
 
 

CHAPTER 5 

GEOGRAPHICALLY WEIGHTED METHOD FOR ANALYSIS OF 

SPATIAL VARIATION IN CLASSIFICATION ACCURACY 

 

5.1 INTRODUCTION 

In recent years, remote sensing images have been employed broadly to extract thematic 

information through digital image classification techniques. Assessing the accuracy of 

regional to global scale thematic maps derived from remote sensing is recognized as an 

essential requirement to support most of the mapping projects, scientific applications and 

policy decisions (Foody, 2002; Strahler et al., 2006). In remote sensing, the confusion matrix 

and its associated measures, such as OA, UA and PA have become the conventional 

paradigm for reporting the mapping accuracy (Congalton and Green, 1999). Descriptions of 

accuracy can help to appraise the uncertainties coupled with thematic data or to choose 

between thematic datasets when there is the immense accessibility of data with different 

thematic or spatial characteristics (See and Fritz, 2006). Therefore, accuracy is one of the 

leading features of any remote sensing data product. However, there are some restrictions 

associated with the paradigm of the confusion matrix. The global estimates of accuracy 

metrics are inadequate to express the overall quality of thematic maps, as these do not reflect 

the spatial distribution of errors over the image. It may not be appropriate for local sub-

regions, where error rates may be much larger or smaller than the global estimates (McGwire 

and Fisher, 2001; Foody, 2005). Several studies have reported different types of spatially 

distributed errors and methods to conquer this problem (Foody 2005; Steele et al., 1998; 

Riemann et al., 2010). The existing validation and accuracy assessment methods have been 

largely disregarded the advances supported by such methods by remote sensing community.     
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Therefore, the quality of thematic maps derived from remotely sensed data needs to be 

budgeted and requires improved methods or tools for estimating and describing the spatial 

distribution of errors in landscape mapping. A phenomenon differs across a landscape 

because of spatial non-stationarity or heterogeneity. This spatial variability restricts to 

employ any conventional global regression technique which assumes that the observations 

are independent of the spatial location. The use of conventional regression techniques e.g. 

Ordinary Least Square Regression (OLSR) lead to erroneous conclusions in spatial analysis 

and produces spatially autocorrelated residuals (LeSage and Pace, 2001). Alternatively, 

several local regression techniques have been suggested to address the challenges caused by 

spatial non-stationarity. One of the best recognized approaches for spatial regression is the 

GWR), a statistical technique that explicitly deals with spatial non-stationarity (Brunsdon et 

al., 1996; Fotheringham et al., 2002). GWR is a local regression technique allows for the 

computation of relationships among variables varying over geographical space 

(Fotheringham et al., 2002). It computes the local estimates of the regression coefficients for 

a moving geographic window or kernel at every location. Unlike conventional regression 

techniques which encapsulate the global relationship among the variables in a single 

regression equation, GWR creates spatially varying data for the relationships among 

variables. In several studies the better performance of GWR has been reported for various 

applications (Brunsdon et al., 1996; Leung et al., 2000; Zhang and Gove, 2005). 

The focus of our attention on GWR is motivated by numerous studies which have 

demonstrated its potential in the investigation of spatially varying relationships, including 

climatology (Brunsdon et al., 2001), health (Lin and Wen, 2011; Ehlkes et al., 2014), real 

estate management (Lu et al., 2014) and urban studies (Faisal and Shaker, 2017). GWR is 
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explored to investigate the spatial variation of the relationship between land cover and 

population change (Maimaitijiang et al., 2015). GWR can also be applied in combination 

with linear, logistic and poisson regression techniques for various applications. 

Geographically weighted poisson regression model is used for disease mapping (Ehlkes et 

al., 2014; Nakaya et al., 2005).
 
Lesive et al., (2016) explored geographically weighted 

logistic regression technique for the comparison of data fusion of different land cover 

products derived from remote sensing image. 

However, the application of GWR integrated with logistic regression for generating 

spatially varying accuracies of a heterogeneous landscape mapping using high resolution 

remote sensing image is still limited. This research aims to explore geographically weighted 

logistic regression method for estimating spatial variation in accuracy measures and compare 

it with a conventional global OLSR technique. It may be used in different disciplines for 

instance economics, environment, social and earth sciences, where improved understanding 

about the local behavior of parameter relations is needed. The consequences of present work 

may also be helpful for addressing long-standing gaps in the analysis and description of 

spatially explicit accuracy of thematic information of a heterogeneous landscape. 

