
 
 

CHAPTER 3 

THE ROLES OF TEXTURAL FEATURES IN IMPROVING LAND USE 

AND LAND COVER CLASSIFICATION ACCURACY  

 

3.1 INTRODUCTION 

There is increasing attention that the geospatial distribution of LULC is of critical 

significance in support of sustainable land use planning, natural resource management and 

environmental monitoring (Lesiv et al., 2016). At present, space-borne remote sensing has 

been proved as a powerful tool to monitor the Earth‟s surface, particularly in deriving LULC 

information and its distribution (Green et al., 1994; Zhu and Woodcock, 2014; Mishra and 

Rai, 2016). 

Nevertheless, LULC classification and information extraction from remote sensing 

images still remains a challenging task in heterogeneous areas because of several reasons. It 

is a comprehensive process that involves careful deliberation of different aspects (Lu and 

Weng, 2007). Other limitations for accurate LULC mapping are the lack of aerial 

photography, previous LULC maps, and ancillary data (e.g., digital elevation models, 

geological maps, etc.) that may be helpful in improving the results (Paneque-Gálvez et al., 

2013). The presence of spectral confusion caused by land surface features also hampers the 

training and validation stages during classification process which makes it hard to acquire the 

classification results with high accuracy. In the last few decades, several classification 

algorithms including statistics based, non-statistics based, pixel-based to subpixel-based and 

object-oriented classifiers, have been explored for classifying the multi-source remote 

sensing images (Lu and Weng, 2007; Szuster et al., 2011; Kumar et al., 2015). 
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Besides the advancement of classification algorithms, another current research topic is 

the fair selection of suitable input variables, which may have the same importance as the 

selection of classifier (Heinl et al., 2009). The remotely sensed data acquired from multiple 

sensors may have the various potential for LULC classification and mapping. Optical sensor 

data exhibits spectral, spatial, radiometric, and temporal attributes whereas; radar data have 

unique features in terms of polarizations (HH, HV, VV, and VH). The radiometric and 

temporal characteristics of any sensor data are constant. But the spectral and spatial 

characteristics are the most significant features and need to be further investigated. In case of 

multispectral datasets, a variety of new variables such as vegetation indices and image 

transforms can be produced using image processing techniques (Bannari et al., 1995; 

McDonald et al., 1998). Spectral characteristics of land surface features are most important in 

LULC information extraction for a long time (Dean and Smith, 2003; Karnieli et al., 2008). 

However, these are pixel-based techniques and do not incorporate existing spatial 

connections among pixels belonging to the same category. Spatial features exhibit the 

relationship between nearby pixels; that is, the spatial relationships between a central pixel 

and its nearby counterparts (Dutra and Mascarenhas, 1984). 

Texture analysis is one of the commonly used manner using spatial features of an 

image. In general, the texture is a visual effect, which is created by the spatial distribution of 

tonal variations in an image (Baraldi and Parmiggirani, 1995). There are apparent textural 

features in an image and it supplies valuable information for its interpretation (Segl and 

Kaufmann, 2001; Lillesand et al., 2008). Different textural features are potential source of 

ancillary information and valuable in improving LULC mapping accuracy (Berberoglu et al., 

2000; Rajesh et al., 2001; Herold et al., 2004; Zakeri et al., 2017). A foremost benefit of 
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using textures in improving classification and mapping accuracy, where new supplementary 

data sources may not exist, is that textural information can be extracted from the image itself. 

Many methods have been proposed for the extraction of textural features (Rajesh et al., 2001; 

Rodriguez-Galiano et al., 2012; Seetharaman and Palanivel, 2013). The gray-level co-

occurrence matrix (GLCM) is a widely used manner to extract textural information from 

images (Haralick et al. 1973). It can be incorporated as supplementary information the same 

as data bands during the classification procedure (Gong et al. 1992). Textures have been used 

for various other applications such as crop discrimination (Anys and He, 1995; Soares et al., 

1997), estimation of forest biomass and stand age (Kuplich et al., 2005; Cutler et al., 2012; 

Champion et al., 2014) and identification of plant species (Wang et al., 2004: Wang and 

Zhang, 2014). The textural features have been investigated extensively and reported in 

previous research. But, how the selection of textural features is affected by different sensor 

data with varying spatial resolutions and how it influences LULC classification and accuracy 

are poorly understood. The identification of suitable textural features for a particular study is 

a complex task because it requires captivating texture measures, moving window sizes, 

quantization levels; image bands itself and other aspects into consideration (Chen et al., 

2004). But so far, there are no clear guidelines on the selection of an optimal texture due to 

distinct spatial patterns and compositions of LULC categories in practical projects.  

