
 
 

CHAPTER 7 

MODELING AND PREDICTION OF SPATIO-TEMPORAL LAND USE 

AND LAND COVER DYNAMICS USING GEOSPATIAL TECHNIQUE 

 

7.1 INTRODUCTION 

The analysis and monitoring of LULC changes (LULCC) are vital for understanding 

complex interactions between human activities and global environmental changes 

(Dickinson, 1995; Zhu and Woodcock, 2014). LULCC mainly focuses on spatio-temporal 

dynamics and the human interferences largely influence the earth‟s environment by changing 

the dynamics of LULC (Thies et al., 2014). With the growing population and increasing 

socio-economic requirements, a pressure is created on LULC which leads to changes in it in 

a spontaneous and uncontrolled manner (Seto et al., 2002). Therefore, with increasing 

LULCC, mainly because of human activities, it is essential to identify such changes, 

appraisal of their trends and effects on the environment and ecosystem for future planning 

and natural resource management (Prenzel, 2004). 

In several studies, the integration of RS and GIS served as an efficient scheme for 

analyzing and detecting the spatial allocation of changes in LULC over large areas (Carlson 

and Azofeifa, 1999; Shooshtari and Gholamalifard, 2015; Waiyasusri et al., 2016). In recent 

years, the spatio-temporal modeling of LULC dynamics has drawn a lot of attention in 

solving the problems that occur due to the alteration and conversion of LULC (Lambin et al., 

2001).The studies of modeling approaches for future scenarios depend on predictions, 

whereas the analyses and reviews of the past to the current depend on facts. However, the 
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prediction of future situation is directly linked to the changes detected from the past to 

the current as well (Bhatta, 2010). 

It is necessary to apply spatially explicit models to simulate and predict the changes in 

LULC with the purpose to appraise future scenarios. Consequently, accurate and timely 

information provided by RS technologies at regular interval can be applied efficiently to 

detect and analyze the past and current trends as well as to predict future trends of LULC 

(Dadhich and Hanaoka, 2011; Mishra et al., 2014; Mishra and Rai, 2016; Waiyasusri et al., 

2016). The quality of predicted results is strongly affected by the accuracy of the 

investigation of past and current trends, the data quality and the model applied for predictions 

(Mozumder and Tripathi, 2014). Over the years, several spatially explicit models have been 

developed and used successfully by integrating them with RS and GIS to simulate and 

predict future LULC scenarios such as Markov chain (MC) model (Muller and Middleton, 

1994; Arsanjani et al., 2011; Fathizad et al., 2015), artificial neural network (ANN) model 

(Pijanowski et al., 2005; Mozumder and Tripathi, 2014; Maithani, 2015), cellular automata 

(CA) model (Clarke et al., 1997; Mitsova et al., 2011), logistic regression (LR) model 

(Kumar et al., 2014), GEOMOD (Giriraj et al., 2008; Paudel and Yuan, 2012), SLEUTH 

model (Jantz et al., 2004; Hua et al., 2014), conversion of land use and its effects (CLUE) 

model (Veldkamp and Fresco, 1996; Zhu et al., 2010). Every single model exhibits some 

advantages and disadvantages that have been described in detail by Triantakonstantis and 

Mountrakis (2012). The shortcomings of an individual model must be overcome by 

combining them to work as complementary to each other. Thus, in recent years various 

hybrid modeling methods have been developed and utilized successfully to predict liable 

patterns of future changes in LULC (Kamusoko et al. 2009; Arsanjani et al., 2013; Basse et 
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al., 2014; Mishra et al., 2014; Al-sharif and Pradhan 2014; Al-sharif and Pradhan, 2015; 

Bozkaya et al., 2015; Mishra and Rai, 2016). Although, the hybrid models provide the better 

and improved understanding of LULCC (Guan et al., 2011). But, it is very challenging to 

find out a hybrid model that provides the best result because each study offers a unique 

conclusion. Since the performance of LULCC modeling is different for different study area 

because of varied environmental conditions and landscapes of that individual area (Arsanjani 

et al., 2011). Thus, instead of identifying a single model, the best results providing model 

should be used for the study area. The comparison of models and prediction of the future 

LULC scenario using best result providing model are gaining more popularity in remote 

sensing community (Mas et al., 2014; Mozumder et al., 2016). Although, a substantial 

number of research using MC-based models exist, comparison studies are still limited. The 

present study aims to evaluate the performance of three MC-based hybrid models namely 

ST-MC, CA-MC and MLP-MC to simulate and predict future LULC scenarios in Varanasi 

district of Uttar Pradesh, India. More specifically, the objectives of the present study are to: 

(1) analyze the spatial and temporal patterns of LULCC in 1988-2001-2015; (2) Simulate and 

predict future scenarios of LULC based on ST-MC, CA-MC and MLP-MC; (3) determine the 

model that provides the better results in the study area; (4) predict future scenario of LULC 

for years 2030 and 2050 using the model providing best results. 

