CHAPTER 4

PARAMETRIC ANALYSIS OF SHEAR LAG IN BOX BEAMS

4.1 INTRODUCTION

The bending stress distribution across wide flangles box beam under symmetrical
flexure is not uniform. This phenomenon has longrbeecognized as shear lag. The stress
at the junctions of the web and flange is much &ighan that at the center of the flange.
This phenomenon is renowned as positive shearrdgopposite to this is negative shear
lag.

Various analysis of shear lag phenomenon is cargat by the variational
approach. The potential energy of a box beam cineis(i) potential energy of the load
system (ii) strain energy of side webs and flangad (iii) strain energy of the two cover
sheets. The longitudinal displacement (normal stmistribution) of the flange usually
assumed as parabolic variation, cubic parabolitattan, quartic parabolic variation and
pentic parabolic variation as short out in literatgurvey. The two Reissner parameters n
and k have different values according to the assutoegitudinal displacement of the
flange. The variational principle was applied fitishe by Reissner (1945) in analyzing the
box beam (Fig. 4.1).

In the present chapter, more detailed investigatiomarious parameters is carried
out. The longitudinal displacement of the flangeassumed a polynomial of order ‘a’

(where ‘a’ is an integer 2) and the potential energy of box beam (Fig. &lgvaluated.



The differential equation is solved by using thimgple of minimum potential energy in a

way as originally proposed by Reissner (1945).
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Fig. 4.1. Rectangular box beam with doubly symmetross section
(After Reissner 1945)

4.2 FORMULATION AND SOLUTIONS

In a box beam, shown in Fig. 4.1, the top and lbotstab has a width ofw2and a uniform
thicknesst. The web has thicknegsand depth B A given distribution of load is applied
normal to the plane of the top cover sheet aloegsflan length A distribution of bending
momentsM(x) corresponds to the load distribution. The span-veiserdinate isx, the
coordinate in the plane of the cover sheets peifpelad to thex direction bey andz(X) the
deflection of the neutral axis of the beam.

The elastic potential energy inducing in the stites by the load system is

M=[™ (X)Z—Xzzdx 1)

The second part is the strain energy of side webs,
=2 JEn 2o @
Y20 MR

The quantityt,, denotes the principal moment of inertia of the side web

The third part is the strain energy of the two casleeets. With the assumption that
the normal strain in the chord wise direction ie tbheet is negligibly small (Reissner

1945), the strain energy of the two sheets is gbsethe integral
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M. =% j j 2A[E£2dx+ G/2] dxdy (3)

whereE andG denote effective modulus of elasticity and rigidigspectively. Span-wise
normal strainsyk Shear trainy, (neglecting the other term, i.@y/0z (Reissner 1945)) are
then expressed @s/0z

_0u _0u

£ . =—, A =— 4
“oox T oy @)

The total potential energy can be represented as

|_|:|_||+I_|W+|_|S (5)

The theorem of minimum potential energy states thattotal potential energy
becomes minimum for the correct displacement fonstu and z, if and only if, such
displacement function are compared which satidfga@hditions of support and continuity
imposed on the displacements [Reissner 1945].

The assumptions for the span-wise sheet displadamen

y

u(x, y):“[j_i*(l‘w) U] ®)

whereU(x) represents the correction due to shear lag. Insi€#te vanishing chord-wise
variation of the sheet displacements of elemerb@gm theory, the relative magnitude of
the functionU(x) is a measure for the magnitude of the shear lagefThe correction is
such that the continuity of the displacements atjtimction of web and flange along the
flanges, that is along = +w is preserved [Reissner 1945].

From Egs. (6) and (4) we obtain the following exgsiens for the strains in the sheets,

£, :¢h[z"+(l—§)U]' (7)
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a -1
y=th— my;_l U (8)

The expression for the strain energy of the colieets is obtained as

a -1

n.= e 2+ -y ue 62X g5 ana ©)
In EqQ. (9) integrating with respect yaand substituting
I =4wth®> | =1+l (10)
we have

1 1 & E 1

=—|ElI{Z'+(1 + u? +—zU —— U} dx 1lla
2~f 424 2a+1 a+f ( { +( EG ) (112)

