Chapter 6

On fuzzy topology generated by fuzzy relations

6.1 Introduction

In this chapter, we have introduced a fuzzy topology generated by a fuzzy relation, as a generalization of the corresponding concept given by Smithson[102]. We have then obtained sufficient conditions under which this generated fuzzy topology will satisfy separation axioms, fuzzy T_0 , fuzzy T_1 and fuzzy T_2 . Further, we have introduced 'finite intersection property(F.I.P.)' in a fuzzy topological space and then obtained a characterization of (Lowen's) fuzzy compactness in terms of F.I.P. Using this result, we have obtained a sufficient condition under which a fuzzy topology generated by a fuzzy relation, becomes fuzzy compact.

Now we give some definitions and results which will be used in this chapter.

Definition 6.1. Let X be a non empty set, $A \subseteq X$ and \mathcal{R} be a fuzzy relation on X. Then A is called an \mathcal{R} -antiset of X if no two distinct elements of A are \mathcal{R} -related, where two elements x, y are said to be \mathcal{R} -related if $\mathcal{R}(x, y) > 0$.

Definition 6.2. Let X be a non empty set, $A \subseteq X$ and \mathcal{R} be a fuzzy relation on X. Then fuzzy sets L_A and R_A on X, are defined as follows:

$$L_A(y) = \sup_{a \in A} \mathcal{R}(y, a),$$

$$R_A(y) = \sup_{a \in A} \mathcal{R}(a, y),$$

for each $y \in X$.

Smithson[102] introduced and studied a topology on a set X, induced by a relation \mathcal{R} . Here we generalize this concept in the fuzzy setting.

Definition 6.3. Let \mathcal{R} be a fuzzy relation on X and \mathcal{A} be a collection of \mathcal{R} -antisets of X. Then $\tau_{\mathcal{R},\mathcal{A}}$ is the fuzzy topology on X generated by taking

$$\mathcal{S} = \{L_A\}_{A \in \mathcal{A}} \cup \{R_A\}_{A \in \mathcal{A}} \cup \{\alpha_X : \alpha \in [0, 1]\},\$$

as a subbase for the fuzzy closed sets in X i.e., every fuzzy closed set in X can be written as an intersection of finite unions of members of S.

We mention here that in [77], for a given fuzzy relation \mathcal{R} on X, the authors have introduced and studied the fuzzy topology on X generated by $\{L_{\{x\}}, R_{\{x\}}\}_{x\in X}$ considered as a subbase for the fuzzy open sets in X. This is a generalization of the corresponding concept given in [62].

Example 6.1. Let \mathcal{R} be a fuzzy relation on $X = \{a, b\}$, which is given as follows:

\mathcal{R}	a	b
a	0.1	0
b	0	0.3

and $\mathcal{A} = \{\{a\}, \{a,b\}\}$. Then the fuzzy topology $\tau_{\mathcal{R},\mathcal{A}}$ is generated by the following subbase \mathcal{S} for the fuzzy closed sets in X:

$$\mathcal{S} = \{L_{\{a\}}, L_{\{a,b\}}, R_{\{a\}}, R_{\{a,b\}}\} \cup \{\alpha_X : \alpha \in [0,1]\},\$$

where $L_{\{a\}}, L_{\{a,b\}}, R_{\{a\}}, R_{\{a,b\}}$ are given by:

$$L_{\{a\}} = \frac{0.1}{a} + \frac{0}{b}, \quad L_{\{a,b\}} = \frac{0.1}{a} + \frac{0.3}{b}, \quad R_{\{a\}} = \frac{0.1}{a} + \frac{0}{b}, \quad R_{\{a,b\}} = \frac{0.1}{a} + \frac{0.3}{b}.$$

So, the collection \mathcal{H} of fuzzy closed sets in X consists of arbitrary intersections of finite unions of members of \mathcal{S} and hence $\tau_{\mathcal{R},\mathcal{A}}$ is the set obtained by taking complements of members of \mathcal{H} .

