
 
 

CHAPTER 4 

DUAL POLARIMETRIC SAR DATA AT C-BAND FOR RICE CROP 

MAPPING USING DECISION TREE METHOD  

 

4.1 INTRODUCTION 

Rice (Oryza sativa) is one of the staple food grains in the world. India is one of the 

major rice-growing nations and accounts for one-fourth of the global rice area and produces 

approximately 125 million tons/year, with low yields of around 2.85 t/ha (Siddiq, 2000). 

India has undergone considerable economic development with intense urbanization and rapid 

spread in the population at the cost of reduced agricultural land. For such region, demand for 

higher rice production in decreased arable land is becoming a critical topic. A significant 

increase in the rice production is the only way to ensure the stable food production and 

security.  

Access to timely, accurate and reliable data on rice crop distribution and its conditions 

provide information to decision-makers on sustainable food security, management of water 

resources and the environment. Satellite remote sensing provides a time saving and 

influential approach for monitoring agricultural area and other land cover features 

(Bastiaanssen et al., 2000; Thenkabail et al., 2007; Gumma et al., 2015, Jin et al., 2016; 

Mishra and Rai, 2016). Optical remote sensing is a viable approach to map rice growing 

areas effectively at regional and global levels because of its potential for large-area coverage 

and repeated observations (Fang, 1998; Xiao et al., 2004; Qin et al., 2015; Jin et al., 2016). 

Since most of the rice grows in rainy and cloudy regions, it is immensely difficult to attain 

cloud free optical images during critical rice growing seasons. 
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The emergence of spaceborne Synthetic Aperture Radar (SAR), with the advantages of 

all-weather, day and night imaging abilities, has drawn a lot of attention in remote sensing 

community for rice crop studies. The acquisition ability of SAR sensors at multiple 

frequencies and polarizations are ideal for mapping rice crop fields and understanding its 

backscattering response at various growth stages. In many studies, C-band polarimetric SAR 

images have been used effectively for mapping and monitoring of rice crop (Shao et al., 

2001; Park and Chi, 2008; Nguyen et al., 2016; Kumar et al., 2016; Zeyada et al., 2016). In 

spite of the high potential of SAR data, its application has been restricted mainly by its 

availability. In last few decades, many spaceborne SAR systems have been launched like 

ERS- 1/2 in 1991 and 1995, JERS-1 in 1992, ENVISAT-ASAR in 2002, RADARSAT-1/2 in 

1995 and 2007 and ALOS-PALSAR in 2006. But these sensors did not include the 

acquisition plan for regular regional observations. Therefore, SAR data provided by these 

sensors could not be used efficiently for mapping and monitoring of the rice crop in some 

regions. The launch of first Indian space-borne hybrid polarimetric SAR system Radar 

Imaging Satellite-1 (RISAT-1) by the Indian Space Research Organization (ISRO) in April 

2012 brought more opportunities for the mapping and monitoring of rice crop (Gumma et al., 

2015; Uppala et al., 2015). It carries a hybrid polarimetric SAR payload operating at C-band 

that supports right circular transmit and CoherenT Linear Receive (CTLR) mode as well to 

other standard modes. The imaging capability of RISAT-1 in HH, HV, VH, VV and circular 

polarizations ensured its broad aptness. Depending on different modes, RISAT-1 acquires 

data at various spatial resolution and swath (Misra et al., 2013; Valarmathi et al., 2013). The 

coupling of these noticeable features with regional observation plan makes RISAT-1 data 

very attractive for reliable image classification and appraisal of other agricultural practices 
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(Chakraborty et al., 2013; Kumar et al., 2016; Uppala et al., 2016). In some of the 

applications (classification cases), SAR images have better performance in comparison with 

optical images (Shao et al. 2001; Tan et al. 2007). Sometimes, SAR images cannot provide 

adequate mapping accuracy due to inherent speckle noise. The accuracy of rice crop mapping 

is also influenced by the similar backscattering responses of different land cover features 

(Okamoto and Kawashima, 1999). 

The selection of a proper model or classification algorithm is always very vital for 

successful and accurate mapping of the rice crop and other land cover features. In spite of 

many studies in the field of SAR image classification; there are some specific limitations in 

each classification methods (Benediktsson et al., 1990; Mohammady et al., 2014). In addition 

to being widely used, supervised classification algorithms have some limitations. They are 

applied to the individual pixel level or image objects because of single discriminative nature. 