Therefore, textural features have been considered as an effectual source of information 

to improve classification performance if the optimal textural information can be achieved for 

a specific investigation. The primary goal of this work is to establish a robust classification 

process based on texture analysis in accurate mapping of all the major LULC classes 

considered in a heterogeneous landscape. Specifically, the present work provides a 
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comprehensive evaluation of textural features from the multi-source data to investigate how 

the varying spatial resolutions of different sensor data affect the selection of textural 

elements. Limited studies have been carried out to understand the performance of textural 

features in improving heterogeneous landscape mapping accuracy and how to efficiently 

choose suitable textures from multi-sensor and multi-resolution remote sensing data.  

3.2 STUDY AREA 

This study area is selected because of its highly heterogeneous landscape. The chosen 

study area provides diverse LULC categories and spatial patterns, which makes it an ideal 

site to investigate the ideas depicted in this work. The area under study extending from 82° 

54′ 30″ to 83° 02′ 30″ E, and from 25° 13′ 08″ to 25° 20′ 43″ N, covering a total area of 

253.27 Km
2
. The geographical location of study area is shown in Figure 3.1.    

Figure 3.1 Location map of the study area as viewed on LISS-IV FCC image 
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3.3 METHODOLOGY 

3.3.1 Remote sensing data collection and preprocessing 

In this work, LISS-IV, Sentinel-1A, LISS-III, RISAT-1 and Landsat 8-OLI images 

acquired on 06 April 2013, 29 April 2015, 13 March 2013, 01 April 2015 and 15 April 2013 

with original pixel sizes of 5.8, 20, 23.5, 25 and 30 m, respectively, were used for 

comparative analysis of LULC classification of a heterogeneous landscape. The major 

characteristics of the selected data sets are summarized in Table 1.1. 

LISS-IV image has three multispectral bands including two visible (green and red) and 

one NIR band with 5.8 m spatial resolution. LISS-III image has four bands covering two 

visible (green and red), one NIR and one SWIR band with 23.5 m spatial resolution. The 

Landsat 8-OLI imagery has nine spectral bands covering the visible, NIR and SWIR bands 

with 30 m spatial resolution and one panchromatic band with 15 m spatial resolution. The C-

band dual-polarization SAR images, Sentinel-1A (VV, VH) with 20 m and RISAT-1 (HH, 

HV) with 25 m spatial resolutions are used in this study.  

The pre-processing of RISAT-1 image was carried out by using ENVI-SARscape 

(version 5.1) software. It was multi-looked 2 times in azimuth and 1 times in range direction. 

Speckles were reduced using the Lee filtering algorithm with 5 × 5 window size. After that 

RISAT-1 DN image was converted into the backscattering coefficient (σ°) image using 

Equation (2.1).  

The Sentinels Application Platform (SNAP) software (version 3.0.0) freely downloaded 

(http://step.esa.int/main/download/) was used for the pre-processing of Sentinel-1A image. 

The image was radiometrically calibrated, and refined lee filter was applied for the speckle 

http://step.esa.int/main/download/
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reduction. After speckle reduction, geometric correction was performed and the DN values 

were converted into backscattering coefficient (σ°). 

For the study area, LISS-IV image was chosen as the reference and the other images 

were georectified to that image using image-to-image registration process. A second order 

polynomial equation was applied, and images were resampled using nearest neighbor 

resampling technique. All the images were spatially referenced in the UTM projection 

system (Zone 44, North) with datum WGS 84. For the LISS-IV image, high data redundancy 

was found between visible bands B2 and B3 (the correlation coefficient is 0.98). The intra 

band correlation coefficients in LISS-III and Landsat 8-OLI images were also found to be 

very similar. For both the images, B2 is highly correlated with all other bands 

(Venkateswarlu et al., 2014). Because of the large volume data sets and time required for 

image processing, B2 of LISS-IV, LISS-III and Landsat 8-OLI images was not used during 

the extraction of textural features in this study. 