Denoting the coefficients for the assumed polyradnaf the sheet displacement as

2

1 2 2a a
A=(1+ —),B=(—),C= 11b
( 2a+1 a+1) (a+1) (Za—l) (110)
the Eq. (11a) can be written
(12)

jEI{z’+AU +BzU+C —U@ d:

substituting Egs. (12), (2), and (1) into Eq. {he expression for the potential energy of

the system becomes

1 2 i 1 2 n 1
H:I{EEI(z) + Mz} o|x+j_2 E{ AU’+ Bz Ut %W ® d (13)

Differential equation and boundary conditions ZandU are obtained by making

aM =0 (14)

Thus, withx; andx, denoting the interval of integration,
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1

o= j{[E|z+M+_E|U]az+E|; AU - ZH%E OV df El AU ]za}q&

N 3o

(15)
As 0z" andoU are arbitrary in the intervak{ x;] the terms multiplying them must vanish.

The following two differential equations

s4Bly M _g (16)
2 | El
CG1 B
EI[U'-——=U+ 20 17
V-2 = U + =7 ] (17)

The integrated portion of Eq. (15) defines the lalaug and transition conditions for the
functionU. At a section where the sheet is fixed,
oU =0andU =0 18}

At a section, where the sheet is not fixed and equentlyoU is arbitrary,

El [U'+£z]'—0 (19)
° 2A

Transition conditions for adjacent bays with diffiet stiffness are

U and EI JU’ +%z]’continuous [Reissner 1945] (20)

The above boundary and transition conditions ar&dihition to those imposed arandM
in elementary beam theory.

The quantityU is eliminated from Eqgs. (16) to (20), and a systeihrelations
containing the beam deflectiom, only, are obtained. The differential equation fors

derived by differentiating Eq. (19) and substitgtis’ from Eqg. (18) as

24 B A My 28 L

El 4C | 21=0 (1)
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Equation (21) is written as

CE A a-Blyy o M, gEAM
z GWQ(CA:)(1 venk E|+V€'G(§ El (22)

With the help of Egs. (16) and (17), the boundaspdition (18), which helps when the

sheet is attached to the support, is transformted in

B® | M’ :
(1_E\TS)Z' '4-5 = 0 (Reissner 1945) (23)

Similarly, the boundary condition (19), which holdfen the sheet is not attached to the

support, becomes

B? | M
1-—-8)Z'% =0 24
( 4A | ) El (24)

The continuity condition (20) may be transformedamanalogous manner. The values of

the flange stress are given by

o, =+EhZ’ (25)
For the application of the results, it may be ndteat the differential equation (21)

can be solved for the value Bf which, according to (25), gives directly the apprate

value of the flange stress The magnitude of the deflectiacan then be found from the

value ofz” as in elementary beam theory.

For the evaluation of the solution the two Reis'sngarameters are

n:% ,kzi /nEE (26, 27)
1_875 w\ AE
4A |
Substituting the values of Reissner’s parametbesdifferential equation (22) transform as

7oty M M

- — 28
k? El k* El (28)
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The boundary condition at an end section wherestieet is attached to the support

becomes

Z'=-n— 29
B (29)

and the boundary condition at an end section wtieresheet is not attached to the support

becomes
- (30)
El

The value of the parameter n and k have been faamle as originally by E.
Reissner (1945) for the degree of polynomial twiee Values of corresponding polynomial
coefficient A, B and C in the present study ares8AI3 and 4/3 respectively. The values of
two Reissner’s parameter are tabulated (Table thdgssumed degree polynomial 2 and 4.
The two Reissner’s parameters are well agreed th@lChang and Zheng (1987), in which
the polynomials of degree two, three and four asumed for the slab displacement of the

box girder bridge.

Table 4.1. Values of Reissner’s parameters fgrekeof polynomial 2 and 3

Polynomial coefficients Reissner’s parameters
Degree of polynomiald
A B C n K
3 9/14 | 3/2 9/5 1/(1-#81) | 1AMN(14nG/SE)
4 32/45| 8/5 16/7| 1/(1-910I) | 1MW(45nG/14E)
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4.3 APPLICATION EXAMPLES

A cantilever beam with uniform load distribution atwlver sheet fixed at support, a beam
with simply supported and loaded according to a@dew and a built-up beam with

uniform loads distribution is analysed as origindll Reissner (1945).

