CERTIFICATE

It is certified that the work contained in the thesis titled "SYNTHESIS AND STUDY OF MAGNETIC AND MAGNETO-TRANSPORT PROPERTIES OF SOME TOPOLOGICAL INSULATORS "by "ABHISHEK SINGH " has been carried out under my/our supervision and that this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Supervisor (Prof. Sandip Chatterjee)

DECLARATION BY THE CANDIDATE

I, *ABHISHEK SINGH*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of **PROF. SANDIP CHATTERJEE** from *SEPTEMBER*, *2012* to *MARCH*, *2018*, at the *DEPARTMENT OF PHYSICS*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

Signature of the Student (ABHISHEK SINGH)

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Supervisor (Prof. Sandip Chatterjee)

Signature of Head of Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Synthesis and Study of Magnetic and Magneto- Transport Properties of Some Topological Insulators

Name of the Student: Abhishek Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the DOCTOR OF PHILOSOPHY.

Date: Plac**e:** Signature of the Student
(ABHISHEK SINGH)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Introduction and Literature Review

CHAPTER-2 Experimental: Synthesis Procedure and Characterization Details

Magnetic and Magneto-Transport Study of Bi₂Cu_xTe_{3-x} (x=0, 0.03, 0.09) Topological Insulators

Tuning of Carrier Type, Enhancement of Magnetoresistance and Room Temperature Ferromagnetism in Cu doped Bi₂Te₃ Topological Insulators

<u>Abhishek Singh</u>, R. Singh, T. Patel, G. Okram, A. Lakhani, V. Ganeshan, A. Ghosh, S. Jha, S. Patil, and S. Chatterjee, "Tuning of carrier type, enhancement of Linear magnetoresistance and inducing ferromagnetism at room temperature with Cu doping in Bi₂Te₃ Topological Insulators," *Materials Research Bulletin*, vol. 98, pp. 1-7, 2018.

Enhancement in Power Factor due to Anti-Correlation between Electrical Conductivity and Thermoelectric Power and Induced Magnetic Ordering in High Mobility Zn Doped Bi₂Te₃ Topological Insulator

<u>Abhishek Singh</u>, P. Shahi, A. Ghosh, J. Cheng, and S. Chatterjee, "Enhancement in power factor due to anti-correlation between electrical conductivity and thermoelectric power and induced magnetic ordering in high mobility Zn doped Bi₂Te₃ topological insulator," *Journal of Alloys and Compounds*, vol. 731, pp. 297-302, 2018.

Distinguishing Bulk State from Surface State by Simultaneous SdH and dHvA Oscillations in Sb_{1.90}Cu_{0.10}Te₃ Topological Insulator

Antiferromagnetic Ordering at Room Temperature in Co-Doped Sb₂Te₃ Topological Insulators

<u>Abhishek Singh</u>, A. Ghosh, and S. Chatterjee, "Antiferromagnetic Ordering at Room Temperature in Co-Doped Sb₂Te₃ Topological Insulators," *Journal of Superconductivity and Novel Magnetism*, vol. 31, no. 2, pp. 299-305, 2018