Definition 6.4. Let (X, τ) be a fuzzy topological space. Then (X, τ) is said to be

- 1. $fuzzy T_0$ if for each $x, y \in X$ such that $x \neq y$, there exists a fuzzy closed set U in X such that $U(x) \neq U(y)$;
- 2. $fuzzy T_1$ if for each $x, y \in X$ such that $x \neq y$, there exist two fuzzy closed sets U, V such that U(x) = 1, U(y) = 0, V(x) = 0, V(y) = 1;
- 3. fuzzy T_2 if for each pair of distinct fuzzy points x_r , y_s in X, there exist two fuzzy closed sets U, V such that r > U(x), s > V(y) and $U \cup V = X$.

We remark here that (1), (2), (3) given above are equivalent to the definitions of fuzzy T_0 , fuzzy T_1 and fuzzy T_2 given in [71], [107], [106], respectively.

Proposition 6.5. [110] Let (X, τ) be a fuzzy topological space. Then the following statements are equivalent:

- 1. (X, τ) is fuzzy T_1 .
- 2. $\{x\}$ is fuzzy closed, $\forall x \in X$.

6.2 Separation axioms

In this section, we prove some results in the fuzzy setting, which are counterparts of the corresponding results given in [102]. In our discussion here, we shall assume that \mathcal{R} is a fuzzy relation on X and \mathcal{A} is a collection of \mathcal{R} -antisets.

Proposition 6.6. Let for each $x, y \in X$ such that $x \neq y$, there exist $z \in X$ such that $\mathcal{R}(x, z) \neq \mathcal{R}(y, z)$ (or $\mathcal{R}(z, x) \neq \mathcal{R}(z, y)$) and \mathcal{A} contains singletons. Then $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_0 .

Proof. Let $x, y \in X$ such that $x \neq y$. Then by our assumption, there exists $z \in X$ such that $\mathcal{R}(x, z) \neq \mathcal{R}(y, z)$ which implies that $L_{\{z\}}(x) \neq L_{\{z\}}(y)$. Since $L_{\{z\}}$ is fuzzy closed in $\tau_{\mathcal{R}, \mathcal{A}}$ and is such that $L_{\{z\}}(x) \neq L_{\{z\}}(y)$, so $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_0 .

Similarly, we can proceed for the case when $\mathcal{R}(z,x) \neq \mathcal{R}(z,y)$.

Example 6.2. Let \mathcal{R} be a fuzzy relation on $X = \{a, b\}$, which is given as follows:

\mathcal{R}	a	b
a	0.7	0.3
b	0.6	0.5

and $\mathcal{A} = \{\{a\}, \{b\}\}\}$. Then the fuzzy topology $\tau_{\mathcal{R}, \mathcal{A}}$ is generated by the following subbase \mathcal{S} for the fuzzy closed sets in X:

$$S = \{L_{\{a\}}, L_{\{b\}}, R_{\{a\}}, R_{\{b\}}\} \cup \{\alpha_X : \alpha \in [0, 1]\},\$$

where $L_{\{a\}}, L_{\{b\}}, R_{\{a\}}, R_{\{b\}}$ are given by:

$$L_{\{a\}} = \frac{0.7}{a} + \frac{0.6}{b}, \quad L_{\{b\}} = \frac{0.3}{a} + \frac{0.5}{b}, \quad R_{\{a\}} = \frac{0.7}{a} + \frac{0.3}{b}, \quad R_{\{b\}} = \frac{0.6}{a} + \frac{0.5}{b}.$$

Note that $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_0 since for $a, b \in X$, $a \neq b$, there exists a fuzzy closed set $U = L_{\{a\}}$ in X such that $U(a) \neq U(b)$.

Proposition 6.7. Let for each $x \in X$ and $y \in X \setminus \{x\}$, there exist $z \in X$ such that $\mathcal{R}(x,z) = 1$ (or $\mathcal{R}(z,x) = 1$) and $\mathcal{R}(y,z) = 0$ (or $\mathcal{R}(z,y) = 0$). Then \mathcal{A} contains singletons implies that $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_1 .