3.3.2 Field data collection and map legend definition  

In addition to remote sensing images, an extensive field survey was undertaken across 

the study area to collect LULC ground data using handheld GPS receiver. Additionally, to 

assist in the processes of geometric rectification, the GPS points were collected at road 

crossings and other man-made features on the ground. In order to accomplish an accurate 

classification based on remote sensing images, it is significant to define broad LULC classes 

that are considered to be most suitable for representation of the landscape of study area. 

Finally, seven broad LULC classes: agricultural land, dense vegetation, sparse vegetation, 

built-up, fallow land, water bodies and sand are depicted based on prior field knowledge and 

visual examination of the study area. During field survey, ground truth data were collected 
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and employed to generate the respective region of interest (ROI) polygons using ENVI 5.1 

image analysis software. A part of the data set was used as training data for LULC 

classification whereas; the remaining data were used as testing data for the assessment of 

classification results. A well distributed training data were selected randomly for various 

LULC classes representing the entire study area. In total, 2190 pixels were used as the 

training data, whereas 730 pixels were employed as the testing data for SVM classification 

algorithm. The number of training and testing data-sets is given in Table 3.1. 

Table 3.1 Number of training and testing pixels for the SVM algorithm 

 Agricultural 

land 

Dense 

vegetation 

Sparse 

vegetation 

Fallow 

land 
Built up    

Water 

bodies 
Sand                                                                      Total 

Number of 

training pixels 
303 306 321 312 315 318 315 2190 

Number of 

testing pixels 
101 102 107 104 105 106 105 730 

 

 

3.3.3 Extraction of textural features 

Texture analysis has been used broadly to characterize various land surface features 

from remote sensing images (Solberg and Jain, 1997). The GLCM proposed by (Haralick et 

al., 1973) is a most commonly used method and employed to extract textural features from 

remote sensing images. Therefore, eight GLCM-based textural features (i.e., mean, variance, 

contrast, entropy, homogeneity, dissimilarity, angular second moment and correlation) with 

seven different window sizes (3x3, 5x5, 7x7, 9x9, 11x11, 13x13 and 15x15), were extracted 

and tested in this study. Their relevant formulae are listed in Table 1.3. But it is a difficult 

task to identify suitable textural features for a specific study region, because a good texture is 
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a inclusive combination of different aspects like texture measure, window size, image band, 

quantization level, inter-pixel distance (Shaban and Dikshit, 2001; Lu and Weng, 2007). It is 

closely related to the characteristics of the landscape under investigation as well.  

3.3.4 Selection of suitable textural features 

A single textural feature is inadequate to mine the spatial features efficiently; however, 

a combination of two textural features can supply ample ability. Adding more textural 

features does not considerably improve the LULC mapping accuracy (Shaban and Dikshit 

2001; Lu et al., 2008). The inter class separability analysis based on training data, using the 

transformed divergence method was employed to recognize the potential combinations of 

two textural features. It was established that using two textural features adequately improved 

the separability between two LULC categories (Lu et al., 2014). Since all the combinations 

of textural features were not needed, it was obligatory to develop an appropriate method for 

the selection of combination of textural features to have the richest source of information for 

LULC classification. A method to select best combination of textural features, based on 

standard deviation and correlation coefficients is given by Equation (2.4). 

3.3.5 SVM based LULC classification 

SVM is a non-parametric supervised classification technique that does not make any 

assumption regarding the underlying data distribution. SVM has spearheaded its use in 

various applications due to its robustness, unlike other non-parametric classifiers. Basically, 

SVM is based on the generation of a separating hyperplane that shows the optimal separation 

of linearly-separable classes in decision boundary space (Pal and Mather, 2005). But the land 

surface features classes projected to the input space are not always linearly separable. SVM 

is able to manage such datasets by the nonlinear projection of the training data in the input 
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space into a higher dimensional feature space using kernel functions. From Szuster et al., 

(2011), suppose a set of training data with k number of samples is represented as: 

 xi , yi , i = 1 … . k                                                                                                                               (3.1) 

where x ∈  Rn  is an n-dimensional vector and y ∈   −1, +1  showing the label of each class. 

