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CHAPTER 4 
 

PARAMETRIC ANALYSIS OF SHEAR LAG IN BOX BEAMS 
 

 

 

4.1 INTRODUCTION 

The bending stress distribution across wide flanges of a box beam under symmetrical 

flexure is not uniform. This phenomenon has long been recognized as shear lag. The stress 

at the junctions of the web and flange is much higher than that at the center of the flange. 

This phenomenon is renowned as positive shear lag and opposite to this is negative shear 

lag. 

Various analysis of shear lag phenomenon is carried out by the variational 

approach. The potential energy of a box beam consists of (i) potential energy of the load 

system (ii) strain energy of side webs and flanges and (iii) strain energy of the two cover 

sheets. The longitudinal displacement (normal stress distribution) of the flange usually 

assumed as parabolic variation, cubic parabolic variation, quartic parabolic variation and 

pentic parabolic variation as short out in literature survey. The two Reissner parameters n 

and k have different values according to the assumed longitudinal displacement of the 

flange. The variational principle was applied first time by Reissner (1945) in analyzing the 

box beam (Fig. 4.1). 

In the present chapter, more detailed investigation of various parameters is carried 

out. The longitudinal displacement of the flange is assumed a polynomial of order ‘a’ 

(where ‘a’ is an integer ≥ 2) and the potential energy of box beam (Fig. 4.1) is evaluated. 
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The differential equation is solved by using the principle of minimum potential energy in a 

way as originally proposed by Reissner (1945). 

 
Fig. 4.1. Rectangular box beam with doubly symmetric cross section 

(After Reissner 1945) 
 

4.2 FORMULATION AND SOLUTIONS 

In a box beam, shown in Fig. 4.1, the top and bottom slab has a width of 2w and a uniform 

thickness t. The web has thickness tb and depth 2h. A given distribution of load is applied 

normal to the plane of the top cover sheet along the span length l. A distribution of bending 

moments M(x) corresponds to the load distribution. The span-wise coordinate is x, the 

coordinate in the plane of the cover sheets perpendicular to the x direction be y and z(x) the 

deflection of the neutral axis of the beam. 

 The elastic potential energy inducing in the structure by the load system is  

2

2
( )l

d z
M x dx

dx
∏ = ∫                    (1) 

The second part is the strain energy of side webs, 

2
2

2

1
( )

2w w

d z
EI dx

dx
∏ = ∫                                                    (2)              

The quantity wI denotes the principal moment of inertia of the two side web  

The third part is the strain energy of the two cover sheets. With the assumption that 

the normal strain in the chord wise direction in the sheet is negligibly small (Reissner 

1945), the strain energy of the two sheets is given by the integral  
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2s xt E dx G dxdyε γ∏ = +∫ ∫                  (3) 

where E and G denote effective modulus of elasticity and rigidity respectively. Span-wise 

normal strain ԑxx shear train λyz (neglecting the other term, i.e., ∂ν/∂z (Reissner 1945)) are 

then expressed as ∂ν/∂z 

xx

u

x
ε ∂=

∂
, yz

u

y
λ ∂=

∂
                   (4) 

The total potential energy can be represented as 

l w s∏ = ∏ +∏ +∏                                          (5) 

The theorem of minimum potential energy states that the total potential energy 

becomes minimum for the correct displacement functions u and z, if and only if, such 

displacement function are compared which satisfy all conditions of support and continuity 

imposed on the displacements [Reissner 1945]. 

The assumptions for the span-wise sheet displacement is 

( , ) [ (1 ) ( )]
a

a

dz y
u x y h U x

dx w
= ± + −                  (6) 

where U(x) represents the correction due to shear lag. Instead of the vanishing chord-wise 

variation of the sheet displacements of elementary beam theory, the relative magnitude of 

the function U(x) is a measure for the magnitude of the shear lag effect. The correction is 

such that the continuity of the displacements at the junction of web and flange along the 

flanges, that is along y = ± w is preserved [Reissner 1945].  