5.2 STUDY SITE AND MATERIALS 

The study site for this work, extending from 82° 54′ 30″ to 83° 02′ 30″ E, and from 25° 

13′ 08″ to 25° 20′ 43″ N, covering a total area of 25327 ha. A remote sensing image acquired 

on 6 April 2013 from LISS-IV sensor satellite with high spatial resolution of 5.8 m was used 

in this study. It was classified into six major LULC classes such as agricultural land, 

vegetation, fallow land, built up, water bodies and sand according to the landscape of study 

site using random forest (RF) classifier (Breiman, 2001). The mapping and regression 
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analyses were implemented in an open source software R version 3.4.0 

(http://cran.rproject.org). The precise geolocation of validation data set was collected at 551 

locations by random sampling method with the help of a handheld GPS receiver (Trimble 

Juno 3B). The study area with the sample point locations are shown in Figure 5.1 as viewed 

on FCC of LISS-IV image. The OA was calculated from the diagonal and off-diagonal 

components while, UA and PA were calculated using the row and column totals in the 

confusion matrix.  

Figure 5.1 Location of the study site with the validation points (  ) as viewed on FCC of 

LISS-IV sensor image 

5.3 METHODOLOGY  

Regression analysis is the most commonly used statistics to examine and explore the 

spatial relationships among the variables. In spatial data analysis, several regression 



135 
 

techniques have been described and formulated over the years. The brief description of 

regression techniques used in this study is given as: 

5.3.1 OLSR 

OLSR is a generalized linear regression technique. It may be applied to single or 

multiple explanatory variables. This regression technique estimates the coefficients by using 

ordinary least squares.  

Given a set of  n  k = 1,2, … . , n  observations on p  g = 1,2, … . , p  independent variables 

X, and a dependent variable Y, the relationship between Y and X can be regressed using OLS 

as 

Yi = β0 + β1Xi + εi                                                                                                                              5.1  

where i = 1 … . . n 

The error term or residual εi and parameters β
0
, β

1
 are to be estimated. The OLS estimate of 

β is obtained by Equation given as: 

β =  XTX −1XTY                                                                                                                                 5.2  

where β  is the vector of estimated parameters, X is the matrix of independent variables 

preceded by a vector of 1s, Y is the vector of n observed values of dependent variables, 

 XTX −1 is the inverse of variance-covariance matrix, T is transpose of a matrix.  

Since the weights can also be included in OLS estimator and placed in the diagonal of a 

square matrix. The weight of  ith  observation is  wi  and W is the matrix with  wi  weights on 

its diagonal. The estimator with the weights are shown in Equation (5.3) 

β =  XTWX −1XTY                                                                                                                             5.3  
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5.3.2 GWR 

GWR is a spatial statistical technique which extends the framework of conventional 

regression statistics by revising a globally defined model as a locally estimated model. It 

enables meaningful analysis in modeling spatially heterogeneous processes (Fotheringham et 

al., 2002). In contrast to global regression, the coefficients in GWR are functions of varying 

spatial location. The general form of a basic GWR model is given by (Fotheringham et al., 

2002) and can be written as: 

yi = βi0 +  βik xik + εi 

m

k=1

                                                                                                                 5.4  

where, yi  is the dependent variable at location i; xik  is the independent variable k at location 

i; m is the number of independent variables; βi0 is the intercept parameter at location i; βik  is 

the is the local regression coefficient for the kth independent variable at location i; and εi  is 

the random error at location i. The coefficients in GWR differ continuously across the study 

landscape. A set of coefficients can be estimated at any location by the given dependent 

variable and one or more independent variables which have been measured at the spatial 

location with known coordinates. For a given coordinates (ui , vi) at the location i, GWR 

Equation can also be expressed as: 

yi = β0 ui , vi +  βk uivi xik + εi    

m

k=1

                                                                                         5.5  

GWR determines the implicit relationships around each regression point i, where all the 

regression coefficients is estimated by weighted least squares approach, for which the matrix 

expression is given as:    
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β i =  XTW uivi X −1XTW uivi Y                                                                                                 (5.6) 

where X is the matrix of independent variables; β i =  βi0, … . βim  T is the vector of m+1 local 

regression coefficients; and W ui , vi  is the n by n weighting matrix whose diagonal elements 

are indicating geographical weights of each observation for regression point and off-diagonal 

elements are zero. It can be expressed as:  