This training data set can be separated linearly by a hyperplane if a vector w and a scalar b 

can satisfy two inequalities given as follows: 

  w × xi + b ≥ +1   for all y = +1                                                                                                (3.2) 

  w × xi + b ≤ −1    for all y = −1                                                                                                (3.3) 

These two equations can be combined to represent a constraint that must be satisfied to get a 

hyperplane that completely and linearly separates the two classes in the following equation: 

yi w × xi + b − 1 ≥ 0                                                                                                                    (3.4)   

If the two classes are not linearly separable, a set of slack variables  𝜉𝑖 𝑖 = 1 is introduced to 

minimize the classification errors where the pixels are classified onto the wrong class 

hyperplane and is given as: 

yi w × xi + b ≥ 1 − ξi , ξi ≥ 0                                                                                                      (3.5) 

Because this constraint can be met by repetitively increasing the value of ξi , a function 

C  ξii=1 , is added to penalize the solutions which show a large value for  ξi . 

Here, the constant C is utilized to control the degree of the penalty managed for the pixels 

that occur on the wrong side of the separating hyperplane and, as such, the optimization 

problem becomes: 

Min   
 w 2

2
  + C  ξi

i=1

                                                                                                              (3.6) 
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A mapping function Φ is used to map nonlinear data into a higher-dimensional feature space 

for the generation of a linearly separating hyperplane. Therefore, input data is represented 

as Φ 𝑥 , which is the conversion of input vector x in feature space into a constructed space 

with n dimensions. It can be computationally costly as n increases, so a kernel function is 

preferred: 

K xi , xj = Φ xi × Φ xj                                                                                                                (3.7) 

This kernel function permits the training data to be projected in a larger feature space 

where it may be increasingly likely to determine a superior margin for the separating 

hyperplane. There are four commonly used SVM kernels namely: linear, polynomial, radial 

basis function (RBF) and sigmoid. The selection of kernel function and parameters used for a 

problem and is based on its effect on the speed and accuracy of the classification. The RBF 

kernel was applied in this study due to its less computational work and ability to handle the 

non-linear relationship between the training data and the entire dataset. The RBF kernel is 

given as:   

Radial basis function ∶ K xi , xj = exp  −γ  xi , xj  
2
 , γ > 0                                            (3.8) 

where γ is the gamma term in the kernel function.  

For RBF kernel the penalty parameter (C) was set to its maximum value (i.e. 1000), and 

gamma parameter (γ) is equal to the inverse of the number of bands (spectral+ textural) of 

each image. The value of pyramid parameter was set to be zero to process the image at full 

resolution. The penalty parameter manages the trade-off between margin and 

misclassification error, while the gamma parameter handles the width of the kernel function 

(Cortes and Vapnik, 1995). In this study, SVM classification strategy was applied using 
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ENVI (v 5.1) image processing software. The working scheme for the present work is shown 

in Figure 3.2.  

Figure 3.2 Overview of the methodology adopted for this study  

 

3.3.6 Evaluation of LULC classification results 

The statistics based on confusion matrix are commonly applied to evaluate the LULC 

classification results. Consequently, UA, PA, OA, and Kc are then computed using Equations 

(1.1) to (1.4). The UA and PA are commonly used to evaluate the class-level accuracy, but 

sometimes this may lead to error because, for some LULC classes, the PA may be high, but 

the UA may be low, or vice versa. In this study, accuracy measures such as MAH, MAS, 

ICSI and CSI suggested by Liu et al. (2007) were adopted for more comprehensive 

evaluation of classification results using Equations (1.6) to (1.9) respectively.  
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3.4. RESULTS AND DISCUSSION 

The work presented here aims to classify and map various land surface elements based 

on textural features in a heterogeneous landscape. The multi-sensor and multi-resolution data 

sets were utilized to appraise the performance of the textural features in improving landscape 

classification and mapping accuracy using SVM classifier. The comparison and appraisal of 

the outcomes from the optical and SAR sensors are presented as follows. 