CHAPTER-8 Conclusion and Future Scope

To

My Beloved Parents

And My Preceptor

LIST OF FIGURES

		Page No.
Chapter 1	Introduction and Literature Review	
Fig. 1.1	Schematic band diagram for metal, semiconductor and	3
	insulator	
Fig.1.2	(a) Schematic representation of topology showing smooth	4
	deformation from cup to donut (b) Sphere showing	
	different topology than cup and donut (c) Effect of	
	external parameter on topology of donut	
Fig.1.3	Schematic diagram of Hall Effect	10
Fig.1.4	Energy band diagram for electrons vs. wave vector for	12
	different Landau levelsin 3D system	
Fig.1.5	Schematic representation of Density of state vs. energy of	13
	electrons in 3D in presence of applied magnetic field	
Fig.1.6	Schematic representation of Density of state vs. energy of	15
	2D electron gas in presence of applied magnetic field	
Fig.1.7	Schematic diagram of quantum Hall Effect	16
Fig. 1.8	Cyclotron orbits (in the bulk) and skipping orbits (at the	17
	edges) in the 2D electron system in the presence of	
	applied magnetic field	
Fig.1.9	(a) Schematic diagram of quantum spin hall Effect,	20
	opposite spins propagating in opposite directions (b)	
	Insulating state with a band gap seperating occupied and	
	unoccupied state (c) Bulk is insulating but skipping orbits	
	at the edges permits the conduction of electron giving rise	
	to the conducting edge i.e. zero band gap (c) both type of	
	left and right moving path having opposite spins is	
	allowed in QSHE which is protected due to time reversal	
	symmetry (e) At the surface, propagation in any direction	
	is possible, elecrons at the surfaces show linear energy	
	momentum relation and hence show Dirac cone in 3D	

Fig.1.10	Schematic diagram of (a) ordinary Hall Effect showing	23
	(b) Quantum anomalous Hall Effect (QAHE) showing	
	hysteresis in the graph of hall coefficient vs. applied field	
Fig 1 11	Schematic diagram of weak antilocalization (WAL) black	24
11g.1.11	dots represents the scattering centre and red lines are	24
	showing the direction of propagation of algorithms	
$E_{1} = 1.12$	Showing the direction of propagation of electrons	26
FIg.1.12	Kana and Mala	20
F' 1 1 2		20
F1g.1.13	Schematic diagram for CdTe/HgTe/CdTe heterostructure	28
	(b) Upper Fig. showing bulk energy bands for HgTe and	
	CdTe at I point, lower Fig. showing CdTe/HgTe/CdTe	
	quantum well in normal regime d <d<sub>c and inverted regime</d<sub>	
	d>d _c	
Fig1.14	(a) Band gap and band offset diagram for asymmetric	30
	AlSb/InAs/GaSb quantum wells. The left AlSb barrier	
	layer is connected to a front gate while the right barrier is	
	connected to a back gate. The E_1 subband is localized in	
	the InAs layer and H_1 is localized in the GaSb layer. Outer	
	AlSb barriers provide an overall confining potential for	
	electron and hole states. (b) Schematic band structure	
	diagram. The dashed line shows the crossing of E_1 and H_1	
	in the inverted regime. Hybridization between E_1 and H_1 ,	
	opens the gap.	
Fig. 1.15	Schematic diagram for valence band and conduction band	32
	for SnTe and PbTe materials.	
Fig. 1.16	Schematic diagram for the valence band and conduction	33
	band for pure Bi, Sb and $Bi_{1-x}Sb_x$	
Fig. 1.17	Spin resolved ARPES study of the topological insulator	34
	surface. (a) Schematic diagram of spin-ARPES	
	measurement setup which was used to measure the spin	
	distribution on the (111) surface Fermi surface of the	

sample $Bi_{0.91}Sb_{0.09}$ (b) Spin orientations on the surface create a vortex like pattern around Γ point. A net Berry phase is extracted from the full Fermi-surface data (c) Net polarizations along *x*, *y*, and *z* directions are shown. $P_z \sim 0$ suggests that spins lie mostly within the surface plane