The selection of training data requires an extensive knowledge of the area and time. Also, 

supervised algorithms are incapable of identifying and characterizing unique classes not 

represented in training data. Unsupervised classification algorithms also have certain 

limitations. The natural grouping obtained by iterations in classifier does not essentially 

correspond adequately to desired informational classes. An analyst also has limited control 

over the classes selected during the classification process (Mishra et al., 2011). Thus to 

facilitate with more accurate results, it is beneficial to choose advanced classifiers inspired 

from machine learning theory. Therefore, a non-parametric approach that can train rapidly 

with its ability to handle large data sets from numeric and non-numeric sources is a good 

alternative. In recent years, self-learning Decision Tree (DT) classifiers have been used 

considerably for remote sensing image classification (Pal and Mather, 2003, Punia et al., 
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2011; Aimaiti et al., 2016). The potential of DT classifiers for fruitful and accurate rice crop 

mapping is reported by many researchers (Choudhury and Chakraborty, 2006; Kumar et al., 

2016; Nguyen et al., 2016; Zeyada et al., 2016). DT classifiers are computationally efficient 

and offer advantages such as flexibility, inherent simplicity, the capability to handle noisy 

and missing data (Friedl and Brodley, 1997; Aimaiti et al., 2016). Besides, it does not require 

probability distribution function of the data and is able to process large non-parametric 

datasets including both continuous and categorical data (Zambon et al., 2006). DT classifiers 

utilize recursive partitioning based on a variety of splitting rules to partition input dataset into 

categorical classes. So, DT classifier was adopted in this study for getting better accuracy in 

mapping rice crop and other land cover features. 

In the context of above discussion, the objective of this study is to test the accuracy and 

validity of rice crop mapping using DT approach with medium resolution RISAT-1 image. 

Firstly, the backscattering response of rice crop and other land cover features for various 

polarizations were computed and examined. The DT classifier is then employed to map 

different land cover features, especially rice crop fields. The mapping accuracy of rice crop 

fields is finally validated with the rice crop fields extracted from Landsat 8-OLI image and 

ground reality in the study area. Limited comparative studies have been conducted using dual 

polarimetric RISAT-1 and multispectral Landsat-8 OLI images for mapping rice crop 

distribution. The approach used in this study is expected to provide an accurate and rapid 

mapping of rice cultivated regions. The method can also be exploited for cost-effective 

monitoring of rice crop and efficient yield prediction to ensure food production. 
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4.2 STUDY AREA 

The study area for the present work is located in Varanasi district of Uttar Pradesh, 

India. It covers a total area of 35458.70 ha with center latitude 25°17′20.81″ N and longitude 

82°58′39.10″ E (Figure 4.1). This land is very productive and agriculturally rich due to its 

location in the Indo-Gangetic plain. In this region, Rice is a dominant crop for the period of 

Kharif season. In addition to rice crop, the other crops like maize, sorghum, pigeon pea, pearl 

millet, etc. were also grown. 

Figure 4.1 Location map of the study area as viewed on RISAT-1 Hybrid FCC image (Red-

HH, Green-HV, Blue-HH-HV) 
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4.3 MATERIALS AND METHODOLOGY 

4.3.1 Collection of satellite images and ground truth information 

In this study, Medium-Resolution ScanSAR (MRS) mode RISAT-1 data at C-band with 

dual polarizations HH and HV was used to map the spatial distribution of rice crop. Only 

intensity images of HH and HV polarizations were available and used for the present study. 

The SAR data employed in this work was acquired on 3 September 2013. Alternatively, 

Landsat 8-OLI data was used to compare the output from RISAT-1 and evaluate the accuracy 

of rice crop mapping. The nearest available Landsat-8 OLI image was acquired on 6 

September 2013. Only B2 to B7 of OLI sensor was used in this study. The specifications of 

RISAT-1 SAR and Landsat 8-OLI optical data are listed in Table 1.1. The study location was 

visited to collect ground truth information of target land cover features using a hand held 

GPS receiver.  