3.4.1 Analysis of the best combination of textural features 

The best combination of textural features for every sensor data was attained based on 

BTC for potential textural measures. The consequences are reviewed in Table 3.2. The 

combination of best textural features varies for different sensor data. The Table provides 

some central insights of the selection of textural features and window sizes. A window sizes 

of 13x13 and 11x11 were found to be appropriate for the data from optical and SAR sensors 

respectively. The Mean, dissimilarity, and entropy texture features appeared good for optical 

sensor data, while mean, variance, contrast and dissimilarity seems suitable for SAR sensor 

data. Table 3.2 shows that the combinations of best textural features vary, depending on the 

particular sensor data. It implies the necessity to recognize the best textural combination 

corresponding to a specific data set. It is essential to identify specific textural features 

because of different characteristics of the data from the various sensor and different 

environmental condition of study areas. Therefore, it is a challenging assignment to identify 

best textural features quickly for a specific study. 
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Table 3.2 Selected best combination of textural features for LULC classification 

Satellite/sensor 
Bands/ 

Polarization 

Textural 

features 

Window 

size (s) 

Best textural feature 

combination 

Landsat 8-OLI NIR MEA, DIS 9x9 NIR-MEA9, NIR-DIS9 

Resourcesat 2-LISS-III NIR, SWIR MEA, DIS 9x9 NIR-MEA9, SWIR-DIS9 

RISAT-1 
HH MEA, CON 3x3, 7x7 HH-MEA7, HH-CON3 

HV CON, MEA 3x3, 7x7 HV-MEA7, HV-CON3 

Sentinel-1A 
VV VAR, CON 3x3, 11x11 VV-VAR11, VV-CON3 

VH VAR, CON 3x3, 11x11 VH-VAR11, VH-CON3 

Resourcesat 2-LISS-IV Red, NIR MEA, ENT 13x13 Red-ENT13, NIR-MEA13 

 

Figure 3.3 represents a comparison of textural images using different texture measure 

with various bands but same window size (13x13), implying the significance of using best 

window size in extracting different land surface features. The textural image based on the red 

band (i.e., LISS-IV band 3) shown in Figure 3.3 (c) highlights the difference between 

vegetated and non-vegetated land surface features. The textural image based on the NIR band 

(i.e., LISS-IV band 4) shown in Figure 3.3 (d) highlights the built up, sparse vegetation and 

fallow land classes. Figure 3.4 illustrates the textural images that are calculated using 

different measures with different bands but the same window size (9 × 9), implying different 

abilities in the extraction of land surface features. Figure 3.5 provides a comparison of 

textural images using different texture measure but same window size (9x9), implying the 

significance of using best window size in extracting different land surface features. The 

textural image based on the NIR band (i.e., Landsat 8-OLI band 5) shown in Figure 3.5 (b) 

highlights the non-vegetated surfaces like built up area, water bodies, and roads. Figure 3.6 

compares the RISAT-1 HH and HV, and their corresponding two textural features, 

representing their complementary information. It can be seen that, the textural features from 
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RISAT-1 contain much less information in comparison to optical images, indicating that the 

RISAT-1-based textural features have less ability for representing the characteristics of land 

surface features. Figure 3.7 compares Sentinel-1A VV and VH, and their corresponding two 

textural features, representing their complementary information. It can be seen that the 

textural features from Sentinel-1A contain much less information in comparison to optical 

images, indicating its less ability for representing the characteristics of land surface features.  

Figure 3.3 Comparison of (a) LISS-IV B3 (Red), (b) LISS-IV band 4 (NIR), (c) textural 

image obtained using the measure „entropy‟ on B3 (Red) and a window size of 13 × 13 

pixels, and (c) textural image obtained using „mean‟ on B4 (NIR) and window size of 13× 13 

pixels. 
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Figure 3.4 Comparison of (a) LISS-III B4 (NIR), (b) LISS-III B5 (SWIR), (c) textural image 

obtained using the measure „mean‟ on B4 (NIR) and a window size of 9 × 9 pixels, and (c) 

textural image obtained using „dissimilarity‟ on B5 (SWIR) and window size of 9× 9 pixels. 
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Figure 3.5 Comparison of (a) Landsat 8-OLI B5 (NIR), (b) textural image obtained using the 

measure „mean‟ on B5 (NIR) and a window size of 9 × 9 pixels, and (c) textural image 

obtained using „dissimilarity‟ on B5 (NIR) and window size of 9× 9 pixels.  