7.2 STUDY AREA 

Varanasi district of Uttar Pradesh, India is chosen for the present study. The area under 

investigation lies geographically between 25°10‟ to 25°37‟ N latitude and 82°39‟ to 83°10‟ E 

longitude covering an area of approximately 1532.91 km
2
. The geographical location of the 

study area as viewed on Landsat 8-OLI image are shown in Figure 1.6.  
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7.3 MATERIALS AND METHODOLOGY 

Three phases are involved in this work in order to model and predict the spatio-

temporal dynamics of LULC in Varanasi district of Uttar Pradesh, India. The first phase 

involved the collection of remote sensing images covering the study area and the preparation 

of LULC layers for different years. The second phase involved the analysis of LULCC. In 

the third and final phase, the factors affecting the changes in LULC were determined, and the 

LULC based on past changes and the factors was simulated and predicted. For the present 

study, remote sensing images of Landsat 5-TM acquired on 04 November 1988, Landsat 7-

ETM+ acquired on 31 October 2001, and Landsat 8- OLI image acquired on 15 November 

2015 were used to produce LULC layers of Varanasi district of Uttar Pradesh, India. The 

details of multi-temporal remote sensing images used in this study are represented in Table 

1.2. The SRTM DEM with 90 m spatial resolution was used to produce slope and aspect. The 

vector layer of roads and railway network was extracted from the Google Earth image. All 

the subsequent pre-processing, interpretation and LULC classification of multi-temporal 

remote sensing images were performed using ENVI (v 5.1) image processing software. Also, 

to model LULCC using three hybrid models which are ST-MC, CA-MC and MLP-MC, 

IDRISI Selva software has been employed as well as to predict the future LULC scenarios.  

7.3.1 Pre-processing of remote sensing images 

The collected multi-temporal remote sensing images were atmospherically corrected 

using QUAC module available in ENVI software and spatially referenced to a common UTM 

projection system (Zone 44, North) with datum WGS 84. All the images were resampled to 

the pixel size of 30 m. An appropriate band combinations are required to generate FCC for 

all the images. The band combination of B4, B3 and B2 was used to generate FCCs for 
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Landsat 5-TM and Landsat 7-ETM+ images. The band combination of B5, B4 and B3 was 

used to generate FCC for Landsat 8-OLI image. These FCCs were employed to create 

training samples (signatures) for LULC classification purpose. After the generation of 

training signatures, the separability analysis using transformed divergence (TD) method were 

used to examine the quality of training signatures prior to image classification. The 

separability analysis shows the range of values (from 1.75 to 2.0, where average divergence 

is 1.96) for Landsat-5 TM data of 1988, (from 1.75 to 2.0, where average divergence is 1.98) 

for Landsat-7 ETM+ data of 2001 and (from 1.76 to 2.0, where average divergence is 1.99) 

for Landsat-8 OLI data of 2015 respectively.   

7.3.2 LULC classification and accuracy assessment 

In this study, a supervised machine learning classification method support vector 

machine (SVM) was used to produce LULC maps for year 1988, 2001 and 2015 respectively. 

All the images were classified into seven major LULC classes: agricultural land, dense 

vegetation, sparse vegetation, fallow land, built up, water bodies and sand based on field 

investigation and landscape of the study area. The accuracy assessment of classification 

results was carried in terms of UA, PA, OA, Kc, and F-score based on confusion matrix 

using Equations (1.1) to (1.4) and (1.5). 

7.3.3 Analysis of LULCC  

The analysis of LULCC illustrates and quantifies the differences between the LULC of 

same the area at different years. The LULC maps based on classification of Landsat 

TM/ETM+/OLI images of years 1988, 2001, and 2015 respectively were used to quantify the 

LULCC within the study area. The changes occurred drastically affect the natural resources 

and environment. Thus, the recognition of changes and their causes would be helpful to 
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determine probable future changes and various LULC scenarios. The analysis and detection 

of LULCC is based on the changes in LULC classes from time 1 to time 2 (Eastman, 2009). 

In this study, cross-tabulation analysis was performed to quantify LULCC throughout 1988-

2001 (period 1), 2001-2015 (period 2), and 1988-2015 (period 3) respectively. The gains and 

losses experienced by various LULC classes, contributions to net change in built up area and 

agricultural land, and analysis of spatial trend of change for built up area and agricultural 

land were also investigated within the study area for the period 1, period 2, and period 3. 

7.3.4 Prediction of future LULC scenarios 

In this work, three hybrid models namely ST-MC, CA-MC and MLP-MC were 

employed to model, simulate and predict the LULC scenarios to a specified future date. A 

brief description of hybrid models is given as follows: 

7.3.4.1 ST-MC model 

The MC is used as a stochastic process, that integrates each single category as the state 

of a chain (Weng, 2002). MC have been used broadly to model LULCC at large spatial scales 

(Muller and Middleton, 1994) using discrete state spaces. The first model applied in this 

work is ST-MC model because, it combines both the stochastic processes as well Markov 

chain analysis methods (Eastman 2009). This type of predictive LULCC model is appropriate 

when the past trend of a LULCC pattern is known (Eastman, 2009).   

In the Markovian processes, the future state of a system can be predicted not based on 

the past but rather the present. In the beginning, MC generates a transition-probability matrix 

(Table 7.1), a transition area matrix (Table 7.2) and a set of Markovian conditional 

probability images (Figure 7.1) by analyzing LULC maps from two different dates (1988-

2001) (Eastman 2009). After that a single LULC map for future prediction is produced by 
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aggregating all the Markovian conditional probability images. A stochastic choice decision 

model is used to perform this prediction. It generates a stochastic LULC map by assessing 

and combining the conditional probabilities in which each LULC can exist at each pixel 

location adjacent to a rectilinear random distribution of probabilities (Ahmed &Ahmed 

2012). 