Proof. In view of Proposition 6.5, we show that $\{x\}$ is fuzzy closed. Let $y_r \in X \setminus \{x\}$. Then $x \neq y$. So according to our assumption, there exists $z \in X$ such that $\mathcal{R}(x,z) = 1$ and $\mathcal{R}(y,z) = 0$, which implies that $L_{\{z\}}(x) = 1$ and $L_{\{z\}}(y) = 0$. Therefore, there exists $L_{\{z\}}^c \in \tau_{\mathcal{R},\mathcal{A}}$ such that $y_r \in L_{\{z\}}^c \subseteq X \setminus \{x\}$, which implies that $\{x\}$ is fuzzy closed.

The other case can be handled similarly.

Corollary 6.8. Let \mathcal{R} be a fuzzy relation on X which is reflexive and antisymmetric. Then \mathcal{A} contains singletons implies that $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_1 .

Proof. Let $x, y \in X$ such that $x \neq y$. Then by the antisymmetry of \mathcal{R} , either $\mathcal{R}(x,y) = 0$ or $\mathcal{R}(y,x) = 0$. Also by the reflexivity of \mathcal{R} , $\mathcal{R}(x,x) = 1$, for each $x \in X$. In both the cases, if we set z = x, then by Proposition 6.7, $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_1 .

Definition 6.9. A collection \mathcal{A} of \mathcal{R} -antisets is called *separating* if for each $x \in X$ and $y \in X \setminus \{x\}$, there exists $A \in \mathcal{A}$ such that $L_A(x) = 1$ and $L_A(y) = 0$ or $R_A(x) = 1$ and $R_A(y) = 0$.

Proposition 6.10. If A is separating, then $(X, \tau_{R,A})$ is fuzzy T_1 .

Proof. Let $x, y \in X$ such that $x \neq y$. Then $y \in X \setminus \{x\}$ and so by our assumption, there exists $A \in \mathcal{A}$ such that $L_A(x) = 1$ and $L_A(y) = 0$ or $R_A(x) = 1$ and

 $R_A(y) = 0$. Similarly, for $x \in X \setminus \{y\}$, there exists $A' \in \mathcal{A}$ such that $L_{A'}(y) = 1$ and $L_{A'}(x) = 0$ or $R_{A'}(y) = 1$ and $R_{A'}(x) = 0$. Since $L_A, L_{A'}, R_A, R_{A'}$ are fuzzy closed sets in X, therefore $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_1 .

Example 6.3. Let \mathcal{R} be a fuzzy relation on $X = \{a, b\}$, which is given as follows:

\mathcal{R}	a	b	c
a	1	0.3	0.4
b	0	1	0
c	0	0.5	1

and $A = \{\{a\}, \{b\}, \{c\}\}\}$. Then the fuzzy topology $\tau_{\mathcal{R}, \mathcal{A}}$ is generated by the following subbase S for the fuzzy closed sets in X:

$$S = \{L_{\{a\}}, L_{\{b\}}, L_{\{c\}}, R_{\{a\}}, R_{\{b\}}, R_{\{c\}}\} \cup \{\alpha_X : \alpha \in [0, 1]\},$$

where $L_{\{a\}}, L_{\{b\}}, L_{\{c\}}, R_{\{a\}}, R_{\{b\}}, R_{\{c\}}$ are given by:

$$L_{\{a\}} = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \quad L_{\{b\}} = \frac{0.3}{a} + \frac{1}{b} + \frac{0.5}{c}, \quad L_{\{c\}} = \frac{0.4}{a} + \frac{0}{b} + \frac{1}{c},$$

$$R_{\{a\}} = \frac{1}{a} + \frac{0.3}{b} + \frac{0.4}{c}, \quad R_{\{b\}} = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \quad R_{\{c\}} = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}.$$

Since, $L_{\{a\}} = \{a\}$, $R_{\{b\}} = \{b\}$ and $L_{\{c\}} \cap R_{\{c\}} = \{c\}$ are fuzzy closed set in X, so in view of the Proposition 6.5, $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy T_1 .

Definition 6.11. A collection \mathcal{A} of \mathcal{R} -antisets completely separates points of X if for each $x, y \in X$ such that $x \neq y$, there exist $B_1, B_2, ..., B_k$, where for each i, $B_i = L_A$ or R_A , $A \in \mathcal{A}$ such that $X = \bigcup_{i=1}^k B_i$ and $B_i(x) > 0$ implies that $B_i(y) = 0$.