Figure 3.6 Comparison between RISAT-1 C-band HH and HV images and corresponding 

textural images; (a), (b), and (c) are HH image and HH-derived MEA7 and CON3 textural 

images; (d), (e), and (f) are HV image and HV-derived MEA7 and CON3 textural images. 
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Figure 3.7 Comparison between Sentinel-1A C-band VV and VH images and corresponding 

textural images; (a), (b), and (c) are VV image and VV-derived VAR11 and CON3 textural 

images; (d), (e), and (f) are VH image and VH-derived VAR11 and CON3 textural images. 

 

3.4.2 Analysis of overall LULC classification results using textural features 

The multispectral optical images provided enhanced classification accuracy than SAR 

images. For high spatial resolution LISS-IV image, only with spectral information can lead to 

unsatisfactory results. It is due to the spectral confusion within the vegetation categories 

specifically agricultural land and sparse vegetation. This problem can be reduced by using 

textural features in combination with spectral information of vegetation categories. Table 3.3 

shows the LULC classification results for LISS-IV image in terms of UA, PA, MAH, MAS, 

and ICSI. The OA based on spectral images was 88.49% with Kc 0.866 and CSI 76.97%. 
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However, the incorporation of textural features into spectral images improved the OA and 

CSI by 6.72% and 13.44% respectively. It is also evident that the combination of spectral and 

textural features improved the UA of agricultural land and sparse vegetation from 85.58% to 

93.27% and from 83.02% to 95.19% respectively. For other LULC classes, the classification 

accuracy is improved significantly by incorporating textural features into multispectral data, 

implying the significance of textural images for images with high spatial resolution. 

The multispectral LISS-III and Landsat 8-OLI images based on spectral information 

provided good OA with 85.34% and 85.62% respectively. Table 3.4 shows the LULC 

classification results for LISS-III image. However, integration of textural features into 

spectral image improved OA by 3.84% from 85.34% to 89.18%. When considering 

individual LULC classes, almost all of the classes, except dense vegetation showed 

significant improvement in classification results by incorporating textural features. When the 

overall classification accuracy is evaluated using CSI, the accuracy was improved by 7.64% 

from 70.70% to 78.34%. Table 3.5 shows the LULC classification results for Landsat 8-OLI 

image. However, integration of textural features into spectral images improved OA by 4.11% 

from 85.62% to 89.73%. When considering individual LULC classes, almost all of the 

classes, except agricultural land and sparse vegetation showed significant improvement in 

classification accuracy by incorporating textural features. When the overall classification 

accuracy is evaluated using CSI, it was improved by 8.10% from 71.40% to 79.50%. It is 

remarkable to note that the textural features are vital in improving classification accuracy, but 

not for all LULC categories.  

The SAR images provided lower OA in comparison to multispectral optical images of 

the same area. The classification results for the RISAT-1 image are summarized in Table 3.6. 
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The radiometric data of RISAT-1 can only provide reasonable accuracy for sparse 

vegetation, built up and water bodies. But the combination of radiometric data with textural 

features enhanced the OA by 8.22% from 78.49% to 86.71%, and CSI by 16.19% from 

57.24% to 73.43%. The classification results for Sentinel-1A image are summarized in Table 

3.7. The radiometric data of Sentinel-1A can only provide reasonable accuracy for dense 

vegetation, fallow land, built up and water bodies. But the combination of radiometric data 

with textural features improved the OA by 7.43% from 80.27% to 87.27%, and CSI by 

14.31% from 61.25% to 75.56%. The classification products achieved by using SVM 

algorithm are shown in Figure 3.8 (a-e).   

Table 3.3 Comparison of accuracy assessment results using LISS-IV image 

 Spectral bands Spectral bands + textural features 

LULC class 
PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

Agricultural land 88.12 85.58 86.83 76.72 73.70 96.04 93.27 94.63 89.81 89.31 

Dense vegetation 93.14 91.35 92.23 85.59 84.48 98.04 95.24 96.62 93.46 93.28 

Sparse vegetation 82.24 83.02 82.63 70.40 65.26 92.52 95.19 93.84 88.39 87.72 

Fallow land 80.77 84.85 82.76 70.59 65.62 90.38 94.95 92.61 86.24 85.33 

Built up 91.43 90.57 91.00 83.48 81.99 97.14 94.44 95.77 91.89 91.59 

Water bodies 95.28 91.82 93.52 87.83 87.10 99.06 97.22 98.13 96.33 96.28 

Sand 88.57 92.08 90.29 82.30 80.65 93.33 96.08 94.69 89.91 89.41 

OA (%) 88.49 95.21 

Kc 0.866 0.944 

CSI (%) 76.97 90.41 

 