 

wi1 0 … 0
0 wi2 … 0
⋮
0

⋮
0

⋮   
     …  wi3

                                                                                                                  (5.7) 

The weighting system Wi is calculated via a kernel function from proximities between 

regression point i and the N data points around it. In this study, a Gaussian kernel is specified 

and can be given as: 

Gaussian ∶  wij = exp  −
1

2
 

dij

b
 

2

                                                                                               (5.8) 

where dij  is the distance between regression point i and observation point j and b is the kernel 

bandwidth.  

An optimal bandwidth can be selected normally using goodness-of-fit measure. In this 

work, the cross-validation (CV) approach (Bowman, 1984) was used in which bandwidth is 

selected by minimizing the CV score. The CV score is calculated by  

CV =   yi − y i≠i 
2

n

i=1

                                                                                                                        (5.9)  

where n is the number of observations, and observation i is omitted from the calculation so 

that in areas of sparse observations the model is not calibrated solely on i. 
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5.3.3 GWLR 

Since, the presence or absence of a specific land cover category is a binary outcome 

(1/0, Yes/No, True/False). Therefore, a powerful analytical technique namely logistic 

regression or logit model is used (Peng et al., 2002). The logit function is defined by 

logit pi = ln  
pi

1 − pi
                                                                                                                    (5.10) 

Logistic models provide a probability ranging from 0 to 1, representing the correct 

prediction of a land cover category. When it is used in combination with GWR, it allows for 

the spatially varying local estimation of correctly classified and incorrectly classified land 

cover categories. When the response variable is binary, GWR should be applied via 

geographically weighted logistic regression (GWLR). It is applied to examine how the 

classification accuracy varied across geographical space. GWLR is the geographically 

weighted extension to the logistic regression model. It is similar in form to ordinary 

regression, but geographically weighted techniques use a moving window or kernel under 

which local regression models are computed at locations all over the study region. The GWR 

Equation (5.4) can be extended to GLWR with the help of a logit function in the following 

way: 

ln  
pi

1 − pi
 = β0 ui , vi +  βk uivi Xik + εi    

m

k=1

                                                                    (5.11) 

or it may be written in the following way: 

pi =
eβ0 ui ,v i + βk  ui v i xik    m

k =1

1 + eβ0 ui ,v i + βk  ui v i xik    m
k =1

                                                                                               (5.12) 

where  pi is probability of prediction at location i, and other terms are same as in Equation 

(5.4). 
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Spatially varying accuracy measures were estimated by applying GWLR which 

compares the validation and classified data. GWLR was applied to model the relationship 

between the random forest classifier based class and the class from the validation data by 

logistic transformation given as: 

ln  
P Oi = 1 

1 − P Oi = 1 
 = β0 ui ,v i 

                                                                                                     (5.13) 

ln  
P yi = 1 

1 − P yi = 1 
 = β0 ui ,v i 

+ β1x1 ui ,v i 
                                                                               (5.14) 

ln  
P xi = 1 

1 − P xi = 1 
 = β0 ui ,v i 

+ β1y1 ui ,v i 
                                                                               (5.15) 

where  P Oi = 1 , P yi = 1  and P xi = 1  are the probabilities of OA, UA and PA 

respectively at location i.  β0 is the intercept, β1 is the slope and  ui , vi  is the two-

dimensional co-ordinates representing the location of i. The coefficients in GWLR are 

permitted to vary across the two-dimensional geographical space characterized by the 

coordinates (u, v) within the study region. 

5.3.4 Comparison of OLSR and GWLR  

To compare the model performance between GWLR and OLSR the statistical 

parameters namely adjusted squared correlation coefficient (R
2
), Residual sum of squares 

(RSS) and Akaike Information Criterion (AIC) were employed. The R
2
 measures the 

goodness of fit and varies from 0 to 1. It is likely to be higher when more variance is 

explained by the dependent variable. The lower AIC value describes the stronger ability of 

the regression technique to reflect reality. The RSS is used to measure the quantity 

of variance in the data set that is not explained by the regression technique. It computes the 

amount of error remaining between the regression function and data set. A small RSS 
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signifies a robust fit of the model and explains a larger amount of the data. Better 

performance of regression technique is indicated by getting higher R
2
 value with lower RSS 

and AIC values.   