- Fig. 1.18 (a) ARPES study of Bi_{1-x}Sb_x on the (111) surface of 35
 Bi_{0.9}Sb_{0.1} which probes the occupied surface states as a function of momentum on the line connecting the time 45 reversal invariant points in the surface Brillouin zone. Only the surface bands cross the Fermi energy five times.
 (b) A schematic diagram of the 3D Brillouin zone and its (111) surface projection.
- Fig. 1.19(a) Spatially resolved conductance study of the (111)36surface obtained at 0 mV over an scanning area of $1000 Å \times 1000 Å$. (b) Spin-ARPES study of the surfacestate measured at the Fermi level. Arrows are showingabout the spin textures from spin ARPES measurements.(c) Fourier transforms scanning tunneling spectroscopyFT-STS at Fermi energy (E_F). (d) The joint density ofstates (JDOS) at Fermi energy (E_F). (e) The spindependent scattering probability (SSP) at Fermi energy(E_F). (f) Close up of the JDOS, FT-STS, and SSP at Fermienergy (E_F), along the Γ-*M* direction.
- Fig. 1.20 Band structure of Sb₂Se₃, Sb₂Te₃, Bi₂Se₃ and Sb₂Te₃ 37 calculated by *ab initio* density functional theory, red represents occupied bulk and surface states and blue the bulk band gap.
- Fig. 1.21 (a) Crystal structure of Bi₂Se₃ (b) Brillouin zone of Bi₂Se₃, 39
 (c) Three possible positions A, B, C in-plane triangle lattice.
- Fig. 1.22 Schematic representation of the band structure of Bi₂Se₃(I) 41
 Hybridization of Bi and Se orbitals (II) formation of bonding and anti bonding states due to inversion

xv

symmetry (III) Crystal field splitting (IV) effect of spin orbit coupling.

- Fig. 1.23 ARPES measurement of $Bi_2Se_3(a, b)$ cuts along the M- Γ -M 42 and K-F-K directions (c) momentum distribution curve corresponding to (a)
- Fig. 1.24 42 (a) ARPES study of Bi_2Se_3 showing surface electronic states with a single spin polarized Dirac cone. (b) The surface Fermi surface exhibits a chiral left handed spin texture. (c) Surface electronic structure of Bi₂Se₃ computed in the local density approximation. The shaded regions describe bulk states, and the lines are showing the surface states. (d) Schematic of the spin-polarized surfacestate dispersion in $Bi_2X_3(1;000)$ topological insulators.
- Fig. 1.25 ARPES experiment of Bi₂Te₃ topological insulator, Fig. A 43 to D is presenting the result of doping concentration Sn in to Bi₂Te₃ from δ =0 to 0.9%. Each section is showing the band dispersion along the K-F-K direction and the respective momentum distribution curve, here SSB stands for surface state band, BCB- bulk conduction band and BVB- bulk valence band.
- Fig. 1.26 Magnetic impurity such as Fe on the surface of Bi₂Se₃ 44 opens a gap at the Dirac point. The interaction of Fe ions with the Se surface set a band gap and the time reversal symmetry breaking disorder potential introduced on the surface. (b) A comparison of surface band dispersion with and without Fe doping. (C) and (d) Nonmagnetic disorder created via molecular absorbent NO₂ or alkali atom adsorption K or Na on the surface leaves the Dirac node intact in both Bi₂Se₃ and Bi₂Te₃.
- Fig. 1.27 Variation of Magnetization vs applied magnetic field for 45 samples Bi_{2-x}Fe_xTe₃ (x=0, 0.08, 0.15, 0.20, 0.25 and 0.30) (b) variation of electrical resistivity vs temperature for samples Bi_{2-x}Fe_xTe₃ (x=0, 0.08, 0.15, 0.20, 0.25 and 0.30)

xvi

Inset shows the zoom pic of resistivity below 20K.

46

48

49

- Fig. 1.28 (a) Variation of electrical resistivity vs. temperature for samples $Bi_{2-x}Mn_xTe_3$ (x=0, 0.03, 0.05, 0.09 and 0.15), Inset shows the seebeck coefficient of sample (x=0.03 and 0.15) (b) variation of Magnetization vs. applied magnetic field for samples x=0.03 and 0.15, Inset represents the χ vs. T graph for x=0.03 sample (c) variation of electrical resistivity vs. temperature for samples $Bi_{2-x}Ca_xSe_3$ (x=0, 0.005 and 0.012), Inset shows the normalized resistivity.
- Fig. 1.29 (a) Variation of MR as a function of applied magnetic field (H); Inset shows the MR ratio between 3K-340K for Bi₂Te₃ nanosheets (b) Variation of MR as a function of applied magnetic field showing linear behavior in Bi₂Te₃ film (c) Plot of Hall mobility and MR showing good agreement with PL model in Bi₂Te₃ film (d) SdH oscillations in Bi₂Se_{2.1}Te_{0.9}
- Fig. 1.30 (a) Variation of resistivity vs. temperature for Bi₂Te₃ sample showing superconductivity (Tc)~ 2.7K (b) Variation of resistivity vs. temperature for Bi₂Te₃ sample showing superconductivity (Tc)~ 8K (c) Variation of resistivity vs. temperature for Bi₂Te₃ sample showing superconductivity (Tc)~ 9K (d) Variation of resistivity vs. temperature for Cu_{0.12}Bi₂Se₃ sample showing superconductivity (Tc)~ 3.8K.

