TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1	-68
1.1.General Introduction	1
1.2.Types of corrosion	2
1.3.Forms of corrosion	6
1.4.Basic concept of corrosion	11
1.5. Factors influencing metallic corrosion	12
1.6.Corrosion thermodynamics	17
1.7.Kinetics of corrosion	23
1.8.Corrosion protection methods	28
1.9.Mechanism of corrosion inhibition in acid solution	35
1.10. Adsorptive Mechanism of corrosion inhibition	36
1.11. Inhibition of mild steel corrosion in minerals acids	42
1.12. Graphical representation of kinetic data	43
1.13. Electrochemical Impedance Spectroscopy (EIS)	49
1.14. Application of Theoretical Methods in Corrosion Inhibition Studies	52
1.15. Heterocyclic compounds as corrosion inhibitors: literature survey with	ith particular
emphasis of quantum chemical calculations and molecular dynamics simulations	s 58
CHAPTER 2: EXPERIEMNTAL 6	9-85
2.1. Materials	69
2.2. Heterocyclics inhibitors	70
2.3. Instruments and techniques	78

LIST OF PUBLICATIONS	214-21	8
REFERENCES	185-21	3
4.2. Conclusions		184
4.1. Summary		178
CHAPTER 4: SUMMARY	178-18	4
3.4. 3-amino alkylated indoles (AAIs) as corrosion inhibitors		156
(DHPCs) as corrosion inhibitors		132
3.3. 2, 4-diamino-5-(phenylthio)-5H-chromeno [2, 3-b] pyridine-3-carbonitriles		
3.2. 2-amino-4-arylquinoline-3-carbonitriles (AACs) as corrosion inhibitors		111
3.1. 5-arylpyrimido-[4, 5-b] quinoline-diones (APQDs) as corrosion inhibitors		86
CHAPTER 3: RESULTS AND DISCUSIONS	86-177	
2.6. Computational studies		83
2.5. SEM, EDX and AFM measurements		82
2.4. Determination of Thermodynamic Parameters		81

LIST OF FIGURES

Figure 1.1: liquid metal corrosion of mild steel surface by molten Copper at 1	1100°C (MP:
1085^{0} C)	4
Figure 1.2: E-pH diagram for a generic metal M which forms hydroxides	20
Figure 1.3: Pourbaix diagram for iron/water system at 298 K	22
Figure 1.4: Schematic representation of Evans diagram for iron in acid solution	43
Figure 1.5: (a) Anodic control (b) cathodic control, (c) mixed control of a corrosion	1
process.	44
Figure 1.6: Anodic and cathodic half-cell reactions present simultaneously on a co	orroding zinc
surface	45
Figure 1.7: Polarization of anodic and cathodic half-cell reactions for zinc in aci	d solution to
give a mixed potential, E_{corr} and a corrosion rate (current density)	46
Figure 1.8: " E vs. i " for Fe in acid solution	47
Figure 1.9: Extrapolated Tafel curves	48
Figure 1.10: Complex plane impedance spectrum	50
Figure 1.11: Nyquist plot along with constant phase element	50
Figure 3.1.1: (a) Arrhenius plots for the corrosion of mild steel in 1 M HCl (b) Langmuir
adsorption isotherm plots for the adsorption of APQDs on mild steel s	urface in 1M
HC1	92
Figure 3.1.2: Polarization curves for mild in absence and presence of different co	oncentrations
APQDs	95

- **Figure 3.1.3:** Nyquist curves for mild in absence and presence of different concentrations of APQDs
- **Figure 3.1.4:** Bode impedance modulus (log f vs log |Z|) and phase angle (log f vs α^0) plots for mild steel in 1 M HCl in absence and different of different concentrations of (a) APQD-1, (b) APQD-2, (c) APQD-3 and (d) APQD-4.
- **Figure 3.1.5:** SEM images of mild steel surfaces: abraded (a), in 1 M HCl in the absence of APQDs (b), and in 1 M HCl in the presence of 20 mgL⁻¹ of APQD-1 (c), APQD-2 (d), APQD-3 (e) and APQD-4 (f)
- **Figure 3.1.6:** AFM images of mild steel: (a) in absence of APQDs and in the presence of 20 mgL⁻¹ of (b) APQD-1, (c) APQD-2, and (d) APQD-3 (e) APQD-4 102
- **Figure 3.1.7:** Optimized molecular structures of (a) APQD-1, (b) APQD-2, (c) APQD-3 and (d) APQD-4
- Figure 3.1.8: The frontier molecular orbital (left-hand side: HOMO; and right-hand side: LUMO) of the studied APQDs (a) APQD-1 (b) APQD-2, (c) APQD-3, and (d) APQD-4
- Figure 3.1.9: Fukui indices for the electrophilic (f_{k}^{+}) and nucleophilic (f_{k}^{-}) sites for (a) APQD-1, (b) APQD-2, (c) APQD-3, and (d) APQD-4. (All the surfaces were visualized at isosurface value of 0.004, except for the f_{k}^{+} of (c) APQD-3, and (d) APQD-4 for which isosurface value of 0.0028 and 0.0025 respectively, were used for better visualization)
- **Figure 3.1.10:** Side view equilibrium adsorption of APQD-1, APQD-2, APQD-3 and APQD-4 on Fe (110) surface (a) before and (b) after molecular dynamics simulations