Theorem 6.12. If A completely separates points of X, then $(X, \tau_{\mathcal{R}, A})$ is fuzzy T_2 .

Proof. Let x_r and y_s be two distinct fuzzy points in X. Then $x \neq y$. Since \mathcal{A} completely separates points of X, so there exist $B_1, B_2, ..., B_k$, where for each i, $B_i = L_A$ or R_A , $A \in \mathcal{A}$ such that

$$X = \bigcup_{i=1}^{k} B_i \tag{6.1}$$

and $B_i(x) > 0$ implies that $B_i(y) = 0$. Since $X = \bigcup_{i=1}^k B_i$, so for $x, y \in X$, there exist i_1 and i_2 such that $B_{i_1}(x) = 1$ and $B_{i_2}(y) = 1$. Next, since $B_{i_1}(x) = 1 > 0$,

so $B_{i_1}(y) = 0$. Let $X_1 = \bigcup \{B_i | B_i(y) = 0\}$ and $X_2 = \bigcup \{B_i | B_i(y) > 0\}$. Here $X_1(y) = 0, X_2(x) = 0$ and in view of (6.1), we have $X_1 \cup X_2 = X$. Note that X_1 and X_2 are fuzzy closed sets in X such that $x_1 \in X_2(x)$ and $x_2 \in X_1(y)$ and $x_3 \in X_2(x)$ by $x_3 \in X_1(y)$ and $x_3 \in X_2(x)$ by $x_3 \in X_1(y)$ and $x_4 \in X_2(x)$ by $x_4 \in X_1(y)$ is fuzzy $x_4 \in X_2(x)$.

Example 6.4. Let \mathcal{R} be a fuzzy relation on $X = \{a, b, c\}$, which is given as follows:

\mathcal{R}	a	b	c
a	1	0	0.3
b	0.7	1	0
c	0	0.8	1

and $A = \{\{a\}, \{b\}, \{c\}\}\}$. Then the fuzzy topology $\tau_{\mathcal{R}, \mathcal{A}}$ is generated by the following subbase S for the fuzzy closed sets in X:

$$\mathcal{S} = \{L_{\{a\}}, L_{\{b\}}, L_{\{c\}}, R_{\{a\}}, R_{\{b\}}, R_{\{c\}}\} \cup \{\alpha_X : \alpha \in [0, 1]\},\$$

where $L_{\{a\}}, L_{\{b\}}, L_{\{c\}}, R_{\{a\}}, R_{\{b\}}, R_{\{c\}}$ are given by:

$$\begin{split} L_{\{a\}} &= \frac{1}{a} + \frac{0.7}{b} + \frac{0}{c}, \quad L_{\{b\}} &= \frac{0}{a} + \frac{1}{b} + \frac{0.8}{c}, \quad L_{\{c\}} &= \frac{0.3}{a} + \frac{0}{b} + \frac{1}{c}, \\ R_{\{a\}} &= \frac{1}{a} + \frac{0}{b} + \frac{0.3}{c}, \quad R_{\{b\}} &= \frac{0.7}{a} + \frac{1}{b} + \frac{0}{c}, \quad R_{\{c\}} &= \frac{0}{a} + \frac{0.8}{b} + \frac{1}{c}. \end{split}$$

Since for the fuzzy points $x_r, y_s \in X$, there exist two fuzzy closed sets $U = L_{\{b\}} \cup R_{\{c\}}$ and $V = L_{\{c\}} \cup R_{\{a\}}$ in X such that r > U(x), s > V(y) and $U \cup V = X$, for the fuzzy points $y_r, z_s \in X$, there exist two fuzzy closed sets $U = L_{\{c\}} \cup R_{\{a\}}$ and $V = L_{\{a\}} \cup R_{\{b\}}$ in X such that r > U(y), s > V(z) and $U \cup V = X$ and for the fuzzy points $z_r, x_s \in X$, there exist two fuzzy closed sets $U = L_{\{a\}} \cup R_{\{b\}}$ and $V = L_{\{b\}} \cup R_{\{c\}}$ in X such that $V = L_{\{a\}} \cup R_{\{c\}}$ in X such that $V = L_{\{a\}} \cup R_{\{c\}}$ in X such that $V = L_{\{a\}} \cup R_{\{c\}}$ in X such that X = X s

6.3 Finite intersection property and fuzzy compactness

In this section, we introduce 'finite intersection property' in fuzzy topological spaces and find a sufficient condition under which a fuzzy topology generated by a fuzzy relation, becomes fuzzy compact.

