CONTENTS

List of Figures	Page No. xvi
List of Tables	xxx
List of Abbreviations	xxxii
Preface	XXXV
CHAPTER I General Introduction	1
1.1. Conventional Methods for the Synthesis of Gold	2
Nanoparticles	
1.1.1. Turkevisch method	3
1.1.2. Brust method	4
1.1.3. Martin method	4
1.1.4. Amine as capping ligand	4
1.2. Types of Gold Nanoparticles	6
1.2.1. Gold nanospheres	6
1.2.2. Gold nanorods	7
1.2.3. Gold nanoshells	7
1.2.4. Gold nanocages	7
1.3. Properties of Gold Nanoparticles	8
1.3.1. Redox activity	8
1.3.2. Surface Plasmon Resonance (SPR)	8

1.3.3. Fluorescence quenching	9	
1.4. Application of Gold Nanoparticles		
1.4.1. Colorimetric sensing	9	
1.4.1.1. Detection of alkali and alkaline earth metals	10	
1.4.1.2. Detection of heavy metal ions	10	
1.4.1.3. Detection of anions	10	
1.4.1.4. Detection of small organic molecules	11	
1.4.2. Fluorescence-based sensing	11	
1.4.3. Electrical and electrochemical sensing	12	
1.4.4. Therapeutics	13	
1.4.5. Catalyst in organic reactions	13	
1.4.5.1. Hydrogeneation reaction	14	
1.4.5.2. Nitro reduction	14	
1.5. Bimetallic Nanoparticles	15	
1.6. Trimetallic Nanoparticles	16	
1.7. Peroxidase Like Activity: Application in H ₂ O ₂ , Glucose	17	
and Glutathione Detection		
1.8. Para Nitro Phenol Reduction	19	
1.9. Challenges in the Synthesis of AuNPs and its	20	
Multimetallic Analogue		
1.10. Origin of the Present Research Programme	21	
1.11. Objectives of the Present Investigation	22	

1.12.	Work Plan for the Present Investigation	23
CHAPTER II	Functionalized Alkoxysilane Mediated Synthesis of gold	25
	Nanoparticles dispersible in aqueous and non-aqueous	
	medium	
2.1.	Introduction	25
2.2.	Experimental	27
	2.2.1. Materials and instrumentation	27
	2.2.2. Preparation of 3-APTMS stabilized AuNPs	28
	2.2.3. Peroxidase-like catalytic activity of AuNPs	28
2.3.	Results	29
	2.3.1. Interaction between 3-APTMS and 3-GPTMS	29
	2.3.2. Structural Characterization	30
	2.3.3. Dispersibility of AuNPs sol in aqueous and organic	33
	medium	
	2.3.4. Peroxidase mimetic behavior of AuNPs	36
2.4.	Discussion	40
	2.4.1. Chemistry of 3-APTMS and 3-GPTMS interaction	40
	2.4.2. Proposed mechanism for interaction between 3-	41
	APTMS and 3-GPTMS during AuNPs synthesis	
	2.4.3. Dispersibility of AuNPs as a function of alkoxysilanes	42
	molar ratio	
2.5.	Conclusion	43

CHAPTER III	3-APTMS and tetrahydrofuranhydroperoxide mediated	45
	synthesis of AuNPs : Application in glutathione sensing	
3.1.	Introduction	45
3.2.	Experimental	48
	3.2.1. Materials and instrumentation	48
	3.2.2. Synthesis of functional AuNPs	48
	3.2.2.1 3-APTMS and THF-HPO mediated AuNPs	48
	synthesis	
	3.2.2.2. 3-APTMS and GBL mediated AuNPs synthesis	49
	3.2.3. Peroxidase-Like catalytic activity of AuNPs made	49
	using 3-APTMS and THF-HPO	
	3.2.4. Glutathione detection by measuring wastage of H_2O_2	50
	3.2.5. Kinetic parameter analysis	51
3.3.	Results	51
	3.3.1. 3-APTMS and THF-HPO mediated AuNPs	51
	3.3.2. Chemistry of 3-APTMS and THF-HPO mediated	57
	AuNPs	
	3.3.3. 3-APTMS and GBL mediated AuNPs: formation and	57
	consumption	
	3.3.4. Effect of 3-APTMS concentration on catalytic property	58
	of AuNPs	
3.4.	Discussion	63