 

 

 



100 
 

Table 3.4 Comparison of accuracy assessment results using LISS-III image 

 Spectral bands Spectral bands + textural features 

LULC class 
PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

Agricultural land 78.22 81.44 79.80 66.39 59.66 82.18 88.30 85.13 74.11 70.48 

Dense vegetation 88.24 90.91 89.55 81.08 79.14 93.14 93.14 93.14 87.16 86.27 

Sparse vegetation 78.90 79.63 79.26 65.65 58.53 83.18 83.96 83.57 71.77 67.14 

Fallow land 79.81 78.30 79.05 65.35 58.11 86.54 84.91 85.71 75.00 71.44 

Built up 91.43 85.71 88.48 79.34 77.14 95.24 89.29 92.17 85.47 84.52 

Water bodies 94.34 93.46 93.90 88.50 87.80 96.23 92.73 94.44 89.77 88.95 

Sand 86.41 88.12 87.25 77.39 74.53 87.62 92.00 89.76 81.42 79.62 

OA (%) 85.34 89.18 

Kc 0.829 0.874 

CSI (%) 70.70 78.35 

 

Table 3.5 Comparison of accuracy assessment results using Landsat 8-OLI image 

 Spectral bands Spectral bands + textural features 

LULC class 
PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

Agricultural land 84.16 91.40 87.63 77.98 75.56 90.10 92.86 91.46 84.26 82.96 

Dense vegetation 88.24 90.91 89.55 81.08 79.14 93.14 94.06 93.60 87.96 87.20 

Sparse vegetation 85.98 82.88 84.40 73.02 68.86 90.65 84.35 87.39 77.60 75.00 

Fallow land 76.92 76.92 76.92 62.50 53.85 77.88 84.38 81.00 68.07 62.26 

Built up 88.57 86.11 87.32 77.50 74.68 93.33 90.74 92.02 85.22 84.07 

Water bodies 89.62 91.35 90.48 82.61 80.97 94.34 95.24 94.79 90.09 89.58 

Sand 85.71 81.08 83.33 71.43 66.80 88.57 86.92 87.74 78.15 75.49 

OA (%) 85.62 89.73 

Kc 0.832 0.880 

CSI (%) 71.41 79.51 
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Table 3.6 Comparison of accuracy assessment results using RISAT-1 image 

 Radiometric bands Radiometric bands + textural features 

LULC class 
PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

Agricultural land 77.23 74.29 75.73 60.94 51.51 84.16 83.33 83.75 72.03 67.49 

Dense vegetation 80.39 78.85 79.61 66.13 59.24 90.20 85.98 88.04 78.63 76.18 

Sparse vegetation 67.29 81.82 73.85 58.54 49.11 75.70 87.10 81.00 68.07 62.80 

Fallow land 72.12 73.53 72.82 57.25 45.64 80.77 81.55 81.16 68.29 62.32 

Built up 88.57 86.92 87.74 78.15 75.49 97.14 96.23 96.68 93.58 93.37 

Water bodies 80.19 84.16 82.13 69.67 64.35 90.57 89.72 90.14 82.05 80.29 

Sand 83.81 71.19 77.19 62.86 55.35 88.57 83.04 85.71 75.00 71.61 

OA (%) 78.49 86.71 

Kc 0.749 0.845 

CSI (%) 57.24 73.44 

 

Table 3.7 Comparison of accuracy assessment results using Sentinel-1A image 

 Radiometric bands Radiometric bands + textural features 

LULC class 
PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

PA 

(%) 

UA 

(%) 

MAH 

(%) 

MAS 

(%) 

ICSI 

(%) 

Agricultural land 72.32 77.88 75.00 60.00 50.21 82.57 86.54 84.51 73.17 69.11 

Dense vegetation 87.64 80.41 83.87 72.22 68.05 91.58 86.14 88.78 79.82 77.72 

Sparse vegetation 71.90 77.68 74.68 59.59 49.58 83.33 86.36 84.82 73.64 69.70 

Fallow land 72.73 80.90 76.60 62.07 53.63 79.61 90.11 84.54 73.21 69.72 

Built up 94.68 89.90 92.23 85.58 84.58 96.00 92.31 94.12 88.89 88.31 

Water bodies 90.18 84.17 87.07 77.10 74.35 94.64 89.83 92.17 85.48 84.47 

Sand 76.11 74.14 74.14 58.90 48.38 86.92 83.04 84.93 73.81 69.95 

OA (%) 80.27 87.70 

Kc 0.770 0.856 

CSI (%) 61.25 75.57 



102 
 

 

