion of the universe

is given in tensor from as,

θ = ui
;j. (1.24)
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For the Bianchi type -I space-times the expansion scalar θ has the expression, given by

θ =

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

(1.25)

1.8.3 Hubble’s Parameter (H)

Hubble (1929) proposed a law relating to apparent luminosities of distant galaxies to

their redshift as

V = HD, (1.26)

where V is the speed of recession of galaxy at a distance D from us and H is proportion-

ality constant, called Hubble parameter is given by

H =
ȧ

a
, (1.27)

which measures the rate of expansion of the universe.

1.8.4 Shear Scalar (σ2)

The shear scalar is given by

σ2 =
1

2
σijσ

ij (1.28)

σij =
1

2

(

ui;α p
α
j + uj;α p

α
i

)

− 1

3
θpij. (1.29)

The expression of σ2 for Bianchi type-I space-times is given as

σ2 =
1

2





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


− θ2

6
. (1.30)
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1.8.5 Deceleration Parameter (q)

An important observational quantity in cosmology is the deceleration parameter q which

is defined as

q = −aä

ȧ2
. (1.31)

This parameter measures the rate at which the expansion of the universe is changing with

time in terms of the scale factor, and its sign characterizes accelerating or decelerating

nature of the universe. In case q> 0, the universe decelerates whereas q< 0 describes

an accelerating universe and q=0 corresponds to expansion of universe with constant

velocity.

1.8.6 Anisotropic Parameter (Am)

The expression for the anisotropy parameter, which explains the isotropy of the evolution

of the universe, is given by

Am =
1

3
Σ3

i=1

(

∆Hi

H

)2

(1.32)

where ∆Hi = Hi-H, (i=1,2,3) are the directional Hubble parameters in directions of x,

y, z, axes respectively. These directional Hubble’s parameter for (1.16 )is given by

H1 =
Ȧ

A
, H2 =

Ḃ

B
, H3 =

Ċ

C
, (1.33)

The generalized Hubble’s parameter in term of directional derivatives for (1.16 ) is given

by

H =
1

3
(H1 +H2 +H3) . (1.34)
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1.9 Phases of Universe

Today’s universe (redshift z=0) is dominated by DE but it did undergo three tran-

sition, from inflationary phase to radiation-dominated, radiation-dominated to matter-

dominated and from matter-dominated to dark energy-dominated. These different phases

of the universe can be described by an equation of state (EoS ), where pressure and en-

ergy density are related via

p = (γ − 1)ρ (1.35)

where γ is an EoS parameter lying in the range 0 ≤ γ ≤ 2. The different phases of

evolution of the universe depend on the values of γ given as the values of γ = 1, 2 and4
3

correspond to dust (p=0),stiff-matter (p=ρ) and radiation-phase (p=ρ

3
) respectively.

A constant γ leads to a great simplification in solving the cosmological equations. In

particular, using (1.35)into (1.14), we find that the energy density evolves with the scale

factor according to

ρ ∝ a−3γ (1.36)

In case of flat spatial sections (k=0) and a constant EoS parameter γ, we may exactly

solve the Friedmann equation(1.12) to obtain

a(t) = a0
t

t0

2

3γ

, (1.37)

where a0 is the present value of scale factor, and γ 6=0.

In case of γ=0, we obtain

a(t) ∝ eHt (1.38)
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1.10 Inflationary Phase

There is yet another phase known as the inflationary phase. The present paradigm is

that our universe has undergone rapid phase of expansion, called inflation, possibly prior

to the radiation era. This rapid expansion during the inflation period is manifested in

the evolution of the scale factor a(t). In case of inflation, a(t)=tn, where n>1, i.e.,

power-law inflation or a(t)∝ eHt (exponential expansion).

In the early 1980’s, Alan Guth explained the physical mechanism for inflation, and

discussed the corresponding phase transition in the early universe. This idea was con-

ceived from particle physics. This resolves the horizon problem since causal regions in

the early universe are stretched to regions much larger than the Hubble distance. Infla-

tion is capable of solving many of the initial value or ‘fine-tuning’problems of the hot

big-bang model.
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