Table 7.1 Markov transition probabilities of change among LULC (1988-2001) for 2015 

 

Table 7.2 Transition area matrix (1988-2001) 

LULC Class 
Agricultural 

land 

Dense 

vegetation 

Sparse 

vegetation 

Fallow 

land 

Built 

up 

Water 

bodies 

Sand 

Agricultural land 1060174 260787 1091732 372931 37290 20767 810 

Dense vegetation 172386 75721 247299 22441 17138 4817 0 

Sparse vegetation 978102 247028 700018 221868 61844 15746 172 

Fallow land 347646   69466 280430 100088 6918 12198 5040 

Built up  17446 4947 34768 7053 98705 3079 1260 

Water bodies 12635   8380 27295 13804 3394 75175 20322 

Sand 2694   46 2821 10190 46 11824 17994 

 

LULC Class 
Agricultural 

land 

Dense 

Vegetation 

Sparse 

vegetation 

Fallow 

land 

Built 

up 

Water 

bodies 

Sand 

Agricultural land 0.1722 0.0811 0.3304 0.1471 0.2632 0.0057 0.0003 

Dense vegetation 0.3185 0.1403 0.4581 0.0416 0.0318 0.0089 0.0008 

Sparse vegetation 0.4396 0.1110 0.3147 0.0997 0.0278 0.0071 0.0001 

Fallow land 0.4230 0.0845 0.3413 0.1218 0.0084 0.0148 0.0062 

Built up  0.0365 0.0296 0.0389 0.0372 0.8293 0.0194 0.0091 

Water bodies 0.0785 0.0520 0.1695 0.0857 0.0211 0.4669 0.1263 

Sand 0.0591 0.0010 0.0618 0.2234 0.0010 0.2595 0.3945 
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 Figure 7.1 Markovian conditional probability images 

 

 

 

 

Figure 7.1 Markovian conditional probability images 

7.3.4.2 CA-MC model 

CA-MC model binds the concepts of CA, MC, multi criteria evaluation (MCE) and 

multi objective land allocation (MOLA) (Eastman et al., 1998) resultant into a distinct 

dynamic model. Cellular automaton can be defined as an agent or object having the 

capability to change its state from a rule that describes the new state to its previous state and 

those of its neighbors. CA model is spatially dynamic in nature and commonly used for 

LULCC analysis and prediction (Adhikari and Southworth, 2012). The CA system consists 

of four components: cells, states, neighborhoods, and rules (Barredo et al., 2003). A cell is 

the smallest spatial unit and the cells immediately nearby to a certain cell are referred as the 
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neighborhood. The next state of each cell is established by the states of its neighborhood 

cells. The rules were used to describe the states of the cells for the future time step (Ahmed 

and Ahmed, 2012). In a CA model, the transition rule of a cell from one LULC to another is 

based on the state of the neighborhood cells (Verburg et al., 2004). The spatial component 

can be incorporated easily into CA, and simple rules are used by it to address dynamism with 

increased computational efficiency. The fundamental equation of CA model can be given as: 

S t, t + 1 =  f S t , N                                                                                                                      (7.1) 

where S, t, t+1 and, N are the states of discrete cellular, the time instant, the next future time 

instant, the cellular field respectively and f represents the transition rule of cellular states in 

local space respectively. 

The MC is a potential model for predicting land change demand when it is ambiguous 

to describe the changes and processes in LULC. It defines the future state of environment 

solely according to the previous state. MC model is a stochastic process that explains how 

likely one state is to transform into another and use it as the base to project changes in future. 

The critical attribute of the MC is the development of transition probability matrix of changes 

in LULC from time to time, which can be used to predict the future status through the 

analysis of past situations. Although it is convenient to model the changes, and determine the 

future trends using MC approach. But MC cannot be used solely for providing the 

information about the spatial allocation of these phenomena. Thus, the CA is utilized to 

describe the spatial components. In an integrated CA-MC model, CA deals with spatial 

dynamics using local transition rules while MC illustrates the temporal dynamics between 

LULC classes using transition probabilities (Eastman, 2006). 
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In this study, cellular automata analysis was carried out by the CA_Markov module in 

IDRIS Selva software. It uses a transition area matrix, a transition probability matrix and a 

set of transition probability maps showing the probability of each pixel to a specific LULC 

class. A transition probability matrix based on the cross-tabulation of two LULC maps of 

different years is produced and determines the probability of changing of a pixel from a 

LULC class into another class during that time epoch (Table 7.1). Also, a transition area 

matrix includes the number of pixels that are probable to change to a LULC class from 

another class during the time epoch (Table 7.2). Thus, a contiguity filter of 5×5 kernel size 

accounting the neighborhood pixels is applied to predict LULC from a time epoch to a later 

time epoch.  

7.3.4.2.1 Generation of suitability maps for LULC classes 

In CA-MC, it is required to determine the transition potentials to model the changes in 

LULC. The suitability maps are used as transition potential (Olmedo et al., 2013). The pixels 

that will change as per the highest suitability of each LULC class are determined by the 

suitability maps. If the suitability of a pixel is higher, the likelihood of the neighboring pixels 

to change into that particular class is higher. But it is complicated to prepare suitability maps 

for LULC classes in terms of data and information availability. Also, the incorporation of all 

types of factors or constraints that exist in the study area is not possible. Therefore, a fuzzy 

factor standardization procedure is assumed to be a simple assumption in this case. In 

suitability images values 0 and 255 show unsuitable and highly suitable respectively 

(Eastman, 2009). Therefore, in this case, a simple linear distance decay function is 

appropriate. In this study, multi-criteria analysis based on a fuzzy linear function was utilized 

to generate suitability images of the 7 for each LULC class and are shown in Figure 7.2. The 
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criteria of suitability maps were established by the observable pattern of past land 

transformation circumstances. The fuzzy linear function is a decision making process used to 

decide weights of selected criteria and constraints.  