4.3.2 Preprocessing of satellite images 

4.3.2.1 RISAT-1 image 

The RISAT-1 image was processed by ENVI-SARscape (v 5.1) image processing 

software. The RISAT-1 image was multi-looked 2 times in azimuth and 1 time in the range 

direction. The backscattering coefficient (σ°) was computed by using the Equation (2.1). 

The speckles present in SAR images lead to degrading its quality. Therefore, it is 

requisite to reduce speckles before any further analysis of SAR images. In this study, 

different speckle filters namely mean, median, mode, Lee and Frost with window sizes of 

3×3, 5×5, 7×7 and 9×9 were employed to reduce the speckles present in the RISAT-1 image. 
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The Speckle Suppression Index (SSI) was used to identify suitable filtering algorithm. 

This index is likely to be less than 1 and the lower SSI values indicate better performance of 

speckle filtering algorithm (Sheng and Xia, 1996). The equation of SSI is given as follows: 

 SSI =
 variance If 

mean  If 
×

mean  Io 

 variance  Io 
                                                                                      (4.1) 

where If = filtered image and Io = noisy image 

The sigma naught (σ°) RISAT-1 image was geometrically corrected and spatially 

referenced to UTM projection system (Zone 44, North) with datum WGS 84 using 

georectified Landsat-8 OLI image using 15 equally distributed ground control points. A 

second-order polynomial equation was used, resulting in the RMSE of 1.06 pixels in both x 

and y directions. 

It is valuable to use other composite images for the purpose of land cover classification 

(Miettinen and Liew, 2011; Wu et al., 2011). It can be produced by taking the ratio of HH 

and HV (Ratio = HH/HV) and the difference between HH and HV (Difference = HH-HV). 

The hybrid False Color Composite (FCC) image of HH, HV, and the difference image is 

shown in Figure 4.1. 

4.3.2.1.1 Regions of interest for training and validation of classification algorithm 

The present study was mainly focused on rice crop mapping. The samples were divided 

into four major land cover categories: rice, vegetation, built up and water bodies. The ROIs 

were primarily created with the help of field knowledge and high spatial resolution Google 

Earth images for training and validation of classification algorithm. The individual ROI 

polygons of land cover features were created in the middle of individual patches and well 

distributed over the study area. Training and validation ROIs were attained by random 
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selection of these ROIs. In total, 70% of the samples were randomly selected as the training 

samples, whereas 30% were used as the validation samples. The collection of training ROIs 

are depicted on Landsat 8-OLI image (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The ROIs used for training 

 

4.3.2.1.2 Backscattering response analyses of rice crop and other land cover features 

It is obligatory to understand the backscattering response of different land cover 

categories to achieve desired classification results. Microwave backscattering response is 

strongly affected by several factors such as polarization, frequency, surface roughness, 

geometric nature and dielectric properties of the target land cover features. For 

discriminating rice crop from other land cover features, the mean and Standard Deviation 
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(SD) of ROIs using the HH, HV, ratio and difference images were computed and are 

illustrated in Figure 4.3. The lowest backscatter values were shown by water bodies in both 

HH and HV polarizations because of specular reflection. Conversely, highest backscatter 

values were shown in the ratio and difference images. Therefore, water bodies can be 

identified effortlessly in respect to other land features. For HH polarization, rice crop 

backscatter value was found between vegetation and built up however; it was found close to 

each other at HV polarization. The variation in backscatter values of the rice crop and 

vegetation for difference (HH-HV) image was found higher than that of ratio (HH/HV) 

image. For ratio image, there was less variation in backscatter values of various land cover 

features in comparison to that of the difference image.  

Figure 4.3 Comparison between statistical values of different land cover features using HH, 

HV, ratio, and difference images 

Further, the histogram analysis of HH, HV, ratio and difference images were also 

performed for different land cover features to understand characteristics of various 

polarizations. Other than visual inspection of the histograms, a separability analysis was also 
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performed. The backscattering coefficients (σ°) of all polarizations for rice, vegetation, built 

up and water bodies were calculated. Since, each class signifies specific scattering behavior, 

decision boundaries are made from the knowledge acquired by the analysis of scattering 

behavior of each land cover features. In order to construct decision boundaries for the 

separation of different land cover features, a simple measure was calculated to compare the 

statistical separability of different land cover features by individual polarization data (Wu et 

al. 2011). The measure, known as separability index for class pair separation, is given as 

Sij =
 μi − μj 

ςi + ςj
                                                                                                                                     (4.2) 

where μi , μj  and ςi , ςj are the means and standard deviations of classes i and j, respectively. 