Chapter 2 Experimental: Synthesis Procedure and Characterization details

Fig.2.1 (a) Mechanism and (b) experimental set up of XRD 53 instrument. Fig.2.2 Schematic diagram of test circuit for measuring resistivity 55 with the four-point probe method. Fig.2.3 Schematic diagram for Hall Effect measurement 56 Fig.2.4 Schematic diagram for thermoelectric measurement 58 59 Fig.2.5 Schematic diagram of X-ray photoemission spectroscopy

Fig.2.6	(a) 2ω detection principle.(b) SQUID detection schematic.	61
	(c) MPMS instrument set up used for characterization	
Fig. 2.7	Schematic diagram of SQUID magnet	63
Fig. 2.8	Microscope (SEM) (b) Instrumental set up for the SEM	65
	instrument using for the characterization.	
Fig.2.9	(a)Principle of Atomic Force Microscopy (AFM) (b)	67
	instrumental Set up of AFM used for characterization	
Chapter 3	Magnetic and Magneto-transport study of $Bi_2Cu_xTe_{3-x}$	
	(x=0, 0.03, 0.09) Topological Insulators	
Fig.3.1	(a)XRD pattern of as prepared Bi ₂ Cu _x Te _{3-x} (x=0, 0.03,	71
	0.09) (b) Zoom portion of (00 15) peak, (c) Variation of	
	lattice parameter c as a function of doping concentration x.	
Fig.3.2	Laue pattern of the single crystals Bi ₂ Cu _x Te _{3-x} (x=0, 0.03,	72
	0.09).	
Fig.3.3	Variation of resistivity as a function of temperature at	73
	different magnetic field for the samples $Bi_2Cu_xTe_{3-x}$ (x=0,	
	0.03, 0.09)	
Fig.3.4	(a, b, c) Variation of Hall resistivity with applied magnetic	75
	field at different temperatures for the samples $Bi_2Cu_xTe_{3-x}$	
	(x=0, 0.03, 0.09) respectively, Inset I is showing variation	
	of carrier concentration as a function of temperature	
	whereas Inset II is showing variation of carrier mobility	
	with temperature at different applied magnetic field for	
	respective samples.	
Fig.3.5	(a, b, c) Variation of magnetoresistance as a function of	78
	applied magnetic field under different temperatures for the	
	samples x=0, 0.03 and 0.09 respectively.	
Fig.3.6	Study of SdH oscillation for the sample x=0.03 (a) SdH	79
	oscillations plotted against 1/B at different temperatures.	
	(b) SdH oscillations and Landau levels with inverse	
	magnetic field and linear fitted curve (red line). (c) The	
	FFT corresponding to Fig. (a); (d) Fit to the Dingle	
	damping term at 2K with the resulting Dingle temperature	

 T_D =9K, Inset show the L-K fitting of the SdH oscillation and obtained cyclotron mass (m_c) 0.13 m_e from fitting, at applied field 8.74T

- Fig.3.7Study of SdH oscillation for the sample x=0.09 (a) SdH83oscillations plotted against 1/B at different temperatures.(b) SdH oscillationsand Landau levels with inversemagnetic field and linear fitted curve (red line).(c) TheFFT corresponding to Fig. (a); (d) Fit to the Dingledamping term at 2K with the resulting Dingle temperature $T_D=13K$, Inset show the L-K fitting of the SdH oscillationand obtained cyclotron mass (mc) 0.18 me from fitting, atapplied field 10.74T.
- Fig.3.8 Susceptibility (χ) vs. Temperature (T) curves at an applied 85 field of 1000 Oe for the samples x=0.03 and 0.09. Figs. (b and c) showing individual fitted curves for the samples x=0.03 and 0.09.