4.3.1 Expression for SLF for Cantilever Beam Sutgigét¢o Uniform Loading
Assuming that the free end of the beam has co-atrelii= 0 and the fixed end of the beam

the co-ordinate = |. The distribution of bending moment may write tie form
M =Mo()° (31)

The differential equation (28) then becomes

1 O
I !__ _ 32
z kz [( ) (kl) (32)
Solving for Z we find
I M 0 . 2(!‘1 - 1)
Z'=—>{Dsinh kx+ D,coshkx- ? + 33
£ 10 D f (KI)? } (33)
Satisfying the boundary condition (30) wher 0 and (29) whex = |, we obtain
2= -Mog Xz 20D oop e 1)- SN K oy (34)
El I (kl1)? costkl
According to Eqg. (25), the flange stress at thediend of the beam becomes
M,h 2(n-1) 1 1
o (l)=+—2-{+ [tanhkl -—+—F—— 35
0 Tk < " Kicostki (33)

Setting the equation (35) in the dimensionless faitme shear lag factor may be finally

expressed as

o (l) 2(n 1) 1 1
M2 -1={ [tanh kI - H+k|coshk|]} (36)

F(s) =
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4.3.2 Expression for SLF for Simply Supported Bezubjected to Load Variation as
Cosine Law
In simply supported beam of span lengttassuming the origin of the coordinate system at

the center of the beam. The moment distribution bwwritten

X
M = M00057T|—

(37)
A particular solution of Eq. (28) is
1+n(— )
z= (I—)2 M, 7‘;' cosTTs (38)
moEl ( )

As Eq. (38) satisfies the boundary condition (3®) #he condition of vanishing deflection
at the ends of the beam, it is the complete exfeder the deflection function. Whehlk
= 0, Eq. (38) reduces to the expressionZar the case where shear lag is not taken into

account. The factor may be derived on the bas#bo¥e conditions as

1+ n(LT)2 1+ Eéﬁz
Kl vc\;fc I = (39)
., E A I
1+ (— = s
+(kl) 1+ nzGCIZ( 4AI)

The shear lag factor can be estimated as

F(s)=—K—-1= -1 (40)
Ty EAW , B |
1 i - (1-—_s
G e @ aar)

4.3.3 Expression for SLF for Built-up Beam Subjede Uniform Loading
For a beam with both ends built—in subjected tdfaumily distributed load, assuming

origin at the center of the span, the distributtdbbending moments may be written as
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M =Mo[(|—x)2—1—121

With this value oM, the Eqg. (28) is solved in the form

”__% _z_i_z(n_l)
zZ'= E {(:3 2 WY + D,coshkx}

Determining the constaiit, (Reissner 1945) the Eq. (42) result in

My, x> 1 (n-1) - coshkx_
= {(:3 12 Ky +[sinhkl ﬁ]”
2

The stresses in the flange is written as

M, L(n- 1)r cosrkx
()7 - |
2 k smh— K
2 2

(44)
The shear lag factor at the end of the span is

6(n- 1)[ anhK! __2]

F9= (KI)? 2 K

And at the centre of the beam is

12(n- 1)[ 1

"9 (KI)* smhkl_ﬂ]
2 2

4.4 PARAMETRIC ANALYSIS OF SHEAR LAG FACTOR (SLF)

Shear lag factor (SLF) can be expressed and eealimtseveral ways as

(41)

(42)

(43)

(45)

(46)

() Lee et al. (2002) defined SLF @&$a{omin, Where,omax is the maximum stress at the

center of the flange, anghi, is the minimum stress at web- flange junctionefirce degree

of negative shear lag.
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(i) Ratio of axial stress at web-flange junctioittwshear lag to axial stress at web flange
junction without shear lag, denotedia®y Kwan (1996) and Song et al. (1990).

In the present study, the shear lag factor is @dfims-(s) = o7 /(#Moh/l) — 1, which
could be understood physically as the ratio of mmaxn flange stress to its average value
minus one at any section, located at any distarma the support. The support condition
adopted are as (i) simply supported beam, (ii)iwdr beam (iii) built-up beam (at the
fixed end) and (iv) built-up beam (at midspan). Rbirthese cases, the load applied are as
shown in Fig. 4.2. For all such different loadinglasupport conditions, the expressions for
SLF have been derived (Egs. 36, 40, 45 and Z&g variation of two Reissner’s
parameters andk which varies along with the variation in the degoégolynomial @’ is

study.