Higher values of Sij  represent better separability between the two classes. The value of Sij , 

lies between 0.8 and 1.5, signifies a useful feature for separation of two classes i and j. 

Values greater than 2.0 represent the feature for almost complete separation of class pairs.  

4.3.2.2 Landsat 8-OLI image 

Landsat 8-OLI image was first processed for atmospheric correction and converted into 

the top of atmosphere (TOA) reflectance in ENVI image processing software 

(http://landsat.usgs.gov/ documents/Landsat8DataUsersHandbook.pdf). The OLI bands were 

converted into the TOA planetary reflectance using reflectance rescaling coefficients given in 

the product specific metadata file (MTL file). The DN values were converted into TOA 

planetary reflectance for OLI image using the Equation given as:   

ρλ′ = MρQcal + Aρ                                                                                                                          (4.3) 

where ρλ′ = TOA planetary reflectance (with no correction for solar angle), Mρ= Band 

specific multiplicative rescaling factor from the metadata, Aρ  = Band specific additive 
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rescaling factor from the metadata, and Qcal  = the quantized and calibrated standard product 

pixel values (DN). 

TOA reflectance with correction for the sun angle is the given by the Equation: 

ρλ =
ρλ′

sin θSE  
                                                                                                                                     (4.4) 

where ρλ = TOA planetary reflectance, ρλ′ = TOA planetary reflectance (with no correction 

for solar angle), and θSE  = the local sun elevation angle is given in the metadata file. 

Since, different vegetation indices exhibit different characteristics for distinguishing 

rice crop from other land cover features. Two vegetation indices namely, normalized 

difference vegetation index (NDVI) (Tucker, 1979), enhanced vegetation index (EVI) (Huete 

et al., 2002; Xiao et al., 2004) and land surface water index (LSWI) (Xiao et al., 2004) were 

calculated using the TOA reflectance (ρ) from B1 (blue), B3 (red), B4 (NIR), and B5 

(SWIR1) bands.   

NDVI =
ρNIR − ρred

ρNIR + ρred
                                                                                                                          4.5  

EVI = G ×
ρNIR − ρred

ρNIR + C1 × ρred − C2 × ρblue + L
                                                                          (4.6)  

LSWI =
ρNIR − ρSWIR 1

ρNIR + ρSWIR 1
                                                                                                                   (4.7)  

EVI requires blue band in combination with the red band to decrease atmospheric 

infectivity and also includes a soil background adjustment factor L. The values of 

coefficients C1, C2, and L were 6.0, 7.5, and 1.0, respectively. The value of a gain factor G 

was taken 2.5 (Huete et al., 2002).  

The rice crop shows unique features during the ripening phase from late August to late 

September. Therefore, the indices LSWI, NDVI, and (NDVI + EVI)/2-LSWI can be used to 
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map rice crop fields (Jin et al. 2016). Firstly, homogenous and well distributed ROIs were 

visually interpreted and digitalized on the Landsat FCC image of LSWI, NDVI, and (NDVI + 

EVI)/2-LSWI for rice and other land cover features. A statistical separability index of 

different land cover features was calculated using equation (4.2).  

4.3.3 QUEST DT algorithm for rice crop mapping  

In this study, QUEST (Quick, Unbiased, Efficient, Statistical Tree) DT algorithm 

developed by Loh and Shih (1997) was used to delineate the rice cultivated areas from the 

dual polarimetric RISAT-1 image. For assessing the mapping accuracy of the dual 

polarimetric RISAT-1 image, the same classifier was used to classify Landsat-8 OLI image.   