Figure 3.2.1:	(a) Variation of inhibition efficiency with AACs concentration (b) Arrhen	ius plots
	of log C_R vs. $1000/T$ (c) Langmuir isotherm plot for the adsorption of the	e AACs
	on mild steel surface in 1M HCl	115
Figure 3.2.2:	Polarization curves for mild in absence and presence of different concentration	ration of
	AACs	117
Figure 3.2.3:	Nyquist plot for mild steel in 1 M HCl without and with different concentra	ations of
	AACs	120
Figure 3.2.4:	Bode ($\log f$ vs $\log Z $) and phase angle ($\log f$ vs α^0) plots for mild steel in 1	M HCl
	in absence and presence of different concentration of AACs	122
Figure 3.2.5:	SEM images of mild steel surfaces: abraded (a), in absence of AACs (b	o) in the
	presence of 40 mgL ⁻¹ of AAC-1(c), AAC-2(d), and AAC-3(e)	123
Figure 3.2.6:	EDX images of mild steel: (a) in absence of AACs and in the presence of 4	0 mgL ⁻¹
	of (b) AAC-1, (c) AAC-2, and (d) AAC-3	125
Figure 3.2.7:	AFM images of mild steel: (a) in absence of AACs and in the presence of	40 mgL
	¹ of (b) AAC-1, (c) AAC-2, and (d) AAC-3	126
Figure 3.2.8:	Optimized molecular structures of the studied compounds showing the	dihedral
	angles a-b-c-d (in degrees)	127
Figure 3.2.9:	The frontier molecular orbital of studied AACs (a) AAC-1 (left, HOMO); right,
	LUMO), (b) AAC-2 (left, HOMO; right, LUMO) and (c) AAC-3 (left,	номо;
	right, LUMO)	129
Figure 3.3.1:	(a) Arrhenius plots for the corrosion of mild steel in 1 M HCl in the pres	sence of

the studied inhibitors (b) Langmuir adsorption isotherms for mild steel in 1 M

- **Figure 3.3.2:** Polarization curves recorded for mild steel in the absence and presence of different concentrations DHPCs 139
- **Figure 3.3.3:** Nyquist plots recorded for mild steel in 1 M HCl in the absence and presence of different concentrations of (a) DHPC-1, (b) DHPC-2, and (c) DHPC-3 142
- **Figure 3.3.4:** Bode impedance modulus ($\log f$ vs $\log |Z|$) and phase angle ($\log f$ vs α^0) plots for mild steel in 1 M HCl in the absence and presence of different concentrations of (a) DHPC-1, (b) DHPC-2, and (c) DHPC-3
- Figure 3.3.5: SEM images of mild steel surfaces in 1 M HCl in the absence of DHPCs (a), and in 1 M HCl in the presence of optimum concentration of DHPC-1 (b), DHPC-2 and (c), DHPC-3 (d)
- Figure 3.3.6: AFM images of mild steel surfaces in 1 M HCl in the absence of DHPCs (a), and in 1 M HCl containing optimum concentration of DHPC-1 (b)HPC-2 and (c), DHPC-3(d)
- **Figure 3.3.7:** Optimized molecular structures of (a) DHPC-1, (b) DHPC-2, and (c) DHPC-3
- **Figure 3.3.8:** The frontier molecular orbital (left-hand side: HOMO; and right-hand side: LUMO) of the studied DHPCs (a) DHPC-1 (b) DHPC-2, and (c) DHPC-3 . 149
- **Figure 3.3.9:** Fukui indices f^+ and f^- corresponding to the atomics sites for the nucleophilic and electrophilic attacks respectively in (a) DHPC-1, (b) DHPC-2, and (c) DHPC-3 (isosurface value = 0.003)

- Figure 3.3.10: Side and top views of the most stable adsorption models of (a) DHPC-1, (b) DHPC-2, and (c) DHPC-3 on Fe (110) surface using quench molecular dynamic 154 Figure 3.4.1: (a) Arrhenius plots of $\log C_R$ vs. 1000/T (b) Langmuir isotherm plot for the
- adsorption of the AAIs on mild steel surface in 1M HCl 161
- Figure 3.4.2: Polarization curves recorded for mild steel in the absence and presence of different 163 concentrations of AAIs
- Figure 3.4.3: Nyquist plots recorded for mild steel in 1 M HCl in the absence and presence of 165 different concentrations of AAIs.
- **Figure 3.4.4:** Bode impedance modulus (log f vs log |Z|) and phase angle (log f vs α^0) plots for mild steel in 1 M HCl in the absence and different of different concentrations of 168 **AAIs**
- Figure 3.4.5: SEM images of mild steel surfaces in 1 M HCl in the absence of AAIs (a), and in 1 M HCl in the presence of optimum concentration of AAI-1 (b), AAI-2 and (c), AAI-3(d)169
- Figure 3.4.6: AFM images of mild steel surfaces in 1 M HCl in the absence of AAIs (a), and in 1 M HCl in the containing optimum concentration of AAI-1 (b), AAI-2 and (c), AAI-3(d)170
- Figure 3.4.7: Optimized molecular structures of studied AAIs, (a) AAI-1, (b) AAI-2 and (c) AAI-3 172
- Figure 3.4.8: The frontier molecular orbital (left-hand side: HOMO; and right-hand side: LUMO) of the studied APQDs (a) AAI-1 (b) AAI-2 and (c) AAI-3 173

Figure 3.4.9: Side view equilibrium adsorption of AAI-1, AAI-2, and AAI-3 on Fe (110) surface (left hand side: before; and right hand side: after molecular dynamics simulations)