5.4 RESULTS 

A standard confusion matrix was constructed to calculate UA, PA and OA using 

validation dataset (Table 5.1). At the same time, it is evident that some classes are classified 

more presumably than the others. Also, the table does not provide information about the 

spatial distribution of errors associated with different landscape classes. The GWLR was 

applied to examine the spatial variation in the relationship between data classified from the 

remote sensing image and the reference data collected through field survey. Table 5.2 

illustrates the spatial distribution of accuracy measures (UA, PA and OA) for each landscape 

category in terms of minimum, median, maximum, 1st and 3rd quartiles along with the inter-

quartile range (IQR). The IQR is described as a representative metric of the overall spatial 

variation in accuracy measures.  

The larger IQR values signify the greater spatial variation (Comber et al., 2012). It also 

exhibits the extent to which the observed reference data (ground truth) are inferred by the 

predicted data (from remote sensing image), and the variation in GWLR method. The IQR is 

described as a representative metric of the overall spatial variation in accuracy measures. The 

IQR values of UA, PA and OA for various landscape categories are listed in Table 5.2. 
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Table 5.1 Confusion matrix comparing reference and classified landscape categories, 

showing 87.48% overall agreement 

    Reference     

Classified Sand Vegetation Water 

bodies 

Agricultural 

land 

Fallow 

land 

Built 

up 

Row 

total 

UA 

Sand 19 0 0 0 5 10 34 0.559 

Vegetation 0 100 1 9 0 0 110 0.909 

Water bodies 0 0 91 0 0 0 91 1.000 

Agricultural land 0 8 0 101 0 0 109 0.927 

Fallow land 0 0 0 0 78 14 92 0.848 

Built up 1 1 8 5 7 93 115 0.809 

Column total 20 109 100 115 90 117 551  

PA 0.950 0.917 0.910 0.878 0.867 0.795   

OA 0.875 

Kc 0.846 

 

Table 5.2 Summary of the variation in GWLR representing UA, PA and OA for various 

landscape categories. IQR indicates the variability in probability among pixels. 1
st
 and 3

rd
 

quartiles represent the 25
th

 and 75
th

 percentile probabilities 

Categories  Min. 1
St

 Quartile Median Mean 3
rd

 Quartile Max. IQR 

Agricultural 

land 

UA 0.015 0.800 0.999 0.851 1.000 1.000 0.200 

PA 0.533 0.793 0.896 0.875 0.972 0.998 0.179 

OA 0.004 0.644 0.807 0.751 0.976 1.000 0.333 

Vegetation 

UA 0.627 0.872 0.955 0.921 0.995 1.000 0.124 

PA 0.377 0.882 0.995 0.922 1.000 1.000 0.119 

OA 0.343 0.780  0.911 0.859 0.979 1.000 0.199 

Fallow land 

UA 0.041 0.802 0.997 0.874 1.000 1.000 0.198 

PA 0.381 0.779 0.879 0.857 0.967 1.000 0.188 

OA 0.017 0.636 0.874 0.782 0.995 1.000 0.359 
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Built up 

UA 0.271 0.741 0.880 0.845 0.975 1.000 0.234 

PA 0.095 0.724 0.861 0.823 0.980 1.000 0.256 

OA 0.069 0.580 0.717 0.724 0.918 0.998 0.338 

Water bodies 

UA 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

PA 0.530 0.866 0.973 0.923 0.999 1.000 0.133 

OA 0.530 0.866 0.977 0.923 0.999 1.000 0.133 

Sand 

UA 0.000 0.002 0.374 0.381 0.737 0.932 0.735 

PA 0.494 0.990 1.000 0.944 1.000 1.000 0.010 

OA 0.000 0.000 0.008 0.308 0.721 1.000 0.721 

 

For agricultural land, OA was found to vary from 0.004 to 1.000 in different parts of 

the study area in comparison to a global figure of 0.875. While, UA was found to vary from 

0.015 to 1.000 as compared to a global figure of 0.927 and PA was found to vary from 0.533 

to 0.998 as compared to a global figure of 0.878 across the study area. For vegetation, OA 

was found to vary from 0.343 to 1.000 in different parts of the study area in comparison to a 

global figure of 0.875. While, UA was found to vary from 0.627 to 1.000 as compared to a 

global figure of 0.909 and PA was found to vary from 0.377 to 1.000 compared to a global 

figure of 0.917 across the study area. For fallow land, OA was found to vary from 0.017 to 

1.000 in different parts of the study area in comparison to a global figure of 0.875. While, 

UA was found to vary from 0.041 to 1.000 compared to a global figure of 0.848 and PA was 

found to vary from 0.381 to 1.000 compared to a global figure of 0.867 across the study area. 