QUEST is a tree-structured binary split algorithm for classification and data mining 

(Chou et al., 2012). It is a nonparametric algorithm for automatic construction of decisions 

by creating splits without including additional user‟s interference. It yields a binary decision 

tree growing process including selection of a split variable, selection of a split point for the 

selected variable, and stopping. It also employs imputation instead of substitute splits to deal 

with missing values. QUEST is a computationally simple and rapid algorithm attributing an 

unbiased variable selection (Loh and Shih, 1997). This is accomplished by using two-step 

procedure for the generation of a DT. Initially, the split variable was selected followed by the 

split point calculation. It employs the ANalysis Of VAriance (ANOVA) F-statistic for 

selecting the variable and a modified Quadratic Discriminant Analysis (QDA) for split point 

selection from training data (Loh and Shih, 1997). In this type of analysis, the classification 

process was separated into two parts at each split (or node) because QUEST is assumed to be 

a binary decision tree. It provides the options between univariate and linear splitting rules. By 

using given training dataset, DT can be constructed for any statistical data. 
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4.3.3.1. Variable selection 

The idea of QUEST was to reduce the bias by applying F-statistic and χ
2
-statistic to 

estimate continuous and discrete features respectively. For each continuous feature X, an 

(ANOVA) F-statistic is performed to test if all the different classes of the dependent variable 

𝑌 have the same mean of 𝑋, and calculate the p-value according to the 𝐹-statistics. For each 

discrete feature, perform χ
2
-statistics of the independence of Y and X to calculate the p-

value. It uses the following algorithm. 

1. Find the feature with the smallest p-value and denote it by X*.  

2. If p-value < α M , where α є (0, 1) is a user-defined significance level and M is the 

total number of feature variables. X* is selected as the best split variable for the node. 

3. If the p-value exceeds a user defined threshold, Levene‟s F-statistic for unequal 

variances is computed for each continuous variable X. The p-value is calculated for 

the test. 

4. Find the feature with the smallest p-value and denote it by X**. 

5. If smallest p-value < α (M + M1), where M1 is the number of feature variable, then 

X** is selected as the split variable for the node. Otherwise, this node will not split 

(Loh and Shih, 1997).  

4.3.3.2. Split point selection  

QUEST is assumed to be a binary tree and the splits are done between two classes. So, 

it uses QDA to select a best split point. If there is a problem of classification to more than 

two classes, the classes are initially grouped into two superclasses by applying a two-means 

clustering algorithm (Hartigan and Wong, 1979) to the mean vectors for all the classes. In 

this algorithm, two most distant class means are considered as the cluster centers. If the class 
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means for all the classes are identical, then the most populous class becomes superclass A 

and the rest becomes superclass B.  The procedure may be described as follows. 

Suppose that a continuous variable X is selected to split a node N. By applying two-

means clustering algorithm QDA estimates two classes (A, B) distributions with normal 

densities and determines the split point as an intersection point of two Gaussian curves, being 

a root of the equation 

P A N 
1

 2πSA

e
− 

 x−xA  2

2sA = P B N 
1

 2πSB

e
− 

 x−xB  2

2SB                                                               (4.8) 

where 𝑥𝐴 and 𝑆𝐴 denote the mean and standard deviation of superclass A. Similarly, 𝑥𝐵 and 

𝑆𝐵 denotes the mean and standard deviation of superclass B. The parameters (mean and 

standard deviation) of normal densities are calculated from the samples. After transformation 

of equation (1), a quadratic equation is obtained as:  

ax2 + bx + c = 0                                                                                                                                (4.9) 

where 

a = SA
2 − SB

2                                                                                                                                   (4.10) 

b = 2 xA SB
2 − xBSA

2                                                                                                                    (4.11) 

c =  xBSA 2 −  xA SB 2 + 2SA
2SB

2 log
nA SB

nBSA
                                                                           (4.12) 

One of the two roots that are closer to 𝒙𝑨  is considered as the split point provided this yields 

two non-empty nodes. 

The QUEST algorithm was implemented in the software add-on Rule Gen 1.02 running 

in ENVI 5.1 image processing environment. An unbiased statistical test for variable selection 

and a QDA for split threshold selection were applied to run the model. Here univariant 

splitting rule was taken into consideration and cross validation (CV) method was used for 
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tree pruning. The QUEST algorithm provides other options such as standard errors (SEs), 

alpha value, minimum node size, variable selection method, output Pstricks tree, and so on. 