Figure 7.2 Suitability images of each LULC class 

7.3.4.3 MLP-MC model 

The world artificial neural network (ANN) is synonymic to the human brain (Mas and 

Flores, 2008). ANN has advantages over statistical methods because it does not assume 

probabilistic models of data. It can understand complex patterns present in the database, and 

model complex non-linear relationships (Ji, 2000; Atkinson and Tatnall, 1997). Although 
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many neural network models have been developed, the multi-layer perceptron neural network 

(MLPNN) is broadly used in different applications (Hu and Weng, 2009; Mozumder and 

Tripathi, 2014; Mishra et al., 2014). The MLPNN includes an input layer, many hidden 

layers and an output layer. One of the main advantages of MLPNN is its capability to model 

several or even all the transitions at one time. It is trained by supervised back propagation 

(BP) algorithm and provides the best generalization potential for transition of each LULC 

and simulation (Maithani, 2015; Mishra et al., 2014). It also combines the variables affecting 

the LULC transition (Mishra and Rai, 2016). The MC quantifies changes in LULC and 

determines transition probability areas to predict probable LULCC in the future (Dadhich and 

Hanaoka, 2011). In MLP-MC hybrid approach the transitions are modeled using an MLPNN. 

The integration of MLP and MC takes the advantages of both the models. A prediction model 

of future LULC scenario was designed within the MLP-MC structure available in the land 

change modeler (LCM) module embedded in IDRISI Selva software.  

7.3.4.3.1 Selection of transitions and variables for model development 

Since all the minor and major transitions occurred in LULC between two dates. Only 

the significant transitions that occurred among LULC classes were included in transition sub-

model to improve the performance of MLPNN and get better results (Eastman, 2006). The 

possible factors driving LULCC in Varanasi district of Uttar Pradesh, India are characterized 

by nine major transitions: agricultural land to fallow land, agricultural land to built up, fallow 

land to agricultural land, fallow land to built up, dense vegetation to built up, dense 

vegetation to sparse vegetation, sparse vegetation to built up, sparse vegetation to fallow 

land, water bodies to sand. The transition potential was determined by developing sub-

models in MLP-MC approach. All the observed LULC transitions were collected into a set of 
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sub-model. Each sub-model is added by significant variables either as static or dynamic 

(Eastman, 2006). A total of six environmental variables are considered in this study. 

Elevation, slope, and aspect were considered as static variables, while the distance from 

major roads, distance from rail network and distance from existing built up were regarded as 

the dynamic variable. An empirical likelihood to change map which is a qualitative variable 

was also produced besides these six quantitative variables. An empirical likelihood 

transformation is an effectual way of including categorical variables into the analysis. It is 

produced from the frequency of each LULC class occurred within the areas of transition 

(Eastman, 2009). All the seven explanatory variables used for the transition potential 

modeling are shown in Figure 7.3. Now, the potential explanatory power of these variables 

was tested using Cramer‟s V statistics. It is recommended that the variables having a 

Cramer‟s V of about 0.15 or higher are regarded as useful while those of about 0.4 or above 

are good (Eastman, 2009). After getting acceptable Cramer‟s V values for all the driving 

variables, now MLPNN model was run using BP algorithm. 

The prediction results are also influenced by constraints and factors. The expansion of 

built up area is restricted by some criterions known as constraints. In the present study, major 

roads and rail network were considered as the constraints and shown in Figure 7.4. The 

region behind choosing the distance from major roads as a factor is that most of the 

construction and developmental activities are supposed to take place along the roads. Two 

model variables such as major LULC transitions and driving factors were previously defined. 

On the basis of this information, transition potential maps were created to visualize the 

suitability of LULC classes for its future scenario. 
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Figure 7.3 Explanatory variables (a) DEM, (b) slope, (c) aspect, (d) distance from built up, 

(e) distance from major roads, (f) distance from rail network, and (g) Empirical likelihood 

image 

Figure 7.4 Constraints used (a) major roads, (b) rail network 
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7.3.4.3.2 Transition potential modeling 

The transition potential maps were produced using seven variables as input, LULC 

transitions to be modeled and MLPNN integrated into LCM. The MLP first creates a random 

sample of cells that transitioned among LULC classes during the required time and starts the 

automatic training process. It keeps 50% of the samples for training and remaining 50% for 

testing the performance. In this study, the minimum number of cells that transitioned during 

1988 to 2001 was chosen as 7959 to run MLP with 10,000 iterations. After running MLP, it 

was completed with an accuracy rate of 87.56% which is a measure of calibration. It is 

recommended that accuracy rate more than 80% is acceptable (Eastman, 2009). After the 

successful execution of MLP training, transition potential modeling is applied to generate 

transition potential maps. The amount of changes using the previous and later LULC maps 

were determined by MC process and used to estimate changes during the prediction process. 

The MC analysis also calculates the transition probability matrix of changing from one 

LULC class to other using past and current probabilities. Finally, the generated transition 

potential maps were further applied to predict LULCC scenarios for future dates. By using 

this information; transition potential maps were produced to visualize the suitability of LULC 

classes for future scenarios. 

7.3.5 Validation of predicted results 

If the evaluation of prediction provides convincing results, then the hybrid models can 

be applied further for the prediction of future LULC scenarios (Moghadam and Helbich, 

2013). In general, the model validation is carried out by comparing the predicted and 

observed results. For this purpose, the LULC for the year 2015 was first predicted ST-MC, 

CA-MC and MLP-MC hybrid models based on LULC information from 1988 and 2001. The 
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predicted results were then compared with the actual LULC information observed by remote 

sensing image of 2015 with the help of kappa index statistics to test the validity regarding 

quantity and location (Kamusoko et al., 2009). The kappa index statistics includes the kappa 

for no information (Kno), kappa for grid-cell level location (Klocation), kappa for stratum-level 

location (KlocationStrata) and kappa standard (Kstandard) which is similar to kappa (Pontius, 

2000).  