Definition 6.13. A family \mathcal{F} of fuzzy sets is said to satisfy the *finite intersection* property(F.I.P.) if for every $\alpha \in (0,1]$, there exists ϵ , $0 < \epsilon < \alpha$ such that for every finite subfamily $F_1, F_2, ..., F_n$ of \mathcal{F} , there exists $x \in X$ such that $(\bigcap_{i=1}^n F_i)(x) > 1 - \alpha + \epsilon$.

Note that the fuzzy set 0_X cannot be a member of a family satisfying finite intersection property.

Theorem 6.14. Let (X, τ) be a fuzzy topological space. Then the following statements are equivalent:

- 1. If \mathcal{F} is a family of fuzzy closed sets satisfying finite intersection property (F.I.P.), then for each $\alpha \in (0,1]$, there exists $y \in X$ such that $(\bigcap_{F \in \mathcal{F}} F)(y) > 1 \alpha$.
- 2. (X, τ) is fuzzy compact.

Proof. (1) \Rightarrow (2) Let \mathcal{G} be a family of fuzzy open sets in X such that

$$\alpha_X \subseteq \bigcup_{G_i \in \mathcal{G}} G_i \text{ and } \alpha \in (0, 1]$$

$$\Rightarrow \bigcap_{G_i \in \mathcal{G}} G_i^c \subseteq (1 - \alpha)_X$$

$$\Rightarrow \nexists y \in X \text{ such that } (\bigcap_{G_i \in \mathcal{G}} G_i^c)(y) > 1 - \alpha.$$

Therefore in view of (1), $\mathcal{F} = \{G_i^c : G_i \in \mathcal{G}\}$ does not satisfy F.I.P., so for each ϵ such that $0 < \epsilon < \alpha$, there exist $G_1^c, G_2^c, ..., G_n^c \in \mathcal{F}$ such that

$$\left(\bigcap_{i=1}^{n} G_{i}^{c}\right)(x) \leq 1 - \alpha + \epsilon, \quad \text{for each } x \in X$$

$$\Rightarrow \bigcap_{i=1}^{n} G_{i}^{c} \subseteq (1 - \alpha + \epsilon)_{X}$$

$$\Rightarrow (\alpha - \epsilon)_{X} \subseteq \bigcup_{i=1}^{n} G_{i}$$

$$\Rightarrow \alpha_{X} \text{ is fuzzy compact.}$$

$$\Rightarrow (X, \tau) \text{ is fuzzy compact.}$$

 $(2) \Rightarrow (1)$ Conversely, assume that (X, τ) is fuzzy compact i.e., each α_X , $\alpha \in [0, 1]$, is fuzzy compact. Let \mathcal{F} be a family of fuzzy closed sets satisfying F.I.P. We have to show that for each $\alpha \in (0, 1]$, there exists $x \in X$ such that

$$(\bigcap_{F \in \mathcal{F}} F)(x) > 1 - \alpha.$$

Assume the contrary, i.e, for $\alpha \in (0, 1]$,

$$(\bigcap_{F \in \mathcal{F}} F)(x) \le 1 - \alpha, \quad \forall x \in X$$

$$\Rightarrow \bigcap_{F \in \mathcal{F}} F \subseteq (1 - \alpha)_X$$

$$\Rightarrow \alpha_X \subseteq \bigcup_{F \in \mathcal{F}} F^c$$

This implies that $\{F^c: F \in \mathcal{F}\}$ is an open cover of α_X . Since α_X is fuzzy compact, so for each ϵ such that $0 < \epsilon < \alpha$, there exist $F_1^c, F_2^c, ..., F_n^c \in \mathcal{F}$ such that

$$(\alpha - \epsilon)_X \subseteq \bigcup_{i=1}^n F_i^c$$

$$\Rightarrow \bigcap_{i=1}^n F_i \subseteq (1 - \alpha + \epsilon)_X$$

$$\Rightarrow \nexists \text{ any } x \text{ such that } (\bigcap_{i=1}^n F_i)(x) > 1 - \alpha + \epsilon,$$

implying that \mathcal{F} does not satisfy F.I.P., which is a contradiction.