The ROIs created from images were used to train the algorithm and to derive a final rice crop 

map. The working flow chart for rice crop mapping is shown in Figure 4.4. 

Figure 4.4 The working flow chart for rice crop mapping 

4.3.4 Assessment of classification accuracy 

A confusion matrix was calculated to appraise the resultant maps of land cover features. 

It is a widely used approach for evaluating the accuracy of the resultant map by comparing it 

with the ground truth data. Randomly selected 30% of the field data for each class were used 

as validation samples. The accuracy assessment parameters like overall classification 

accuracy (OCA), UA, PA, KC and F- score was computed.  
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A preliminary use of  ROC curves in machine learning for evaluation and comparison 

of the algorithm was demonstrated (Spackman, 1989). The performance evaluation using 

simple classification accuracy measures is often realized as a poor metric. Therefore, in 

recent years, ROC curves have gained attention in machine learning community for 

organizing and visualizing the performance of classifiers (Fawcett, 2006). It is derived from 

signal detection theory and has been broadly used in several studies to appraise the accuracy 

of classified products and other applications (Bradley 2009; Alatorre et al., 2011; Kumar and 

Krishna, 2016).
 
In a ROC curve, the area under the curve (AUC) is used as a measure of the 

accuracy of a prediction model. According to Kumar and Krishna (2016), the AUC and 

prediction accuracy relation can be categorized into poor (0.5–0.6), average (0.6–0.7), good 

(0.7–0.8), very good (0.8–0.9) and excellent (0.9–1). ROC curve was used to compare the 

rate of rice crop detection versus false positive rate (pixels identified as rice that did not 

contain rice). 

The ROC curve for classification is determined by calculating the sensitivity (true 

positives) and 1-specificity (false positives) given by Equations (4.13) and (4.14) 

respectively. The overall reliability is another common statistics and given by Equation 

(4.15). 

Sensitivity =
a

 a + c 
                                                                                                                     (4.13) 

1 − specificity =
b

 b + d 
                                                                                                             (4.14) 

Reliability =
b + d

 a + b + c + d 
                                                                                                      (4.15) 

where a represents true positives, d represents true negatives, b represents false positives, and 

c represents false negatives (Table 4.1). 
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Table 4.1 A confusion matrix showing the proportion (or number) of pixels in observed map 

versus predicted map. Here „a‟ represents true positives, d represents true negatives, b 

represents false positives, and c represents false negatives 

 

 

 

 

 

 

4.4 RESULTS AND DISCUSSION 

The mean and Standard Deviation (SD) values of the raw and speckle filtered images 

with different window sizes are listed in Tables 4.2 and 4.3 respectively. The output values of 

SSI for the median filter with a kernel size of 9×9 provided the best result at HH polarization, 

while the mean filter with kernel size of 9×9 was found best for HV polarization. These 

filtered images were used for further analysis and classification. The histograms of HH, HV, 

ratio and difference images were analyzed for the four land cover features and are shown in 

Figure 4.5. In HH image, all the land cover features are well separable while they were 

overlapped for HV image especially for rice and vegetation class. At the same time, rice crop 

has high backscatter value for difference image and is separable from vegetation. Therefore, 

taking into account the HH, ratio and difference backscatter values, rice crop can be 

separated from vegetation and other land cover features. 
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Table 4.2 Mean and SD for raw and filtered images of HH polarization 

 HH polarization 

Window size Mean SD Mean/SD SSI 

Noisy image  2955.49 2631.48 1.12  

Filter      

Mean 

3x3 2954.92 1902.79 1.55 0.72 

5x5 2954.64 1792.25 1.65 0.68 

7x7 2954.43 1719.17 1.72 0.65 

9x9 2954.33 1665.33 1.77 0.63 

     

Median 

3x3 2703.83 1626.14 1.66 0.68 

5x5 2663.05 1476.79 1.80 0.62 

7x7 2636.11 1387.45 1.90 0.59 

9x9 2615.87 1321.70 1.98 0.56 

     

Mode 

3x3 2468.66 1478.75 1.67 0.67 

5x5 2408.78 1344.04 1.79 0.63 

7x7 2366.27 1252.14 1.89 0.59 

9x9 2337.48 1192.09 1.96 0.57 

     