From Eqs. (6) and (4) we obtain the following expressions for the strains in the sheets, 

[ (1 ) ]
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x a

y
h z U

w
ε ′ ′ ′= + −∓                                                                           (7) 
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The expression for the strain energy of the cover sheets is obtained as 

1
2 2 2

1
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−
′ ′ ′∏ = + − +∫∫                          (9) 

In Eq. (9) integrating with respect to y and substituting  

24sI wth=     s wI I I= +                                       (10) 

we have 
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 Denoting the coefficients for the assumed polynomial of the sheet displacement as
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the Eq. (11a) can be written  

2 2
2

1 1
{ }

2s s

E
EI z AU Bz U C U dx

G w
′ ′ ′ ′ ′ ′∏ = + + +∫

                                                              
(12) 

substituting Eqs. (12), (2), and (1) into Eq. (5), the expression for the potential energy of 

the system becomes 

2 2 2
2

1 1 1
{ ( ) } { }
2 2 s

E
EI z Mz dx EI AU Bz U C U dx

G w
′ ′ ′ ′ ′ ′ ′ ′∏ = + + + +∫ ∫

 
                                (13) 

Differential equation and boundary conditions for z and U are obtained by making 

0∂ ∏ =                   (14) 

Thus, with x1 and x2 denoting the interval of integration,  
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As ∂z″ and ∂U are arbitrary in the interval [x1 x2] the terms multiplying them must vanish. 

The following two differential equations 

0
2

sB I M
z U

I EI
′ ′ ′+ + =                                                                                               (16) 
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EI U U z

A E w A
′ ′ ′ ′ ′− + =                    (17) 

The integrated portion of Eq. (15) defines the boundary and transition conditions for the 

function U. At a section where the sheet is fixed, 

0U∂ = and 0U =                                                   (18) 

At a section, where the sheet is not fixed and consequently ∂U is arbitrary, 

[ ] 0
2s

B
EI U z

A
′ ′ ′+ =                      (19) 

Transition conditions for adjacent bays with different stiffness are 

U and [ ]
2s

B
EI U z

A
′ ′ ′+ continuous   [Reissner 1945]                        (20) 

The above boundary and transition conditions are in addition to those imposed on z and M 

in elementary beam theory. 

The quantity U is eliminated from Eqs. (16) to (20), and a system of relations 

containing the beam deflection, z only, are obtained. The differential equation for z is 

derived by differentiating Eq. (19) and substituting U′ from Eq. (18) as 

2
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60 

 

Equation (21) is written as 

2
2 2( )(1 ) ( )

4
IVsE A B I M E A M

z w z w
G C A I EI G C EI

′ ′′ ′− − = − +                         (22) 

With the help of Eqs. (16) and (17), the boundary condition (18), which helps when the 

sheet is attached to the support, is transformed into  

2

(1 ) 0
4

sB I M
z

A I EI

′′ ′ ′− + =  (Reissner 1945)                         (23) 

Similarly, the boundary condition (19), which holds when the sheet is not attached to the 

support, becomes 

2

(1 ) 0
4

sB I M
z

A I EI
′ ′ ′− + =                            (24) 

The continuity condition (20) may be transformed in an analogous manner. The values of 

the flange stress are given by 

f Ehzσ ′ ′= ±                   (25) 

For the application of the results, it may be noted that the differential equation (21) 

can be solved for the value of z″ which, according to (25), gives directly the appropriate 

value of the flange stress σf. The magnitude of the deflection z can then be found from the 

value of z″ as in elementary beam theory. 

For the evaluation of the solution the two Reissner’s parameters are 

2
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1
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B I
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−
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1 C G

k n
w A E

=                     (26, 27)
 

Substituting the values of Reissner’s parameters, the differential equation (22) transform as 

2 2

1 IV M n M
z z

k EI k EI

′ ′′ ′− = − +                            (28) 
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The boundary condition at an end section where the sheet is attached to the support 

becomes 

M
z n

EI

′′ ′ ′= −                   (29) 

and the boundary condition at an end section where the sheet is not attached to the support 

becomes 

M
z n

EI
′ ′= −                                         (30) 

The value of the parameter n and k have been found same as originally by E. 