7.4 RESULTS AND DISCUSSION 

The results were divided into four components: (1) composition of the LULC maps and 

an accuracy assessment for the years 1988, 2001 and 2015; (2) change analysis of the period 

1, period 2, and period 3; (3) prediction for the year 2015 by the ST-MC, CA-MC and MLP-

MC models, and comparison of the prediction results with the observed LULC map of 2015, 

and identification of the model providing the highest accuracy for the study area; and (4) 

prediction of future scenarios of LULC  for the year 2030 and 2050 using the best result 

providing model. 

7.4.1 LULC maps and accuracy assessment 

In this study, LULC maps of years 1988, 2001 and 2015 were produced based on SVM 

classifier. The quantitative and spatial distribution of different LULC for three different years 

1988, 2001 and 2015 are shown in Table 7.3 and Figure 7.5 respectively. After the 

classification of multi-temporal remote sensing images, the obtained OA is the indicator of 

the reliability and usability of classified results. The PA, UA, OA, Kc and F-score achieved 

by confusion matrix approach are listed in Table 7.4. The OA of LULC maps for years 1988, 

2001 and 2015 are 86.94%, 88.84% and 89.25%, respectively. The Kc for years 1988, 2001 

and 2015 are 0.8475, 0.8697 and 0.8745, respectively. In this study, the accuracy assessment 



195 
 

of the classified products of the respective years confirmed that the results are acceptable for 

many applications. 

Table 7.3 Area distribution of LULC of years 1988, 2001 and 2015 

Year 1988 2001 2015 

LULC class 
Area 

(km
2
) 

Area 

(%) 

Area  

(km
2
) 

Area 

(%) 

Area 

(km
2
) 

Area 

(%) 

Agricultural land 965.86 63.01 873.78 57.00 909.83 59.35 

Dense vegetation 86.64 5.65 121.54 7.93 65.94 4.30 

Sparse vegetation 178.82 11.67 263.66 17.20 204.74 13.36 

Fallow land 225.68 14.72 182.68 11.92 193.86 12.65 

Built up  26.71 1.74 45.63 2.98 123.48 8.06 

Water bodies 39.68 2.59 35.26 2.30 23.48 1.53 

Sand 9.51 0.62 10.36 0.68 11.59 0.76 

Total 1532.91 100 1532.91 100 1532.91 100 

 

Table 7.4 Accuracy assessments of classified LULC maps of years 1988, 2001 and 2015  

Year 1988 2001 2015 

LULC class 
PA  

(%) 

UA 

 (%) 

F-score 

(%) 

PA 

 (%) 

UA 

 (%) 

F-score 

(%) 

PA 

 (%) 

UA 

 (%) 

F-score 

(%) 

Agricultural land 83.78 84.55 84.55 87.27 88.07 87.67 88.29 89.91 89.09 

Dense vegetation 89.36 91.30 90.32 90.53 92.47 91.49 89.32 90.20 89.76 

Sparse vegetation 86.61 87.39 87.00 87.16 87.16 87.16 88.39 90.00 89.19 

Fallow land 84.91 79.65 82.19 85.98 81.42 83.64 85.71 84.96 85.33 

Built up  88.29 90.74 89.50 89.09 91.59 90.32 88.99 88.99 88.99 

Water bodies 88.35 94.79 91.46 91.58 96.67 94.05 92.39 94.44 93.41 

Sand 87.76 81.90 84.73 90.83 86.84 88.79 92.71 87.25 89.90 

OA (%) 86.94 88.84 89.25 

Kc 0.8475 0.8697 0.8745 
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Figure 7.5 Classified LULC maps of years (a) 1988, (b) 2001, and (c) 2015 

 

7.4.2 Analysis of LULCC  

The study area experienced drastic changes in LULC and analyzed during period 1, 

period 2 and period 3. There are significant changes occurred in all LULC classes 
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particularly in agricultural land, fallow land, built up area and water bodies over the year 

(1988-2015). 

The agricultural land in 1988 covered an area of 965.86 km
2
 (63.01%), and it decreased 

to 873.78 km
2
 (57.00%) and 909.83 km

2
 (59.35%) in 2001 and 2015 respectively. During 

period 1 the agricultural land reduced by 6.01 %, while during period 2 it raised by 2.35% 

and during period 3 it again reduced by 3.66%. The area covered by dense vegetation in 1988 

was 86.64 km
2
 (5.65%) and it increased to 121.54 km

2
 (7.93%) in 2001 while decreased in 

2015 to 65.94 km
2
 (4.30%). During period 1 the dense vegetation raised by 2.28%, while 

during period 2 it decreased by 3.63% and again decreased by 1.35% during period 3.  The 

sparse vegetation covered an area of 178.82 km
2
 (11.67%) in 1988 and it increased to 263.66 

km
2
 (17.20%) and 204.74 km

2
 (13.36%) in 2001 and 2015 respectively. During period 1 the 

sparse vegetation raised by 5.53%, while during period 2 it decreased by 3.84% and again 

increased by 1.69% during period 3. The fallow land occupied an area of 225.68 km
2
 

(14.72%) in 1988 and it reduced to 182.68 km
2
 (11.92%) and 193.86 (12.65%) in 2001 and 

2015 respectively. During period 1 the fallow land reduced by 2.81%, while during period 2 

it slightly increased by 0.73% and again reduced by 2.08% during period 3. It was examined 

that in 1988 built up covered an area of 26.71 km
2
 (1.74%) and it increased to 45.63 km

2
 

(2.98%) in 2001 and 123.48 km
2 

(8.06%) in 2015 respectively. The built up area raised by 

1.23%, 5.08% and 6.31% during period 1, period 2 and period 3 respectively. The continuous 

decrease in water bodies is observed by 0.29%, 0.77% and 1.06 during period 1, period 2 and 

period 3 respectively. Sand is increased slightly by 0.06%, 0.08% and 0.14% during all the 

periods.  
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An enormous change of 6.31% in built up is observed between 1988 and 2015. 