A A A A A A G S S A oy oy oy Ty Yy Ty Ty T Y Y Y T T Ty T
Zgﬂaﬂﬁmﬂmﬂ% i { |
i 3
| ; | i | i)
(i) (ii) (iti)
Fig. 4.2. Different loading and support conditian box beam: (i) simply supported beam
(cosine law); (ii) cantilever beam (udl); (iii) Buup beam (udl)

i

=z

The variation ofF(s) have been investigated with respect to three patennyI, I/w and
G/E. The parameter/l defined as relative stiffnesss)(rof the cover sheet (flange) over
entire cross section. The value of these parametggmally adopted by Reissner iig=
0.5,l/w = 5 andG/E = 3/8. The parametet have been varied from 0.5 to 0.92 based on
some existing box girder bridges [Menn 1990]. Tleresponding results are plotted in
Fig. 4.4, adopting the other two parametersl/fas= 5 andG/E = 3/8. Similarly, the
variation of F(s) with respect td/w has been carried out for the values of parameters r

0.5, G/E = 3/8. Also, to study the effect of material prdpes onF(s), the ratio of shear
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modulus and Young’'s modulus is varied from 0.3t based on the Poisson’s rau

varying from 0 to 0.5.

The objective of this parametric study is to depeto set of monographs which can

readily wsed for practical design purposes of such box aestused either as building

bridge.

4.5 RESULTS AND DISCUSSION

The degree of polynomial ‘a’ significantly affedtse variation of Reissner’s parametn

andk (Fig. 4.3 (i) and 4.3 (ii)). Herethe coefficient Kl) is expressed as the ratio of sj
over width of the box bean€Chang and Zheng 198

It can be seen from Fig. 4.3, with increasing vabfiehe degree othe polynomial, the
value ofn converges at a value of 2 (approximately), wheréas,value olkl keeps on
increasing almost linearly witha’. So, the above graphs can be used to find ou

Reissner’s parameters for the corresponding degjithe polynomial.

n
3
.“\
ki
"
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(i) (ii)
Fig. 4.3. Variation®f Reissner’s parameters with degree of polynofaial
(i) variation of 'n’; (ii) variation of kI’
4.5.1 Variation of SLF with Varying rs and Degree & Polynomial ‘a’

The relative stiffnessgr influence significantly the variation of SLF. Kig. 4.4, sucl

variation of shear lag factor has been depicteddifferent cases. In a simply suppor
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beam subjected to cosine loading, the shear lagrfF(s) increases monotonically wii
increasing 4 and converges rapidly for the lower value of séffa ratio. Also, it can t
noted that the value &f(s) is higher for increasing degree of polynomial. Barantilevel
beam subjected to uniform loading, shear lag faF(s) remains less than 1, k. 4.4 (ii).

The value is comparatively much lower than thagiofply supported cas

L B B B e B A B B R R e
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m%.s ' -:uI:-'x Tos ﬂ:.i“ B ? ula B {]?E ' nlsa ' ”-IJ?!? "o o : i : i?
(iii) (iv)
Fig. 4.4. Monograph for shear lag factor with varyiy/I along with the degree «
polynomial: (i) simply supported beam; (ii) cantéz beam; (iii) buil-up beam (t fixed
end); (iv) built-up beam (at mid span)
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Fig. 4.4 (iii) and (iv), exhibit the case of a ftkbeam subjected to uniform loading. At the
fixed end, the value of SLF is 16% correspondinghi® 2 degree polynomial and 8% at
mid-span. The shear lag factor is negligibly snwalthe case of fixed end beams at the
support and mid span, Fig. 4.4. The results arfipts with Moffat and Dowling (1975).

In a box girder bridge shear lag is more pronoumgeddition of stiffener in the flange
panel as relative stiffness of the flange increases

4.5.2 Variation of SLF with Varying |/w and Degreeof Polynomial ‘a’

As ‘l/w’ increases, the effect of positive and negativeasiegs decreases [Chang and
Zheng 1987]. The study emphasized that the paramsggeificantly affects the negative
shear lag, and more detailed parametric study dhoeilundertaken. Therefore, the present
study reinvestigates the variation of the shearftagor with respect tol/w’. The same
trend for cantilever beam could be noted as presemt Fig. 4.5 (ii). The present study
provides a data set which is more versatile in $ephthe following: (i) the degree of
polynomial considered by other authors are onlybeh 2 to 5, whereas, the present study
‘a’ varies from 2 to 10 or 20. (ii) For any value ‘af, F(s) can be found. Therefore, this
monograph for will be useful significantly for dgsers. It can be noted from Fig. 4.5, that
F(s)is independent diw for simply supported beams with cosine loadingndteases with
the degree of polynomial. For the case of a camildeam, initially the value df(s)
increases for valu@’ varying from 2 to 4. Thereafter, tit€s) decreases for higher values
of ‘a’. In Fig. 4.5 (iii), it would be interesting to sdetailed variation.