Reissner (1945) for the degree of polynomial two. The values of corresponding polynomial 

coefficient A, B and C in the present study are 8/15, 4/3 and 4/3 respectively. The values of 

two Reissner’s parameter are tabulated (Table 4.1.) for assumed degree polynomial 2 and 4. 

The two Reissner’s parameters are well agreed with the Chang and Zheng (1987), in which 

the polynomials of degree two, three and four are assumed for the slab displacement of the 

box girder bridge. 

 

Table  4.1.  Values of Reissner’s parameters for degree of polynomial 2 and 3  
 

Degree of polynomial ‘a’ 
Polynomial coefficients Reissner’s parameters 

A B C n K 

3 9/14 3/2 9/5 1/(1-7Is/8I) 1/w√(14nG/5E) 

4 32/45 8/5 16/7 1/(1-9Is/10I) 1/w√(45nG/14E) 
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4.3 APPLICATION EXAMPLES 

A cantilever beam with uniform load distribution and cover sheet fixed at support, a beam 

with simply supported and loaded according to cosine law and a built-up beam with 

uniform loads distribution is analysed as originally by Reissner (1945).  

4.3.1 Expression for SLF for Cantilever Beam Subjected to Uniform Loading  

Assuming that the free end of the beam has co-ordinate x = 0 and the fixed end of the beam 

the co-ordinate x = l. The distribution of bending moment may write in the form 

2
0( )

x
M M

l
=

          
        (31)

 

The differential equation (28) then becomes 

20
2 2

1 2
[( ) ]

( )
IV M x n

z z
k EI l kl

′ ′− = − −                (32) 

Solving for z″ we find 

20
1 2 2

2( 1)
{ sinh cosh ( ) }

( )

M x n
z D kx D kx

EI l kl

−′ ′= + − +                   (33) 

Satisfying the boundary condition (30) when x = 0 and (29) when x = l, we obtain  

20
2

2( 1) sinh
{( ) [(cosh 1) sinh ]}

( ) cosh

M x n kl kl
z kx kx

EI l kl kl

− −′ ′= − − − −                (34) 

According to Eq. (25), the flange stress at the fixed end of the beam becomes 

0 2( 1) 1 1
( ) {1 [tanh ]}

coshf

M h n
l kl

I kl kl kl kl
σ −= ± + − +             (35) 

Setting the equation (35) in the dimensionless form, the shear lag factor may be finally 

expressed as 

0

( ) 2( 1) 1 1
( ) 1 { [tanh ]}

cosh
f l n

F s kl
M h kl kl kl kl

I

σ −= − = − +
±

                                                   (36) 
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4.3.2 Expression for SLF for Simply Supported Beam Subjected to Load Variation as 

Cosine Law 

In simply supported beam of span length l, assuming the origin of the coordinate system at 

the center of the beam. The moment distribution may be written  

0 cos
x

M M
l

π=
                    (37) 

A particular solution of Eq. (28) is   

2

2 0

2

1 ( )
( ) cos

1 ( )

nl M xklz
EI l

kl

π

πππ

+
=

+
                                     (38) 

As Eq. (38) satisfies the boundary condition (30) and the condition of vanishing deflection 

at the ends of the beam, it is the complete expression for the deflection function. When 1/k 

= 0, Eq. (38) reduces to the expression for z in the case where shear lag is not taken into 

account. The factor may be derived on the basis of above conditions as  
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1 ( ) 1 (1 )
4

s

E A w
n
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=
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                                                                              (39) 

The shear lag factor can be estimated as 

   

2
2 2

2

2 2
2 2

2

1 ( ) 1
( ) 1 1

1 ( ) 1 (1 )
4

s

E A w
n

kl G C lF s
E A w B I

kl G C l A I

π π

π
π

+ +
= − = −

+ + −
                                                     (40) 

