CONTENTS

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

1.0	Introduction	1
1.1	Overview of HPM	2
1.2	Working Mechanism of HPM System	5
1.3	Overview & Classification of the Microwave Tubes	6
1.4	Slow Wave Devices	9
	1.4.1 Relativistic Magnetron	10
	1.4.2 Virtual Cathode Oscillator	13
	1.4.3 RELTRON	14
	1.4.4 Magnetically Insulated Line Oscillator	15
	1.4.5. A Brief Description of MILO sub-assemblies	
1.5	Literature review on MILO	20
1.6	Motivation and Objectives	33
1.7	Plan and Scope	34
	CHAPTER 2	
	FUNDAMENTAL OF MAGNETICALLY RATIONAL INSULATED LINE OSCILLATOR (MILO)	
2.1	Introduction	39
	2.1.1 Comparison between Linear Magnetron & MILO	41
	2.1.2 Basics of the MILO	42
	2.1.3 Condition for the Explosive Emission	43
	2.1.4 Condition for Magnetic Insulation & Critical	

	current	46
	2.1.5 Parapotential Current Flow in the MILO	48
2.2	Condition of Relativistic Brillouin Flow and	
	Magnetic Insulation	52
	2.2.1 Hull cut-off and B-H condition	59
	2.2.2 Operating Mechanism of MILO	63
	2.2.3 Beam-Wave Interaction Mechanism under RBF	
	Condition	65
2.3	Effect of Axial Periodic Discs on Insulation	70
2.4	Results and Discussion	74
2.5	Conclusion	77
	CHAPTER 3	
D	DESIGN AND PIC SIMULATION OF MILO	
3.1	Introduction	79
3.2	Device Design Procedure	81
3.3	Introduction to PIC Simulation	
	3.3.1 Structure Modelling	87
	3.3.2 RF Interaction Cavities Simulation (Beam	absent
	condition)	87
3.4	PIC Simulation of MILO Structure	91
3.5	Results and Discussion	
	3.4.1 Energy exchange between electrons and RF field	91
	3.4.2 RF output power and Efficiency	94
3.6	Conclusion	101

CHAPTER 4

EQUIVALENT CIRCUIT ANALYSIS OF THE DISC-LOADED COAXIAL STRUCTURE FOR MILO

4.1	Introduction		
4.2	Electromagnetic analysis	106	
	4.2.1 Structure model	107	
	4.2.2 Electromagnetic field expressions	108	
	4.2.3 Electromagnetic boundary conditions	110	
	4.2.4 Equivalent shunt capacitance per unit length	111	
	4.2.5 Equivalent series inductance per unit length	114	
	4.2.6 Phase velocity of the structure	116	
	4.2.7 Dispersion relation	117	
	4.2.8 Characteristic impedance		
4.3	Results and Discussion	118	
	4.3.1 Effect of structure parameters on propagation		
	characteristics	120	
	4.3.2 Effect of structure parameters on dispersion		
	characteristics	123	
4.4	Conclusion	124	
	CHAPTER 5		
EQUI	VALENT CIRCUIT ANALYSIS OF THE DISC	C -	
LO	DADED COAXIAL STRUCTURE FOR MILO		
5.1	Introduction	127	
5.2	Electromagnetic analysis in the presence of		
	electron beam		
	5.2.1 Analytical model	128	
	5.2.2 EM boundary conditions	131	

	5.2.3	Electromagnetic field expression for region I	
	5.2.4	Electromagnetic field expression for region II	133
	5.2.5	Electromagnetic field expression for region III	134
5.3	Equiv	alent circuit approach	
	5.3.1	Equivalent shunt capacitance per unit length in	the
		presence of electron beam	135
	5.3.2	Equivalent series inductance per unit length in	the
		presence of electron beam	137
	5.3.3	Phase velocity of structure	139
	5.3.4	Dispersion relation and temporal growth rate	140
5.4	Expre	ession for RF energy and power developed	141
5.5	Resul	ts and discussion	
	5.5.1 I	Effect of structural parameters on propagation	
	C	characteristic	144
	5.5.2 V	Variation of RF energy and Output power	149
5.6	Conclusion		150
		CHAPTER 6	
PI	ERFOR	RMANCE IMPROVEMENT TECHNIQ	UES
		FOR MILO	
6.1	Introd	uction	152
6.2	Limita	ations of Conventional MILO	152
6.3	Perfor	mance and Improvement in MILO	
	6.3.1.a	a Optimization through structure and beam	
		parameters	154
	6.3.1.l	Optimization of Extractor in terms of Quality	
		factor	155
	6.3.1.0	c Optimization of Cathode Radius	158

	6.3.1.d	Optimization of Load Parameters	161
	6.3.1.e	Need of Optimizing Load Length	162
	6.3.1.f	Effect of distance between Extractor Radius	and
		Stub	
6.4	Efficienc	ey Enhanced L-BAND MILO	163
	6.4.1	Simulation Results	164
6.5	Efficienc	ey Enhanced S-BAND MILO	166
	6.5.1	Optimization of Structure Parameters	168
	6.5.2	Simulation Results	169
	6.5.3	Significance of Using Foil	174
6.6	Constan	t Radius Cathode S-BAND MILO	175
6.7	Conclusi	ion	178
		CHAPTER 7	
PERF	FORMAN	ICE IMPROVEMENT TECHNIQUI	ES IN
		MILO	
7.1	Summar	ry and Conclusion	181
7.1		•	
1.2	Limitatio	on of Present Work and Scope for Further	
			185