	3.4.1. Effect of 3-APTMS and THF-HPO on the AuNPs size	63
	3.4.2. GBL mediated mechanism for the synthesis of AuNPs	64
	3.4.3 Role of nanogeometry and functionality in chemical	66
	sensing	
3.5.	Conclusion	67
CHAPTER IV	Cyclohexanone role during the synthesis of 3-APTMS	71
	mediated AuNPs and its comparison with other mild	
	reducing agents	
4.1.	Introduction	71
4.2.	Experimental	73
	4.2.1. Materials and methods	73
	4.2.2. 3-APTMS and cyclohexanone mediated synthesis of	74
	AuNPs and its nanocomposites	
	4.2.3. Electrochemical measurements	75
	4.2.4. Peroxidase-like catalytic activity	75
4.3.	Results	76
	4.3.1. Requirements of organic reducing agents during 3-	76
	APTMS mediated synthesis of AuNPs	
	4.3.2. Cyclohexanone and 3-APTMS mediated synthesis of	78
	AuNPs	
	4.3.3. Dispersibility of AuNPs made using 3-APTMS and	82
	acetone	

xi

4.3.4. Catalytic ability of AuNPs	84
4.3.5. Electrocatalytic ability of AuNPs and their	91
nanocomposite	
4.4. Discussion	94
4.4.1. Cyclohexanone and 3-APTMS role during AuNPs	94
synthesis	
4.4.2. Proposed mechanism for interaction between 3-	96
APTMS and cyclohexanone during AuNPs synthesis	
4.4.3. Effect of organic reducing agents on the dispersibility	97
of AuNPs	
4.4.4. Effect of organic reducing agents on the catalytic	98
ability of AuNPs	
4.4.5. Electrocatalysis of PB-AuNPs nanocomposite	100
4.4.6. Effect of organic reducing agents on the stability of	100
AuNPs	
4.5. Conclusion	101
CHAPTER V 3-APTMS and organic carbonyl moiety role during the	103
synthesis of AuNPs specific to pH- and salt- tolerance	
5.1. Introduction	103
5.2. Experimental	105
5.2.1. Materials and Instrumentation	105
5.2.2. Preparation of 3-APTMS stabilized nanoparticles	105

	5.2.3. Electrochemical measurements	106
5.3.	Results	106
	5.3.1. Organic reducing agents and 3-APTMS mediated	106
	synthesis of AuNPs	
	5.3.2. The salt and pH sensitivity of AuNPs	109
	5.3.3. Electrochemical behaviour of potassium ferricyanide	113
5.4.	Discussion	115
	5.4.1. Structural analysis of AuNPs	115
	5.4.2. Chemistry behind 3-APTMS and organic reducing	117
	agent mediated synthesis of AuNPs	
	5.4.3. Mechanism operating in Salt- and pH- tolerances of	119
	AuNPs	
	5.4.4. Redox behavior of potassium ferricyanide in the	120
	presence of AuNPs	
5.5.	Conclusion	120
CHAPTER VI	3-APTMS mediated rapid synthesis of Ag@AuPd	123
	trimetallic nanoparticles	
6.1.	Introduction	123
6.2.	Experimental	126
	6.2.1. Materials and Instrumentation	126
	6.2.2. Synthesis of PdNPs, (PdAu)NPs and Ag@AuPd)NPs	127
	6.2.3. Conversion to heterogeneous catalyst	127

		6.2.4. p-Nitrophenol reduction and kinetic rate constant	127
		calculation	
	6.3.	Results	128
		6.3.1. 3-APTMS and formaldehyde mediated Synthesis of	128
		mono, bi and trimetallic NPs	
		6.3.2. Structural Characterization	132
		6.3.3. Homogenous catalysis	135
		6.3.4. Heterogeneous catalysis	138
	6.4.	Discussion	139
		6.4.1. Structural analysis	139
		6.4.2. Bimetallic : (AuPd) Vs (Au@Pd)	142
		6.4.3. Chemical characterization	143
		6.4.4. Synergistic effect	144
		6.4.5. Catalysis	144
		6.4.6. Conversion of colloidal suspension to solid matrix	145
	6.5.	Conclusion	147
CHAPTER	VII	3-APTMS mediated solvent induced synthesis of gold	149
		nanoparticles	
	7.1.	Introduction	149
	7.2.	Experimental	152
		7.2.1. Materials and Instrumentation	152
		7.2.2. Synthesis of AuNPs	152

	7.2.3. Sequential synthesis of AuNPs	153
	7.2.4. Peroxidase mimetic ability	153
	7.2.5. Para nitrophenol reduction	153
	7.2.6. Electrochemical measurements	154
7.3.	Results	154
	7.3.1. Effect of Solvent during AuNPs synthesis	154
	7.3.2. Structural Characterization	155
	7.3.3. Electrochemical Behaviour of Siloxane-Au polymer	161
	modified electrode	
	7.3.4. PNP reduction using (Au-siloxane _{hetero}) _{seq} hybrid as	163
	catalyst	
	7.3.5. Effect of porosity on catalytic behaviour	165
7.4.	Discussion	165
	7.4.1. Choice of 3-APTMS and acetone for solvent induced	165
	AuNPs synthesis	
	7.4.2. Structural analysis of different types of nanomaterials	166
	7.4.3. Effect of porosity on Electrochemical behavior	169
	7.4.4. Reduction of PNP using (Au-siloxane _{hetero}) _{seq}	169
7.5.	Conclusion	170
	Summary and Future Projection	171
	References	172