- Chapter 4 Tuning of Carrier type, Enhancement of Magnetoresistance and Room Temperature Ferromagnetism in Cu doped Bi2Te3 Topological Insulators
- Fig.4.1Room temperature X-ray diffraction patterns of Bi_2Te_3 91and $Bi_2Cu_{0.15}Te_{2.85}$, Inset: Laue pattern of $Bi_2Cu_{0.15}Te_{2.85}$.
- Fig.4.2(a, b) Valence Band studies of Bi2Te3 and Bi2Cu0.15Te2.8593by Angle Integrated Photoemission Spectroscopy.
- Fig.4.3 Temperature dependence of electrical resistivity for 95 Bi₂Te₃ and Bi₂Cu_{0.15}Te_{2.85} and (b) Variation of Seebeck coefficient as a function of temperature. Inset represents the power factor (PF) of the Bi₂Te₃ and Bi₂Cu_{0.15}Te_{2.85}.
- Fig.4.4 (a) Magnetic field dependence of the Hall resistivity of the 97
 Bi₂Te₃ at 200K and 300K. Inset I represents the variation of carrier concentration as a function of temperature whereas Inset II shows the variation of carrier mobility

xix

with temperature for Bi_2Te_3 and (b) Magnetic field dependence of the Hall resistivity of the $Bi_2Cu_{0.15}Te_{2.85}at$ 200K and 300K, Inset is the variation of carrier mobility as a function of applied magnetic field at 200K and 300K.

- Fig.4.5 (a) Magnetoresistance as a function of magnetic field for 101 Bi₂Te₃ at different temperatures and (b, c, d) Magnetoresistance as a function of magnetic field for Bi₂Cu_{0.15}Te_{2.85} at different temperatures.
- Fig.4.6 (a)-(b) Field dependence of magnetization for Bi₂Te₃ and 104 Bi₂Cu_{0.15}Te_{2.85} samples at 5K and 50K respectively. The inset represents hysteresis in Bi₂Cu_{0.15}Te_{2.85} sample.(c)Temperature dependence of magnetization for Bi₂Cu_{0.15}Te_{2.85} at an applied magnetic field of 1000 Oe showing ferromagnetic nature.(d) Field dependence of magnetization for Bi₂Cu_{0.15}Te_{2.85} at different temperatures (i.e. 2K, 5K 50K and 300K).
- Fig.4.7 X-ray Photoemission core level spectrum of Bi and Te in 106
 Bi₂Te₃ sample (a) & (b) whereas (c), (d)&(e) show core level spectrum of Bi, Te and Cu in Bi₂Cu_{0.15}Te_{2.85}.
- Chapter 5Enhancement in power factor due to anti-correlation
between Electrical Conductivity and Thermoelectric
power and Induced magnetic ordering in high mobility
Zn doped Bi2Te3 Topological Insulator
- Fig.5.1 (a)Room temperature X-ray diffraction patterns of Bi_{2-} 111 _xZn_xTe₃ (x=0, 0.10, 0.20) single crystals, (b) Variation of lattice parameter with Zn concentration for $Bi_{2-x}Zn_xTe_3$ (x=0, 0.10, 0.20).
- Fig.5.2Temperature dependence of zero field electrical resistivity113for $Bi_{2-X}Zn_XTe_3$ samples (X=0, 0.10, 0.20) and Inset I is
showing the field dependence of magnetization (MH) for
 $Bi_{2-X}Zn_XTe_3(X=0.10 and 0.20)$ samples, Inset II is
showing magnetization vs. temperature (MT) curve for
X=0.10 sample and Inset III is showing MH curve for

X=0.10 sample at different temperatures *viz.* 2K, 18K, 56K, 300K.