For built up, OA was found to vary from 0.069 to 0.998 in different parts of the study area in 

comparison to a global figure of 0.875. While, UA was found to vary from 0.271 to 1.000 

compared to a global figure of 0.809 and PA was found to vary from 0.095 to 1.000 

compared to a global figure of 0.795 across the study area. For water bodies, OA was found 

to vary from 0.530 to 1.000 in different parts of the study area in comparison to a global 
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figure of 0.875. While, UA was found to vary from 1.000 to 1.000 compared to a global 

figure of 1.000 and PA was found to vary from 0.530 to 1.000 compared to a global figure of 

0.910 across the study area. For sand, OA was found to vary from 0.000 to 1.000 in different 

parts of the study area in comparison to a global figure of 0.875. While, UA was found to 

vary from 0.000 to 0.932 compared to a global figure of 0.559 and PA was found to vary 

from 0.494 to 0.010 compared to a global figure of 0.950 across the study area. In the context 

of UA, the sand class exhibited larger while, the water bodies exhibited smaller spatial 

variation. In the context of PA, the built up class exhibited larger while, the sand class 

exhibited smaller spatial variation. It is remarkable to note that the distribution of UA 

estimates reveals much larger variation followed by the moderate variation in the distribution 

of OA estimates, whereas smaller variation was observed in the distribution of PA estimates. 

The visual representation of spatial variations in UA, PA and OA are shown in Figures 5.2, 

5.3 and 5.4 respectively.  

Figure 5.2 GWLR based maps of spatial variation in UA of landscape categories 



144 
 

 

Figure 5.3 GWLR based maps of spatial variation in PA of landscape categories 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 GWLR based maps of spatial variation in OA of landscape categories 



145 
 

Note: The legend values in figures represent the probability of the presence of the correct 

category. Yellow circles represent locations correctly classified. Red circles represent 

locations incorrectly classified as given category (commission error). Black circles represent 

locations incorrectly classified to other categories (omission error). 

For major landscape category i.e. agricultural land, the UA and PA are higher in the 

southern and lower towards the northern parts of the study area (Figures 5.2 (a) and 5.3 (a)). 

Figure 5.3 (a) shows that there is higher variation in the estimates of PA of agricultural land, 

but there is a trend of marginally higher variation towards the northern part of the study area. 

Figure 5.4 (a) shows that the OA for agricultural land is found to be higher in the southern 

and lower towards the northern parts of the study area. Figure 5.2 (d) shows that the UA for 

other major landscape category built up is higher in the middle and lower in the south-east 

parts of the study area. Figure 5.3 (d) shows that the PA for built up is higher in the middle 

and lower in the western parts of the study area. Figure 5.4 (d) shows that the OA for built up 

category is found to be higher in the middle and lower in the south-east and western parts of 

the study area. Other landscape categories are also showing spatial variation in the accuracy 

measures (Figure 5.2-5.4). The UA is the estimation of the probability that a classified pixel 

correctly represents the categories on the ground. It shows the commission error (inclusion) 

and for the user of the map it signifies the probability of locating that class on the ground 

correctly. Here, Figure 5.2 (a) would suggest less confidence in areas mapped as agricultural 

land actually being that class on the ground. Also, Figure 5.2 (d) would suggest less 

confidence in areas mapped as built up actually being that class on the ground. The PA is the 

estimation of the probability that a reference pixel is correctly identified in the classified 

data. It shows the omission error (exclusion) and for the producer of the map, it signifies the 
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probability that the classes of interest are omitted from the classified data. Therefore, it is 

convinced that most of the agricultural land that exists has been mapped with low omission 

error. However, there are high levels of commission errors in the northern part of the study 

area as well. In the case of built up category, it is convinced that most of the class of interest 

exists has been mapped with low omission error. However, there are high levels of 

commission errors in the south-east part of the study area as well.  