Definition 6.15. [61] Let \mathcal{R} be a fuzzy partial ordering on X and $A \subseteq X$. Then the fuzzy upper bound for A is the fuzzy set denoted by $U(\mathcal{R}, A)$ and defined by

$$U(\mathcal{R}, A) = \bigcap_{x \in A} R_x$$
, where $R_x(y) = \mathcal{R}(x, y)$, for each $y \in X$.

Definition 6.16. A subset A of X is said to be α -level bounded above, $\alpha \in (0,1]$, if for every ϵ , $0 < \epsilon < \alpha$, there exists $y \in X$ such that

$$U(\mathcal{R}, A)(y) > 1 - \alpha + \epsilon.$$

We say that A is fuzzy bounded above if it is α -level bounded above, for each $\alpha \in (0,1]$.

Definition 6.17. A subset A of X is said to have α -level least upper bound, $\alpha \in (0,1]$, if for every ϵ , $0 < \epsilon < \alpha$, there exists $z \in X$ such that $U(\mathcal{R},A)(z) > 1 - \alpha + \epsilon$ and $\mathcal{R}(z,y) > 1 - \alpha + \epsilon$, $\forall y$ such that $\mathcal{R}(x,y) > 1 - \alpha$, for each $x \in A$.

Definition 6.18. A set X is said to be α -level complete if every $A \subseteq X$ which is α -level bounded above, has an α -level least upper bound.

We say that X is fuzzy complete if it is α -level complete for every $\alpha \in (0,1]$.

Proposition 6.19. If X is α -level bounded above and $A \subseteq X$, then A is also α -level bounded above.

Proof. Since X is α -level bounded above, so for every ϵ , $0 < \epsilon < \alpha$, there exists $y \in X$ such that

$$U(\mathcal{R}, X)(y) > 1 - \alpha + \epsilon.$$

We have to show that for every ϵ , $0 < \epsilon < \alpha$, there exists $y \in X$ such that $U(\mathcal{R}, A)(y) > 1 - \alpha + \epsilon$. Assume the contrary that for each $y \in X$,

$$U(\mathcal{R}, A)(y) \le 1 - \alpha + \epsilon$$

$$\Rightarrow \inf_{a \in A} \mathcal{R}(a, y) \le 1 - \alpha + \epsilon$$

$$\Rightarrow U(\mathcal{R}, X)(y) = \inf_{x \in X} \mathcal{R}(x, y) \le \inf_{a \in A} \mathcal{R}(a, y) \le 1 - \alpha + \epsilon, \text{ for each } y \in Y$$

which is a contradiction to the fact that X is α -level bounded above.

Theorem 6.20. Let (X, τ) be a fuzzy topological space. Then the following statements are equivalent:

- 1. If \mathcal{F} is a family of subbasic fuzzy closed sets satisfying finite intersection property (F.I.P.), then for each $\alpha \in (0,1]$, there exists $y \in X$ such that $(\bigcap_{F \in \mathcal{F}} F)(y) > 1 \alpha$.
- 2. For any subbase S of τ , if $G \subseteq S$ such that $\alpha_X \subseteq \bigcup_{f \in G} f$, then for each ϵ , $0 < \epsilon < \alpha$, there exists a finite subset G_0 of G such that $(\alpha \epsilon)_X \subseteq \bigcup_{f \in G_0} f$.
- 3. (X,τ) is fuzzy compact.