- Fig.5.3 Variation of power factor (PF) as a function of 115 temperature for $Bi_{2-x}Zn_xTe_3$. Inset: represents the thermopower of the $Bi_{2-x}Zn_xTe_3$.
- Fig.5.4 (a) Magnetic field dependence of the Hall resistivity at 116 different temperatures for Bi_2Te_3 (b) Magnetic field dependence of the Hall resistivity at different temperatures for x=0.20 sample. Inset: Variation of mobility as a function of temperature for $Bi_{2-x}Zn_xTe_3$ (x=0, 0.10, 0.20).
- Fig.5.5 (a, b, c) Normalized MR as a function of magnetic field at 119 different temperatures $Bi_{2-x}Zn_xTe_3$ (x=0, 0.10, 0.20). (d) Variation of mobility and MR as a function of temperature for the sample x=0.20 at low field. Inset: Variation of MR at 2K for $Bi_{2-x}Zn_xTe_3$ (x=0, 0.10, 0.20)
- Chapter 6 Distinguishing Bulk state from Surface state by simultaneous SdH and dHvA oscillations in Sb_{1.90}Cu_{0.10}Te₃ Topological Insulator
- Fig.6.1 Magnetic field dependence of the Hall resistivity of 127
 Sb_{1.90}Cu_{0.10}Te₃ at different temperatures. Inset (a) represents the variation of carrier mobility as a function of temperature, Inset (b) Magnetic field dependence of the Hall mobility at 1.8K and 300K.
- Fig.6.2 (a)Magnetoresistance as a function of magnetic field of 129 Sb_{1.90}Cu_{0.10}Te₃ at different temperatures. Inset: variation of electrical resistivity with respect to Temperature. (b) SdH oscillations of the longitudinal resistance (second derivative) with 1/B at different temperatures. (c) The FFT corresponding to Fig. (b); (d) SdH oscillations (second derivative) and Landau levels with inverse magnetic field and linear fitted curve (red line).
- Fig.6.3Fit to the Dingle damping term at 1.8K with the resulting131Dingle temperature $T_D=36.8K$, Inset show the L-K fitting

of the SdH oscillation and obtained cyclotron mass (m_c) from fitting at applied field 7.32T.

- Fig.6.4 Field dependence of magnetization of Sb_{1.90}Cu_{0.10}Te₃ at 132 2K, 5K and 10K respectively. The inset represents Temperature dependence of magnetization in ZFC mode at an applied magnetic field of 1000 Oe. (b) SdH oscillations in the magnetization (second derivative) with 1/B at different temperatures. (c) The FFT corresponding to Fig. (b), (d) dHvA oscillations of the magnetization (second derivative) and Landau levels with inverse magnetic field and linearly fitted data red line).
 Fig.6.5 Fit to the Dingle damping term at 1.8K with the resulting 133
- Fig.6.5 Fit to the Dingle damping term at 1.8K with the resulting 133 Dingle temperature $T_D=29.3$ K, Inset shows the L-K fitting of the dHvA oscillation in magnetization and obtained cyclotron mass (m_{cyc}) from fitting at applied field 5.52T.
- Chapter 7Presence of Anti-Ferromagnetic ordering at RoomTemperature in low concentration Co doped Sb2Te3Topological Insulators
- Fig.7.1 X-ray diffraction (XRD) pattern of $Sb_{2-x}Co_xTe_3$ (x=0, 0.02, 139 0.06, 0.10) single crystals.
- Fig.7.2 Le Bail refinement of the XRD pattern for the samples 140 (x=0, 0.02, 0.06, 0.10).
- Fig.7.3 (a, b) Represents the EDX spectra of the samples x=0 and 141 x=0.10 respectively.
- Fig.7.4 (a, b) Show the SEM images of the samples x=0 and 142 x=0.10 respectively. (c, d) Represents the 3D AFM images of x=0 and x=0.10 samples respectively, (e) shows the variation of height vs. scanned distance for x=0 sample.
- Fig.7.5Represents the XPS survey scan of x=0.10 sample, Inset:144XPS high resolution core level spectra of Co region (2p).
- Fig.7.6Shows the variation of magnetization (M) vs. temperature146(T) for the Co doped samples (x = 0.02, 0.06, 0.10).