Frost 

3x3 2951.41 2204.20 1.34 0.84 

5x5 2952.02 2171.12 1.36 0.83 

7x7 2953.92 2174.37 1.36 0.83 

9x9 2954.77 2180.56 1.36 0.83 

     

Lee 

3x3 2936.50 2110.64 1.39 0.81 

5x5 2946.07 2071.14 1.42 0.79 

7x7 2957.02 2044.46 1.45 0.78 

9x9 2960.75 2020.11 1.47 0.77 
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Table 4.3 Mean and SD for raw and filtered images of HV polarization 

 HV polarization 

 Window size Mean SD Mean/SD SSI 

Noisy image  2909.32 1137.27 2.56  

Filter      

Mean 

3x3 2909.68 698.77 4.16 0.61 

5x5 2909.77 647.46 4.49 0.57 

7x7 2909.83 618.85 4.70 0.54 

9x9 2909.91 599.52 4.85 0.53 

     

Median 

3x3 2821.45 696.30 4.05 0.63 

5x5 2810.74 639.61 4.39 0.58 

7x7 2804.79 609.37 4.60 0.56 

9x9 2800.84 589.92 4.75 0.54 

     

Mode 

3x3 2706.33 800.73 3.38 0.76 

5x5 2691.97 771.07 3.49 0.73 

7x7 2679.32 751.00 3.57 0.72 

9x9 2669.59 737.21 3.62 0.71 

     

Frost 

3x3 2908.17 810.08 3.59 0.71 

5x5 2908.61 771.61 3.77 0.68 

7x7 2909.09 761.51 3.82 0.67 

9x9 2929.20 758.94 3.83 0.67 

     

Lee 

3x3 2895.55 1073.99 2.70 0.95 

5x5 2907.45 1076.18 2.70 0.95 

7x7 2915.36 1062.78 2.74 0.93 

9x9 2918.27 1046.48 2.79 0.92 
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Figure 4.5 Comparison between histograms of different land cover features in four images: 

(a) HH polarization, (b) HV polarization, (c) ratio image, and (d) difference image 

 

The separability index (Sij ) emphasized the usability of HH and difference image due to 

having its high values between rice and other land cover features for the discrimination of 

rice crop. Figure 4.6 shows separability index for all the defined class pairs using RISAT-1 

image. It indicates that HH and difference polarization images are good and useful features 

for separation of rice and vegetation followed by HH/HV polarization ratio. However, HV 

was found worst feature for the separation of rice and vegetation. Other class pairs exhibited 

almost complete separation for all polarization images. The values of separability index were 

found to be useful for all class pairs using the training ROIs collected from the Landsat 8-

OLI FCC image and are shown in Figure 4.7. It shows that NDVI and (NDVI + EVI)/2 - 

LSWI were found to be useful features for the separation of rice and vegetation classes 

followed by LSWI. Other class pairs exhibited almost complete separation for all indices. 
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Figure 4.6 Separability index for class pair separation by various features (HH, HV, ratio, 

and difference) using RISAT-1 image 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Separability index for class pair separation by various features (LSWI, NDVI, and 

(NDVI + EVI)/2 - LSWI) using Landsat 8-OLI image 
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4.4.1 Rice crop maps using RISAT-1 and Landsat 8-OLI images  

The outputs of QUEST classification algorithm using RISAT-1 and Landsat 8-OLI 

images are illustrated in Figure 4.8. The OCA of Landsat 8-OLI and RISAT-1 MRS data was 

estimated as 91.29% and 88.57% with kappa coefficient 0.884 and 0.874 respectively. The 

PA, UA and F-score calculated relative to QUEST DT algorithm are shown in Table 4.4.  

Rice cropped area was estimated to be 7885.10 and 8555.92 ha from Landsat 8-OLI and 

RISAT-1 dual polarimetric images, respectively. However, the rice cropped area was 

overestimated using RISAT-1 image due to similar backscattering response of the shrubs 

present on the field bunds boundaries. Also, the built-up class mixes with vegetation class 

due to having volume scattering mechanism in RISAT-1 image. It may be one of the reasons 

that built-up class was underestimated using RISAT-1 in comparison to that of Landsat 8-

OLI image. The spatial distribution of land cover features for both the classified outputs is 

presented in Table 4.5. 