Following this, there is a loss of 3.66%, 2.08% and 1.35% in agricultural land, fallow land, 

and dense vegetation respectively. The loss of agricultural land, fallow land and dense 

vegetation contributed to an increase in the built up between 1988 and 2015. This could be 

due to population growth linked with the requirement of land and urban supplies. The 

amount of changes in LULC during period 1, period 2 and period 3 are given in Table 7.5. 

The gains and losses of LULC classes during period 1, period 2, and period 3 are shown in 

Figure 7.6. The contributions to net change in built up and agricultural land during period 1, 

period 2, and period 3 are demonstrated in Figure 7.7 (a, b). 

Table 7.5 Amount of changes in LULC during period 1, period 2, and period 3 

  

During period 3, the rate of loss of water bodies is found maximum with -1.94% 

followed by dense vegetation with -1.01%, fallow land with -0.56% and agricultural land 

with -0.22%. The highest positive rate of change is found for built up to 5.67% followed by 

sand with 0.73%, sparse vegetation with 0.50%. It signifies that built up have the highest 

positive rate of change while the water bodies had highest negative rate of change during 

 Amount of changes  

Period 1988-2001 2001-2015 1988-2015 

LULC class Area (km
2
) Area (%) Area (km

2
) Area (%) Area (km

2
) Area (%) 

Agricultural land -92.08 -6.01 36.05 2.35 -56.04 -3.66 

Dense vegetation 34.90 2.28 -55.59 -3.63 -20.70 -1.35 

Sparse vegetation 84.83 5.53 -58.92 -3.84 25.91 1.69 

Fallow land -43.00 -2.81 11.18 0.73 -31.82 -2.08 

Built up 18.93 1.23 77.85 5.08 96.78 6.31 

Water bodies -4.43 -0.29 -11.78 -0.77 -16.21 -1.06 

Sand 0.85 0.06 1.22 0.08 2.07 0.14 
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period 3. The water bodies and dense vegetation with the higher negative rate of change may 

be a major concern in the study area. The complete information about the rate of change for 

each LULC class during period 1, period 2, period 3 is given in Table 7.6.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Gains and losses of LULC classes (in % change) during period 1, period 2, and 

period 3  
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Figure 7.7 Contributions to net change in (a) built up and (b) agricultural land (in % change) 

 

Table 7.6 Annual rate of change during period 1, period 2, and period 3 

 Annual rate of change (%) 

Period 1988-2001 2001-2015 1988-2015 

LULC class    

Agricultural land -0.77 0.29 -0.22 

Dense vegetation 2.60 -4.37 -1.01 

Sparse vegetation 2.99 -1.81 0.50 

Fallow land -1.63 0.42 -0.56 

Built up 4.12 7.11 5.67 

Water bodies -0.91 -2.90 -1.94 

Sand 0.66 0.80 0.73 
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7.4.3 Spatial trend of change analysis 

The spatial trend of change analysis is an effectual approach to visualize and provide 

the generalized patterns of changes by using two observed LULC maps of different years. 

The spatial trends of transitions from all LULC classes to built up and agricultural land 

during period 1, period 2, and period 3, respectively are shown in Fig. 7.8 (a- c). The spatial 

trend of change maps shows that the agricultural land is shifted towards the eastern and 

southern directions during all the periods. It is also observed that the transition of built up is 

more concentrated in the middle of the study area and expanding towards the northern and 

western directions during all the periods relative to other directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 spatial trends of change in built up and agricultural land during (a) period 1, (b) 

period 2, and (c) period 3  
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7.4.4 ST-MC model based prediction 

The prediction of future LULCC scenario was performed using a ST-MC model. 

Firstly, MC produces a transition probability matrix, a transition areas matrix and a set of 

Markovian conditional probability images by analyzing LULC maps of two different years 

1988 and 2001(Eastman, 2009). 

The transition probability matrix illustrates the probability that each LULC class will 

change to other classes in 2015. Markovian conditional probability images (Figure 7.1) are 

the probabilistic prediction based on the trends of past 13 years (1988-2001). The Markovian 

conditional probability of being built up ranges up to 0.59, which is highest among all other 

LULC classes. The probability values for agricultural land ranges up to 0.44, for dense 

vegetation ranges up to 0.14, for sparse vegetation ranges up to 0.46, for fallow land ranges 

up to 0.22, for water bodies ranges up to 0.47 and for sand ranges up to 0.39. Now by 

aggregating all the produced Markovian conditional probability images, a single LULC map 

for future prediction is generated.  