Fig.7.7 (a, b, c) show the variation of magnetization (M) vs. applied field (H) for the Co doped samples (x=0.02, 0.06, 0.10) respectively. Inset of Fig.7.7 (a), (b) and (c) represents the zoom picture of MH behavior at 2K. Fig. 7.7 (d) represents compile picture of M vs. H behavior for the samples (x=0.02, 0.06, 0.10) at 2K, Inset (I): shows the compile picture of M vs. H for the samples (x=0.02, 0.06, 0.10) at 300K, Inset (II) represents the variation of coeresive field (H_c) as a function of Temperature (T) for the samples x=0.02 and x=0.06. 147

LIST OF TABLES

Page No.

Table 3.1	Different parameters obtained from susceptibility curves	86
	of samples $x=0.03$ and 0.09.	
Table 6.1	Different parameters (k_F , the Fermi momentum; n_{b} , the	134
	bulk carrier concentration; n_{s} , the surface carrier	
	concentration; n_{tot} , the total carrier concentration) obtained	
	from SdH, dHvA oscillations and their first Fourier	
	transforms.	
Table 7.1	Different parameters obtained from Le-bail refinement of	140
	the samples (x=0, 0.02, 0.06, 0.10).	

Spin-orbit induced topological insulator (TI), a new type of materials, which are insulating in bulk but conducting at the surfaces, has attracted a large interest in the area of condensed matter physics. This is due to the gapless edge or spin resolved surface states (SS), which are topologically protected by time reversal symmetry (TRS). The spins are locked in the perpendicular direction of momentum due to the strong spin-orbit interaction. As a matter of fact, electrical conduction is robust against backscattering at the edge states or on the surfaces in TIs. These special helical spin properties of electrons make TIs interesting and relevant for new physics. Since the locking of spin and orbital states is protected by time reversal symmetry, the delocalized surface states are unaffected from nonmagnetic dopants and defects. Moreover the coupling of the spin and orbital angular momentum of an electron leads to an inversion of the band gap. The possibility of Majorana Fermions, topological superconductivity, novel magnetoelecric quantum states, the absence of backscattering from nonmagnetic impurities, exciton condensation, magnetic monopole, and anomalous quantum Hall effect types of exotic properties in TIs are very promising in the application of spintronic devices and quantum computing. Topological surface states in Bi₂Te₃ and Bi₂Se₃ with only one mass less Dirac cone on each surface were studied using Angle-resolved photoemission spectroscopy (ARPES). Quantum magneto-transport phenomenon such as weak antilocalization, Aharonov-Bohm oscillations and quantum conductance fluctuations are associated with surface states. The time reversal symmetry protection of the Dirac point can be lifted by magnetic dopant, resulting in a band gap due to the separation in the upper and lower branches of the Dirac cone. It has been theoretically predicted that surface state of a topological insulator show a linear energymomentum relation similar to Dirac fermions. Such type of backscattering free surface with locked spin and momentum may serve as a platform for both fundamental physics and technological applications like spintronics or quantum computing.

In **Chapter1**, an overview of some of the essential properties of these new types of materials as well as related properties of quantum Hall insulators is given. The purpose of this chapter was to give an introduction to some of the most important properties and to provide information on the analogies and differences between the different systems.

In **Chapter 2**, we have discussed the synthesis process and the different experimental techniques which have been used to characterize the samples. Information about pure phase of the sample was obtained from the X-ray diffraction (XRD). We have investigated transport properties such as electrical resistivity, thermoelectric property, Hall Effect and magnetoresistance (MR) of the samples using PPMS. Variation of magnetization (M) with temperature (T) and applied magnetic field (H) are reported. Surface morphology and chemical states of the constituent elements have been investigated using SEM and XPS analysis. Since we get only 2D image using SEM, for 3D image we used AFM technique also.