Proof. The equivalence of (2) and (3) has already been proved in [69]. Here we prove (1) \Leftrightarrow (2). For (1) \Rightarrow (2), let \mathcal{S} be a subbase for τ and $\mathcal{G} \subseteq \mathcal{S}$ such that

$$\alpha_X \subseteq \bigcup_{f \in \mathcal{G}} f$$

$$\Rightarrow \bigcap_{f \in \mathcal{G}} f^c \subseteq (1 - \alpha)_X$$

$$\Rightarrow \nexists y \in X \text{ such that } (\bigcap_{f \in \mathcal{G}} f^c)(y) > 1 - \alpha.$$

Therefore in view of (1), $\mathcal{F} = \{f^c : f \in \mathcal{G}\}$ does not satisfy F.I.P., so for each ϵ such that $0 < \epsilon < \alpha$, there exist $f_1^c, f_2^c, ..., f_n^c \in \mathcal{G}$ such that

$$\left(\bigcap_{i=1}^{n} f_{i}^{c}\right)(x) \leq 1 - \alpha + \epsilon, \quad \text{for each } x \in X$$

$$\Rightarrow \bigcap_{i=1}^{n} f_{i}^{c} \subseteq (1 - \alpha + \epsilon)_{X}$$

$$\Rightarrow (\alpha - \epsilon)_{X} \subseteq \bigcup_{i=1}^{n} f_{i}.$$

Conversely, assume that \mathcal{F} be a family of subbasic fuzzy closed sets satisfying F.I.P. We have to show that for each $\alpha \in (0, 1]$, there exists $x \in X$ such that

$$(\bigcap_{F \in \mathcal{F}} F)(x) > 1 - \alpha.$$

Assume the contrary i.e, for $\alpha \in (0, 1]$,

$$\left(\bigcap_{F \in \mathcal{F}} F\right)(x) \le 1 - \alpha, \quad \forall x \in X$$

$$\Rightarrow \bigcap_{F \in \mathcal{F}} F \subseteq (1 - \alpha)_X$$

$$\Rightarrow \alpha_X \subseteq \bigcup_{F \in \mathcal{F}} F^c.$$

So according to our assumption, for each ϵ such that $0 < \epsilon < \alpha$, there exist $F_1^c, F_2^c, ..., F_n^c \in \mathcal{F}$ such that

$$(\alpha - \epsilon)_X \subseteq \bigcup_{i=1}^n F_i^c$$

$$\Rightarrow \bigcap_{i=1}^n F_i \subseteq (1 - \alpha + \epsilon)_X$$

$$\Rightarrow \nexists \text{ any } x \text{ such that } (\bigcap_{i=1}^n F_i)(x) > 1 - \alpha + \epsilon,$$

implying that \mathcal{F} does not satisfy F.I.P., which is a contradiction.

Theorem 6.21. Let \mathcal{R} be a fuzzy partial order. If X is fuzzy complete, fuzzy bounded above and \mathcal{A} consists of singletons, then $(X, \tau_{\mathcal{R}, \mathcal{A}})$ is fuzzy compact.

Proof. Let \mathcal{F} be a family of subbasic fuzzy closed sets of X satisfying F.I.P. First, we show that there does not exist any δ_X , where $\delta \in (0,1)$, belonging to \mathcal{F} . Since if we assume that \mathcal{F} contains some δ_X , where $\delta \in (0,1)$, then

$$\bigcap_{F\in\mathcal{F}_1} F\subseteq \delta_X,$$

where \mathcal{F}_1 is a finite subfamily of \mathcal{F} containing δ_X , implies that

$$\bigcap_{F \in \mathcal{F}_1} F \subseteq (1 - \alpha_1)_X \subseteq (1 - \alpha_1 + \epsilon)_X, \quad \text{for } \alpha_1 \in (0, 1) \text{ such that } \delta = (1 - \alpha_1)$$
and for each ϵ , $0 < \epsilon < \alpha_1$

 \Rightarrow \mathcal{F} does not satisfy F.I.P., which is a contradiction.

Next, if \mathcal{F} contains only 1_X , then the proof of the theorem is trivial and if there exists some member of the form $L_{\{x\}}$ or $R_{\{x\}}$ other than 1_X in \mathcal{F} , then 1_X plays no role in the intersection $\bigcap_{F \in \mathcal{F}} F$, so it is sufficient to prove the theorem for \mathcal{F} of the form $\{L_{\{x_\beta\}} | \beta \in \Omega_1\} \cup \{R_{\{x_\beta\}} | \beta \in \Omega_2\}$. Now, we have to show that for each $\alpha \in (0,1]$, there exists $z \in X$ such that $(\bigcap_{F \in \mathcal{F}} F)(z) > 1 - \alpha$.