7.4.5 CA-MC model based prediction 

For predicting LULC map for the year of 2015, LULC maps of the years 1988 and 

2001 were used to create the transition probability matrix. The suitability images were 

created by setting transition rules from one LULC class to another class. In this work, 

physical factors are only regarded as drivers of the changes in LULC. The physical proximity 

to an existing LULC class is assumed to be a driver of change into a specific LULC class in 

the future. The rules and suitability maps were prepared for each LULC classes. The 

fundamental supposition for producing suitability images is the pixel nearer to an existing 

LULC class has the higher suitability. In suitability images the values ranged from 0 to 255, 

0 showing unsuitable and 255 showing highly suitable. Therefore, for this fundamental 
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supposition, a simple linear distance decay function is adequate. It provides the fundamental 

idea of contiguity and fuzzy set membership analysis procedure (Eastman, 2009) is used to 

standardize LULC maps to the same continuous suitability scale (0-255). Eventually, the 

prediction of LULC for year 2015 is carried out by utilizing the Markov transition area 

matrix, all the suitability images, the 5×5 CA contiguity filter and the LULC of 2001 as a 

base map.    

7.4.6 MLP-MC model based prediction 

The MLPNN analysis was used to determine the weights of transitions for the period of 

1988 to 2001 that will be included in the transition probability matrix using MC analysis for 

future prediction. The transition probability matrix is the cross-tabulation of two LULC maps 

of different years (1988 and 2001) and shown in Table 7.7. In transition probability matrix 

rows and columns stand for the earlier and later date images. Based on all transition potential 

maps created for various LULC transitions, the MLPNN was applied with an accuracy of 

87.56% with 10000 iterations. 

Further, the Table 7.7 exhibits that the probability of change of agricultural land into 

built up in future date 2015 from 1988 to 2001 is 29.45 %, while the probability of changing 

of agricultural land into agricultural land in future is only 18.35 %. The probabilities of 

changing of agricultural land into built up raised up to 32.85 % and 33.55% in 2030 and 

2050, respectively. Alternatively, the probabilities of changing of agricultural land into 

agricultural land in future dates reduced continuously to 16.52% and 15.85 % in 2030 and 

2050, respectively. On the other hand, the probabilities of changing of agricultural land into 

built up increased remarkably from 29.45% to 32.85 and 33.55 % in 2030 and 2050 

respectively. Markov transition probability matrices of changes among LULC for years 2030 
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and 2050 are given in Tables 7.8 and 7.9 respectively. It is notified through the quantitative 

and qualitative analysis of LULC maps of different years that there is rapid expansion of 

built up in Varanasi district of Uttar Pradesh, India which needs to be analyzed and modeled 

further. 

Table 7.7 Transition probabilities of changes among LULC for Markov chain (1988-2001) 

for year 2015 in MLP modeling 

LULC Class 
Agricultural 

land 

Dense 

Vegetation 

Sparse 

vegetation 

Fallow 

land 

Built 

up 

Water 

bodies 

Sand 

Agricultural land 0.1835 0.0751 0.3256 0.1145 0.2945 0.0065 0.0003 

Dense vegetation 0.3104 0.1650 0.4445 0.0405 0.0308 0.0087 0.0001 

Sparse vegetation 0.4041 0.1020 0.3702 0.0916 0.0255 0.0065 0.0001 

Fallow land 0.4127 0.0825 0.3328 0.1433 0.0082 0.0145 0.0060 

Built up  0.0289 0.0226 0.0451 0.0315 0.8546 0.0117 0.0056 

Water bodies 0.0663 0.0440 0.1433 0.0725 0.0178 0.5494 0.1067 

Sand 0.0523 0.0009 0.0547 0.1977 0.0009 0.2294 0.4641 

 

Table 7.8 Transition probabilities of changes among LULC for Markov chain (2001-2015) 

for year 2030 in MLP modeling 

LULC Class 
Agricultural 

land 

Dense 

vegetation 

Sparse 

vegetation 

Fallow 

land 

Built 

up 

Water 

bodies 

Sand 

Agricultural land 0.1652 0.0695 0.2967 0.1383 0.3285 0.0011 0.0007 

Dense vegetation 0.2892 0.1602 0.4312 0.0683 0.0475 0.0034 0.0002 

Sparse vegetation 0.3865 0.1051 0.3823 0.0927 0.0315 0.0017 0.0002 

Fallow land 0.4311 0.0465 0.3422 0.1563 0.0114 0.0057 0.0068 

Built up 0.0104 0.0118 0.0642 0.0281 0.8802 0.0038 0.0015 

Water bodies 0.0694 0.0312 0.1264 0.0779 0.0216 0.5603 0.1132 

Sand 0.0454 0.0001 0.0009 0.1708 0.0052 0.2129 0.5647 
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 Table 7.9 Transition probabilities of changes among LULC for Markov chain (2001-2015) 

for year 2050 in MLP modeling 

LULC Class 
Agricultural 

land 

Dense 

vegetation 

Sparse 

vegetation 

Fallow 

land 

Built 

up 

Water 

bodies 

Sand 

Agricultural land 0.1585 0.0759 0.2871 0.1421 0.3355 0.0007 0.0002 

Dense vegetation 0.2852 0.1682 0.4529 0.0528 0.0371 0.0037 0.0001 

Sparse vegetation 0.3952 0.1102 0.3916 0.0806 0.0205 0.0017 0.0002 

Fallow land 0.4356 0.0309 0.3353 0.1494 0.0372 0.0061 0.0055 

Built up 0.0248 0.0131 0.0504 0.0115 0.8953 0.0019 0.0030 

Water bodies 0.0549 0.0292 0.1197 0.0595 0.0379 0.5795 0.1193 

Sand 0.0496 0.0091 0.0062 0.1473 0.0108 0.2005 0.5765 

 

7.4.7 Validation and selection of model 

In this study, three MC-based hybrid models ST-MC, CA-MC and MLP-MC were used 

to predict future LULC scenarios. Three hybrid models were first compared to facilitate a 

valid prediction for future LULC scenario. The values of kappa index statistics for all three 

models are given in Table 7.10. It is clear from Table that Kno, Klocation, KlocationStrata and 