4.3.3 Expression for SLF for Built-up Beam Subjected to Uniform Loading 

 For a beam with both ends built–in subjected to uniformly distributed load, assuming 

origin at the center of the span, the distribution of bending moments may be written as  
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2
0

1
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12

x
M M

l
= −                                                (41) 

With this value of M, the Eq. (28) is solved in the form 

20
22

1 2( 1)
{( ) cosh }

12 ( )

M x n
z D kx

EI l kl

−′ ′= − − − +              (42) 

Determining the constant D2 (Reissner 1945) the Eq. (42) result in  

20
2

1 ( 1) cosh 1
{( ) [ ]}

12 ( ) sinh
2 2

M x n kx
z

kl klEI l kl
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The stresses in the flange is written as            

20 1 ( 1) cosh 1
{( ) [ ]}

12 sinh
2 2

f

M x n kx
h

kl klI l kl
σ −= ± − + −                                                                 

(44) 

The shear lag factor at the end of the span is  

2

6( 1) 2
( ) [tanh ]

( ) 2

n kl
F s

kl kl

−= −                                                                                              (45) 

And at the centre of the beam is 

2

12( 1) 1 1
( ) [ ]

( ) sinh
2 2

n
F s

kl klkl

−= − −                                                                                         (46) 

4.4 PARAMETRIC ANALYSIS OF SHEAR LAG FACTOR (SLF)  

Shear lag factor (SLF) can be expressed and evaluated in several ways as  

(i) Lee et al. (2002) defined SLF as σmax/σmin, where, σmax is the maximum stress at the 

center of the flange, and σmin is the minimum stress at web- flange junction to define degree 

of negative shear lag.  
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(ii) Ratio of axial stress at web-flange junction with shear lag to axial stress at web flange 

junction without shear lag, denoted as λs by Kwan (1996) and Song et al. (1990). 

In the present study, the shear lag factor is defined as F(s) = σf /(±M0h/I) – 1, which 

could be understood physically as the ratio of maximum flange stress to its average value 

minus one at any section, located at any distance from the support. The support condition 

adopted are as (i) simply supported beam, (ii) cantilever beam (iii) built-up beam (at the 

fixed end) and (iv) built-up beam (at midspan). For all these cases, the load applied are as 

shown in Fig. 4.2. For all such different loading and support conditions, the expressions for 

SLF have been derived (Eqs. 36, 40, 45 and 46). The variation of two Reissner’s 

parameters n and k which varies along with the variation in the degree of polynomial ‘a’ is 

study.  

 
Fig. 4.2. Different loading and support condition for box beam: (i) simply supported beam 

(cosine law); (ii) cantilever beam (udl); (iii) built-up beam (udl) 
 

The variation of ( )F s  have been investigated with respect to three parameters Is/I, l/w and 

G/E.  The parameter Is/I defined as relative stiffness (rs) of the cover sheet (flange) over 

entire cross section. The value of these parameters originally adopted by Reissner is rs = 

0.5, l/w = 5 and G/E = 3/8. The parameter rs have been varied from 0.5 to 0.92 based on 

some existing box girder bridges [Menn 1990]. The corresponding results are plotted in 

Fig. 4.4, adopting the other two parameters as l/w = 5 and G/E = 3/8. Similarly, the 

variation of F(s) with respect to l/w has been carried out for the values of parameters rs = 

0.5, G/E = 3/8. Also, to study the effect of material properties on F(s), the ratio of shear 



 

modulus and Young’s modulus is varied from 0.33 to 0.5 based on the Poisson’s ratio 

varying from 0 to 0.5. 

The objective of this parametric study is to develop a set of monographs which can be 

readily used for practical design purposes of such box sections used either as building or 

bridge. 

4.5 RESULTS AND DISCUSSION

The degree of polynomial ‘a’ significantly affects the variation of Reissner’s parameters 

and k (Fig. 4.3 (i) and 4.3 (ii)). Here, 

over width of the box beam [Chang and Zheng 1987].