In **Chapter 3**, we have investigated structural, resistivity, magneto-transport and magnetic properties of $Bi_2Cu_xTe_{3-x}$ (x=0, 0.03, 0.09) samples. Single crystallinity is further investigated by Laue pattern. It is also observed that Cu doping tunes the carrier from *n* to *p* type which is attributed due to the Te_{Bi} and Bi_{Te} antisites effects. With Cu doping, resistivity increases which may be due to the extra scattering centers produced due to Cu. Subnikov-de Hass oscillation has been studied. Quantum anomalous Hall Effect (QAHE) has been observed in Hall analysis of the doped samples which was an indication of magnetic ordering in doped samples. Variation of magnetization (M) with temperature (T) i.e., MT as well as with applied magnetic

field (H) i.e., MH experiment also confirm the presence of ferromagnetism in Cu doped Bi_2Te_3 samples.

In **Chapter 4**, structural, resistivity, thermoelectric power, magneto-transport and magnetic properties of $Bi_2Cu_{0.15}Te_{2.85}$ topological insulators have been investigated. The tuning of charge carriers from *n* to *p* type by Cu doping at Te sites of Bi_2Te_3 is observed both from Hall Effect and thermoelectric power measurements. Carrier mobility decreases with the doping of Cu which provides evidence of the movement of Fermi level from bulk conduction band to the bulk valence band. Thermoelectric power also increases with doping of Cu. In present investigation we have found room temperature ferromagnetism in x=0.15 sample. The observed value of MR was as large as 1000% in x=0.15 sample. Presence of QAHE even at 300K was also supporting the presence of ferromagnetism in Cu doped sample.

In **Chapter 5**, electrical resistivity, thermoelectric power, magnetotransport and magnetization of Zn doped Bi_2Te_3 Topological Insulator were studied. Electrical conductivity is enhanced at higher Zn concentration, and the carrier mobility estimated from Hall data reaches a remarkable value of ~7200 cm² V⁻¹S⁻¹. Large positive magnetoresistance (MR~400%) is observed in high mobility samples. Interestingly, it is found that the coupling between electrical conductivity and Seebeck coefficient is broken for higher Zn doped Bi_2Te_3 samples which effectively enhances the thermoelectric power factor (from 2.1 mW/K²m for Bi_2Te_3 to 4.64 mW/K²m for Zn doped Bi_2Te_3).

In **Chapter 6**, we have investigated the quantum oscillations both from magnetotransport and magnetic measurements in Cu doped Sb_2Te_3 sample. From both the Shubnikov–de Haas (SdH) and the de-Haas van Alphen (dHvA) oscillations the bulk and surface states in TI can be distinguished without any angle dependent measurements. In the present chapter, the magneto-transport and magnetization measurements of $Sb_{1.90}Cu_{0.10}Te_3$ were performed at different temperatures and different fields. Magneto-transport measurement at high field indicates the coexistence of both bulk and surface states whereas magnetization study at high field shows the existence of bulk state. Lifshitz-Kosevich and first Fourier transform (FFT) analysis supports the signature of bulk and surface states.

In **chapter 7**, structural and magnetic properties of Co doped Sb₂Te₃ topological insulators have been investigated. Surface morphology has been studied using scanning electron microscope (SEM) and atomic force microscope (AFM). X-ray photo electron spectroscopy (XPS) study reveals the mixed states of Co in Co²⁺and Co³⁺. Magnetic study indicates that the substitution of Co in Sb₂Te₃ not only tune the materials from diamagnetic to antiferromagnetic (even at room temperature) but also propose a promising materials for antiferromagnetic TI which may be useful even for room temperature applications.

In **chapter 8**, we have discussed conclusion of entire thesis along with the future prospective of our work.