Figure 3.8 Classified LULC maps based on SVM algorithm (a) LISS-IV, (b) LISS-III, (c) 

Landsat 8-OLI, (d) RISAT-1, and (e) Sentinel-1A  

 

3.4.3  Comparative analysis of overall LULC classification performance among multi-

 sensor and multi-resolution data 

When the results of SAR and optical datasets were compared, textural images obtained 

from the radiometric data seem to play a more significant role in improving LULC 

classification accuracy than those from spectral data. A summary of the assessment of overall 

classification results is provided in Table 3.8. It represents that there are considerably 

different roles of textural features obtained from different sensor data in improving LULC 
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classification accuracy. Comparing multispectral optical Landsat 8-OLI data at 30 m to 

LISS-IV data at 5.8 m, the CSI increased from 8.10% to 13.44%, suggesting the significantly 

important role of textural features in improving LULC classification accuracy with increased 

spatial resolution of the optical sensor data. Incorporation of textural features into SAR 

sensor data is particularly valuable in improving classification accuracy compared to optical 

sensor data. For RISAT-1 and LISS-III data with almost same spatial resolution, the CSI of 

the RISAT-1 data was improved by 16.19% compared to the 7.64% improvement in that of 

the LISS-III data. It implies the crucial role of texture features in reducing speckles and also 

the inherent heterogeneity within the same LULC category in RISAT-1 data.  

Table 3.8 Summary of overall classification accuracies for multi-sensor data 

CSI (%) 

Sensor name Pixel size (m) Original bands Combination Improvement in CSI (%) 

Landsat 8-OLI 30 71.41 79.50 8.09 

RISAT-1 25 57.24 73.44 16.20 

LISS-III 23.5 70.70 78.35 7.65 

Sentinel-1A 20 61.25 75.57 14.32 

LISS-IV 5.8 76.97 90.41 13.44 

 

Although, we recognized that the textural features are much crucial in improving LULC 

classification and mapping accuracy. But for a specific study, the difficulties and challenges 

appeared during the identification of suitable textural features due to its dependency on 

particular sensor data used and the attributes of the landscapes under examination. Therefore, 

the automatic selection of textural features in a particular study is still a complicated task due 

to the lack of general guidelines. Since the performance of textural features depends on the 

complex combination of texture measures, the specific sensor data, window size, and the 

LULC categories present. It is beneficial to incorporate textural features into spectral or 
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radiometric images in improving classification accuracy, but not for all LULC categories. 

Use of textural information may improve the classification accuracy of some LULC 

categories such as agricultural land and sparse vegetation by reducing their spectrally similar 

response. The findings of present work are promising because the accurate mapping of 

heterogeneous landscapes is a very challenging task. Further research is required to perform a 

comparative analysis between images having different spatial resolutions for other landscape 

and classification methods.   

3.5 CONCLUSION 

The present research explores the efficacy of incorporating textural features into 

spectral or radiometric images in enhancing the LULC classification accuracy of 

heterogeneous landscape using multi-sensor and multi-resolution data. The ability of textural 

features in reducing speckles and inherent heterogeneity within the same landscape category 

makes it significant for LULC classification using SAR data and high spatial resolution 

multispectral LISS-IV data. It is essential to recognize the textural features that have good 

separability for LULC categories but low correlation between them. Textural features have 

less capability for discriminating LULC categories than spectral images, particularly for 

medium spatial resolution images. But the textural features become more valuable with 

increasing spatial resolution. The CSI can be improved from 8.10% to 13.44% as the spatial 

resolution decreases from 30 m to 5.8 m. It is also observed that the incorporation of textural 

features into SAR sensor data is particularly valuable in improving the classification 

accuracy compared to optical sensor data. Furthermore, it is needed to develop new methods 

to perform an automatic selection of optimal combinations of textural features for a specific 

study purpose.   