Figure 4.8 DT algorithm based classified maps of (a) RISAT-1, and (b) Landsat 8-OLI 

images 
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 Table 4.4 The classification accuracies of Landsat 8-OLI and RISAT-1images  

Land cover 

feature 

Landsat-8 OLI RISAT-1 

PA 

(%) 

UA 

(%) 

F-score 

(%) 

PA 

(%) 

UA 

(%) 

F-score 

(%) 

Rice 88.36 86.53 87.43 85.26 83.94 84.60 

Vegetation 91.93 89.70 89.02 86.83 87.88 86.55 

Built-up 93.99 96.09 96.09 93.85 93.85 89.35 

Water bodies 91.09 92.93 90.59 88.44 88.89 87.04 

OCA (%) 91.29 88.57 

Kc 0.884 0.874 

 

Table 4.5 Area statistics comparison of land cover features 

Land cover 

feature 

Area (ha) 

RISAT-1 Landsat 8-OLI 

Rice 8555.92 7885.10 

Vegetation 15551.64 14386.04 

Built-up 6934.94 7646.74 

Water bodies 4416.20 5540.81 

Total 35458.70 35458.70 

 

4.4.2 Validation of rice crop maps using ROC curves 

The ROC curves were used to assess the performance of QUEST classification in rice 

crop mapping. Since the main focus of the present study was to map rice crop area using 

RISAT-1 and Landsat 8-OLI images, the rice and non-rice areas were identified with the help 

of ground truth information collected through field visit and Google earth images. The rice 

crop maps were finally validated with the available ground truth information. In the ROC 

curve, 1-specificity (false positive rate) on the X-axis was plotted against sensitivity (true 

positive rate) on the Y-axis. A higher sensitivity signifies several true positives or correct 
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predictions, while a higher specificity indicates many false positives. The ROC curves for the 

rice crop area with RISAT-1and Landsat 8-OLI images are shown in Figure 4.9 (a, b). For 

the RISAT-1 image, the ROC statistic or AUC was 0.858, which corresponds to the 

prediction accuracy of 85.8% (Figure 4.9 (a)), while for Landsat 8-OLI image, the ROC 

statistic or AUC was found to be 0.881, which corresponds to the prediction accuracy of 

88.1% (Figure 4.9 (b)). Hence, the map produced by QUEST method exhibited good result in 

predicting the cultivated rice area in a part of Varanasi district of Uttar Pradesh, India.  

The outcomes of this study established the effectiveness of the method proposed for the 

rice crop mapping. Also, the method can be used profoundly for cost-effective monitoring of 

rice crop.  

Figure 4.9 The ROC curves for the rice crop area mapping using (a) RISAT-1, and (b) 

Landsat 8-OLI images 

4.5 CONCLUSION 

The present study investigated the feasibility of using single date dual polarimetric 

RISAT-1 data for discrimination of rice crop from the other land cover features using 

QUEST classifier. The major findings of this work were that (i) the image acquired during 
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the growing stage reveals an optimal difference between the backscattering response of rice 

and other land cover features (ii) the composite image of the ratio (HH/HV) and difference 

(HH-HV) enhances backscatter separability between rice and other land cover features and 

(iii) with the optimal polarization combination based on the backscattering response 

behavior, a QUEST DT algorithm effectively identified rice crop areas with high accuracy. 

Moreover, the results showed that HH along with HH/HV and HH-HV was the best 

polarization combination with accuracy up to 88.57% for mapping the spatial distribution of 

rice crop. An excellent spatial agreement of almost 90% was observed between rice crop 

areas derived from dual polarimetric RISAT-1 and multispectral Landsat 8-OLI images. Rice 

crop areas were estimated to be 7885.10 and 8555.92 ha from Landsat 8-OLI and RISAT-1 

images respectively. In summary, this work demonstrated that dual polarimetric MRS mode 

data from the newly launched RISAT-1 satellite could be a promising source for rice crop 

discrimination and mapping. In future studies, identification and discrimination of rice crop 

at different growth stages can be used to improve the accuracy. Additionally, the study of the 

relationship between rice crop parameters and polarimetric parameters can help to develop a 

method for yield estimation. 
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