The performance of estimating spatial variation in overall accuracies was compared 

using OLSR and GWLR for different landscape categories. As can be seen from Table 5.3, 

the GWLR produced relatively lower AIC and RSS values as compared to OLSR, which 

indicated a better fit to the observed data. While higher R
2
 values for GWLR in comparison 

to OLSR showed that more variance is explained for the dependent variable. The detailed 

information is shown in Table 5.3. Overall, the performance of GWLR technique was found 

to be better in comparison to OLSR for estimation of spatially varying accuracy of landscape 

mapping.  

Table 5.3 Comparison of GWLR and OLSR techniques for estimating spatial variation in 

overall accuracies of various landscape categories 

L
an

d
sc

ap
e 

ca
te

g
o
ri

es
 

Model GWLR OLSR 

Parameters Adjusted R
2
 RSS AIC Adjusted R

2
 RSS AIC 

Agricultural land 0.241 11.81 64.81 0.077 18.07 117.12 

Vegetation 0.179 10.48 52.55 0.097 15.97 102.68 

Fallow land 0.450 7.64 27.62 0.011 19.50 125.05 

Built up 0.197 19.52 125.57 0.032 30.78 188.89 

Water bodies 0.155 6.08 7.71 0.049 8.19 37.56 

Sand 0.647 1.65 -3.68 0.075 8.69 54.55 
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5.5 DISCUSSION 

The confusion matrix is a convenient way to summarize errors of landscape mapping, 

but it is aspatial in nature. In landscape mapping with comparatively high accuracy, it may 

not be necessarily applicable to map spatially varying local accuracy. However, a spatial 

representation could be beneficial for landscape mapping in low accuracy or problematic 

categories having poor accuracy. Geographical analyses can be used to understand how and 

why processes vary spatially. The locational attributes of data are used explicitly to recognize 

local variations in relationships. It is not similar as analyzing spatial data in itself under the 

hypothesis that it represents a spatial analysis as the data are spatial in nature. In remote 

sensing community, it is confusing to implement spatially explicit approach because error 

cluster of land cover features are well identified for a variety of well-reported causes. 

Therefore, it is needed to evaluate the local error frequently by familiar visual and qualitative 

techniques (Friedl et al., 2002). This work demonstrates how the logistic regression can be 

used to produce probabilities of accuracy measures, and the ability of their geographically 

weighted extension to generate spatial distributions that illustrate the variation of these 

probabilities. The remote sensing society is perhaps well known with the concepts of OA, PA 

and UA and the method proposed here may better reflect their needs. 

This study does not attempt to overcome all of the limitations associated with the 

confusion matrix. Rather, this study investigated spatially explicit methods for describing 

accuracy using geographically weighted methods to identify spatially varying relationship 

between classified and reference data. The capability to estimate spatially explicit accuracy 

measures and errors from data collected as part of standard validation work out, recommends 

that the maps of the distribution of accuracy could assist confusion matrices. Geographically 
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weighted methods can be used to produce spatially explicit outputs which point out the 

potential advantages of incorporating the results of any validation exercise along with the 

remote sensing data based land cover product. Finally, the method proposed in this study 

addresses one of the fundamental beliefs of geographical analyses that the process under 

examination varies over space continuously.  

 5.6 CONCLUSION 

The geographically weighted technique was used to describe the spatial variation of 

accuracy by random forest classification using high resolution remote sensing data. It 

addresses major concerns in the analysis and description of accuracy and errors associated 

with heterogeneous landscape mapping. It also provides a better understanding of non-

stationarity in landscape errors which frequently vary by analyzing its spatial distribution. 

This work shows how logistic regression can be applied to produce probabilities such as UA, 

PA and OA and the ability of its geographically weighted extensions to generate spatial 

distributions describing the variation of these probabilities. This study also compared the 

performance of GWLR with conventional OLSR technique. The investigation showed better 

performance of GWLR in estimating spatially varying accuracy measures compared to 

OLSR. Finally, spatially explicit accuracy measures are more informative and precise 

because they are spatial and offer better support for assessments of data accuracy than the 

confusion matrix based global measures. The results of this work suggest that there is a need 

to reconsider the tenets of accuracy and errors associated with remote sensing. 

 

 

 