Let $A = \{x_{\beta} | \beta \in \Omega_2\} \subseteq X$. Since for $\alpha \in (0, 1]$, X is α -level bounded above, so by Proposition 6.19, A is also α -level bounded above. Therefore, by the fuzzy completeness of X, there exists an α -level least upper bound of A. So, for each ϵ

such that $0 < \epsilon < \alpha$, there exists an element $x_0 \in X$ such that

$$U(\mathcal{R}, A)(x_0) > 1 - \alpha + \epsilon \text{ and } \mathcal{R}(x_0, y) > 1 - \alpha + \epsilon, \forall y \in X$$

$$\text{such that } \mathcal{R}(x, y) > 1 - \alpha, \text{ for each } x \in A$$

$$\Rightarrow \inf_{x \in A} \mathcal{R}(x, x_0) > 1 - \alpha + \epsilon$$

$$\Rightarrow \mathcal{R}(x_\beta, x_0) > 1 - \alpha + \epsilon, \text{ for each } \beta \in \Omega_2$$

$$\Rightarrow R_{\{x_\beta\}}(x_0) > 1 - \alpha + \epsilon, \text{ for each } \beta \in \Omega_2.$$

$$(6.3)$$

Since for $\beta \in \Omega_2$, $\mathcal{B} = \{R_{\{x_{\beta}\}}, L_{\{x_{\gamma}\}}\}$, where $\gamma \in \Omega_1$, is a finite subfamily of \mathcal{F} , so there exists ϵ_1 , $0 < \epsilon_1 < \alpha$ and $y \in X$ such that

$$(R_{\{x_{\beta}\}} \cap L_{\{x_{\gamma}\}})(y) > 1 - \alpha + \epsilon_{1}$$

$$\Rightarrow \min\{R_{\{x_{\beta}\}}(y), L_{\{x_{\gamma}\}}(y)\} > 1 - \alpha + \epsilon_{1}$$

$$\Rightarrow \min\{\mathcal{R}(x_{\beta}, y), \mathcal{R}(y, x_{\gamma})\} > 1 - \alpha + \epsilon_{1}$$

$$\Rightarrow \mathcal{R}(x_{\beta}, x_{\gamma}) > 1 - \alpha + \epsilon_{1} \quad \text{(Using transitivity of } \mathcal{R}\text{)}$$

$$\Rightarrow \mathcal{R}(x_{\beta}, x_{\gamma}) > 1 - \alpha.$$

Since the above inequality holds for each $\beta \in \Omega_2$, so we have

$$\Rightarrow \mathcal{R}(x_0, x_{\gamma}) > 1 - \alpha + \epsilon \quad \text{(Using 6.2 and putting } y = x_{\gamma}\text{)}$$

$$\Rightarrow L_{\{x_{\gamma}\}}(x_0) > 1 - \alpha + \epsilon.$$

The above inequality holds for every $\gamma \in \Omega_1$. So

$$L_{\{x_{\beta}\}}(x_0) > 1 - \alpha + \epsilon$$
, for each $\beta \in \Omega_1$. (6.4)

From (6.3) and (6.4), we get

$$\inf_{F \in \mathcal{F}} F(x_0) \ge 1 - \alpha + \epsilon > 1 - \alpha$$

$$\Rightarrow \left(\bigcap_{F \in \mathcal{F}} F\right)(x_0) > 1 - \alpha. \tag{6.5}$$

6.4 Conclusion

In this chapter, we have introduced fuzzy topologies generated by fuzzy relations, as a generalization of the corresponding concept given by Smithson[102]. We have then obtained sufficient conditions under which this generated fuzzy topology satisfies separation axioms, fuzzy T_0 , fuzzy T_1 and fuzzy T_2 . Further, we have introduced 'finite intersection property' in fuzzy topological spaces and obtained a characterization of Lowen's fuzzy compactness in terms of this property. Using this result, we have obtained a sufficient condition under which a fuzzy topology generated by a fuzzy relation, becomes fuzzy compact.