Some typical plots showing the variation fefs) for certain practical values of r
andl/w with the degree of polynomiady), are given in Figs. 4.6 and 4.7. It can be shanh t
in simply supported box beafi(s) increases monotonically for a fixed value efand

converses for the higher value af.‘In the cantilever box beam, the shear lag fafitetly
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increases along witha® up to four and afterward it decreases linearlythe higher value

of ‘a’. However, in thebuilt-up beam, this variation exhibit decreasing tr
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Fig. 4.5. Monograph for shear lag factor with \iagyl/w along with the degree
polynomial: (i) simply supported beam; (ii) canuéx beam; (iii) buil-up beam (at fixe«

end); (iv) built-up beam (at mid span)
Another variation of theshear lag factor for a particular valuel/w represeni the same
trend for simply supported box beam. Whereas, intilewer box beam value cF(s)
increases for the value ca from 2 to 4. This variation is not significant dmafter tha

shear lag factor falls linearly for the higher \alof ‘a’ but atthe slower rate. In the bi—

up beam, the variation in the shear lag factornslar as in he case of a fixed value .
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At the fixed support, for the value I/w = 2.5 and lower, shear lag factor has

incre:

linearly for the value ofd’ from 2 to 4 and then reduces accordin
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Fig. 4.6. Variation of shear lag factor with degofpolynomial for /1 = 0.65, 0.85: (i,
simply supported beam; (ii) cantilever beam; @iililt-up beam (at fixed end); (iv) bt-up
beam (at mid span)

4.5.3 Variation of SLF with Varying G/E and Degreeof Polynomial ‘a’

The effect of material property s also been reinvestigated (Figs. 4.8, 4.9). In

cantilever box beam, it is clear from the figurattHfor a fixed value oG/E, the shear la

factor increases sharply for the degree of polymbr(a) 2 to 3 and decreases alm

linearly for the higher value o&'. The variation for the other type of beams is @nésd in
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the figure clearly. Therefo, these monographs can also be used to interpredftbet of

material properties in terms of varying poisonsa:
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Fig. 4.7. Variation of sheaag factor with degree of polynomial fdw = 2.5, 5, 7.5 an
10: (i) simply supported beam; (ii) cantilever bedim) built-up beam (at fixed end); (it
built-up beam (at mid span)
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Fig. 4.8. Monograph for shear lag factor with wagyG/E along with the degree «
polynomial: (i) simply supported beam; (ii) canuéx beam; (iii) buil-up beam (at fixe
end); (iv) buil-up beam (at mid span)
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Fig. 4.9. Variation of shear lag factor with degiof polynomial foG/E = 0.38, 0.40: (i)
simply supported beam; (ii) cantilever beam; pujilt-up beam (atiked end); (iv) buil-up
beam (at mid span)

4.6 SUMMARY AND CONCLUDING REMARKS

A clear understanding of the effects of variatidnparameters is essential to efively
control the shear lag phenomenon. However, thevatlg conclusions are drav

The present study involves extensive parametridysaver a wide range of variation
assumed cover sheet displacement. It elaboratediffeeent type of loading ar support
conditions. Shear lag is more pronounce as théivelatiffness of cover sheet increaln
simply supported case ths and the parametéfv in case of builap beam, which hava

great impact on shear laghe parameterrs, I/'w andG/E are the main features in design
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tubular structures. The effect of variation of #iese parameters in the design can be

estimated precisely and accurately. The monograpisented herein are applicable to the

both tubular framed buildings and box girder brislge well.
Ductility of a composite tubular structure is diffit to assess, however, the effect of
material properties on shear lag phenomenon cassessed. Therefore, the present study

is useful towards solving the assumption of polyramof the flange panels.
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