Kstandard  values for MLP-MC based predicted LULC map of 2015 are higher in comparison to 

that of CA-MC and ST-MC models. It is showing strong to perfect agreement between 

predicted and observed LULC maps because all values of kappa index statistics are greater 

than 0.80. The MLP-MC hybrid model provided the best results in comparison to other 

modeling methods for the study area. Finally, the future LULC scenarios were predicted 

quantitatively and spatially for 2030 and 2050 by better result providing MLP-MC model. 
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Table 7.10 Kappa index statistics for ST-MC, CA-MC, and MLP-MC based prediction 

results 

Agreement ST-MC CA-MC MLP-MC 

Kno 0.7835 0.8581 0.8860 

Klocation 0.7977 0.8684 0.8948 

KlocationStrata 0.7977 0.8684 0.8948 

Kstandard 0.7684 0.8302 0.8681 

 

7.4.8  Prediction and analysis of future LULC scenarios for 2030 and 2050 using MLP-

 MC model 

The LULC maps of 2001 and 2015 were used to predict the future LULC scenario for 

years 2030 and 2050 using MLP-MC model. By utilizing the LULC of 2015 as base map, 

transition potential maps, and the transition probability matrices of period 2001-2015, the 

future LULC scenarios were predicted for 2030 and 2050 as shown in Figure 7.9 (a, b). The 

resultant statistics of the area for various LULC classes are represented in Table 7.11. 

Table 7.11.Area distribution of LULC of predicted years 2030 and 2050 

LULC classes 

Predicted 2030 Predicted 2050 

Area 

 (km
2
) 

Area  

(%) 

Area 

(km
2
) 

Area  

(%) 

Agricultural land 893.93 58.32 859.86 56.09 

Dense vegetation 43.97 2.87 35.97 2.35 

Sparse vegetation 161.83 10.56 132.83 8.67 

Fallow land 185.86 12.12 205.86 13.43 

Built up 215.68 14.07 269.68 17.59 

Water bodies 20.76 1.35 18.76 1.22 

Sand 10.89 0.71 9.96 0.65 

Total Area 1532.91 100.00 1532.91 100.00 
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Figure 7.9 Predicted LULC maps of years (a) 2030, and (b) 2050 

 

The MLP-MC based prediction result for 2030 showed that, there will be slight 

decrease in agricultural land (from 59.35% in 2015 to 58.32% in 2030), dense vegetation 

(from 4.30% in 2015 to 2.87% in 2030), sparse vegetation (from 13.36% in 2015 to 10.56% 

in 2030) and fallow land (from 12.56% in 2015 to 12.12% in 2030). While increase in built 

up (from 8.06% in 2015 to 14.07% in 2030). Nevertheless, prediction result for 2050 showed 

that it would experience the decrease in agricultural land (from 59.35% in 2015 to 56.09% in 

2050), dense vegetation (from 4.30% in 2015 to 2.35% in 2050), and sparse vegetation (from 

13.36% in 2015 to 8.67% in 2050). While, increase in fallow land (from 12.56% in 2015 to 

13.43% in 2050) and built up (from 8.06% in 2015 to 17.59% in 2050). The overall loss of 

agricultural land and sparse vegetation occurred because of the rapid spreading of built up 

area. While slight changes were showed by other LULC classes during 1988-2050. These 
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results propose a worrisome change for the future scenario of the landscape of Varanasi 

district of Uttar Pradesh, India. Therefore, it deserves attention regarding sustainable 

management and development of the landscape. 

7.5 CONCLUSION 

In this study, a combined approach of satellite remote sensing images, GIS and 

prediction models was explored to understand the spatio-temporal dynamics of LULC and its 

future scenario in Varanasi district of Uttar Pradesh, India. For this purpose, LULC patterns 

were examined by using Landsat TM/ETM+/OLI images of respective years 1988, 2001 and 

2015. After that, the future LULC scenarios were predicted for 2015 using ST-MC, CA-MC 

and MLP-MC hybrid models respectively in the study area. The validation of prediction 

models was assessed using observed LULC map of 2015 with the help of kappa index 

statistics. Based on validation results, the MLP-MC model pointed out a descriptive 

capability of future prediction and found more appropriate in comparison to CA-MC and ST-

MC models.  

The prediction results for 2030 showed an increase of 92.20 km
2
 in built up whereas the 

slight decrease of 15.90 km
2
 in the agricultural land between 2015 and 2030. Furthermore, 

the prediction results for 2050 showed an increase of 146.20 km
2 

in built up whereas 

decrease of 49.97 km
2 

in agricultural land between 2015 and 2050. The analysis of LULCC 

between1988-2050 demonstrated that there is a vast increase in built up while a considerable 

reduction in agricultural land, dense vegetation and sparse vegetation. 

In this study, multiple simulation models were used to realize the future LULC 

prediction more accurately. Comparison of three different models enabled the recognition of 

prediction results using the better performing model for the study area. However, the 
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accuracy of prediction results is strongly related to many factors. Firstly, the accuracy of 

LULC maps and the prediction results are negatively affected by the moderate resolution of 

multi-temporal Landsat images. Second, it is assumed to have uniform transition probability 

in the Markov chain model. It is still not easy to include the unpredictable influence of other 

variables, like government policy or socioeconomic aspects. So, to achieve improved results, 

image quality should be increased, and new prediction models should be developed by 

incorporating more socio-economic and physical variables.  
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