It can be seen from Fig. 4.3, with increasing value of the degree of 

value of n converges at a value of 2 (approximately), whereas, the value of 

increasing almost linearly with ‘

Reissner’s parameters for the corresponding degree of 

Fig. 4.3. Variations of Reissner’s parameters with degree of polynomial ‘a’: 
(i) variation of ‘

4.5.1 Variation of SLF with Varying rs and Degree of Polynomial ‘a’

The relative stiffness rs, influence significantly the variation of SLF. In Fig. 4.4, such 

variation of shear lag factor has been depicted for different cases. In a simply supported 
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modulus and Young’s modulus is varied from 0.33 to 0.5 based on the Poisson’s ratio 

The objective of this parametric study is to develop a set of monographs which can be 

sed for practical design purposes of such box sections used either as building or 

4.5 RESULTS AND DISCUSSION 

The degree of polynomial ‘a’ significantly affects the variation of Reissner’s parameters 

(Fig. 4.3 (i) and 4.3 (ii)). Here, the coefficient (kl) is expressed as the ratio of span 

Chang and Zheng 1987].  

It can be seen from Fig. 4.3, with increasing value of the degree of the polynomial, the 

converges at a value of 2 (approximately), whereas, the value of kl

increasing almost linearly with ‘a’. So, the above graphs can be used to find out the 

Reissner’s parameters for the corresponding degree of the polynomial.  

of Reissner’s parameters with degree of polynomial ‘a’: 
(i) variation of ‘n’; (ii) variation of ‘kl’  

4.5.1 Variation of SLF with Varying rs and Degree of Polynomial ‘a’

, influence significantly the variation of SLF. In Fig. 4.4, such 

variation of shear lag factor has been depicted for different cases. In a simply supported 

modulus and Young’s modulus is varied from 0.33 to 0.5 based on the Poisson’s ratio μ 

The objective of this parametric study is to develop a set of monographs which can be 

sed for practical design purposes of such box sections used either as building or 

The degree of polynomial ‘a’ significantly affects the variation of Reissner’s parameters n 

is expressed as the ratio of span 

polynomial, the 

kl keeps on 

’. So, the above graphs can be used to find out the 

 
of Reissner’s parameters with degree of polynomial ‘a’:  

4.5.1 Variation of SLF with Varying rs and Degree of Polynomial ‘a’  

, influence significantly the variation of SLF. In Fig. 4.4, such 

variation of shear lag factor has been depicted for different cases. In a simply supported 



 

beam subjected to cosine loading, the shear lag factor 

increasing rs and converges rapidly for the lower value of stiffness ratio. Also, it can be 

noted that the value of F(s)

beam subjected to uniform loading, shear lag factor 

The value is comparatively much lower than that of simply supported case. 

Fig. 4.4. Monograph for shear lag factor with varying I
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built
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beam subjected to cosine loading, the shear lag factor F(s) increases monotonically with 

and converges rapidly for the lower value of stiffness ratio. Also, it can be 

F(s) is higher for increasing degree of polynomial. For a cantilever 

beam subjected to uniform loading, shear lag factor F(s) remains less than 1, Fig

The value is comparatively much lower than that of simply supported case. 

4.4. Monograph for shear lag factor with varying Is/I along with the degree of 
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built-up beam (a

end); (iv) built-up beam (at mid span) 
 
 
 
 
 

increases monotonically with 

and converges rapidly for the lower value of stiffness ratio. Also, it can be 

is higher for increasing degree of polynomial. For a cantilever 

remains less than 1, Fig. 4.4 (ii). 

The value is comparatively much lower than that of simply supported case.  

 
/I along with the degree of 

up beam (at fixed 
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Fig. 4.4 (iii) and (iv), exhibit the case of a fixed beam subjected to uniform loading. At the 

fixed end, the value of SLF is 16% corresponding to the 2 degree polynomial and 8% at 

mid-span. The shear lag factor is negligibly small in the case of fixed end beams at the 

support and mid span, Fig. 4.4. The results are justified with Moffat and Dowling (1975). 

In a box girder bridge shear lag is more pronounce by addition of stiffener in the flange 

panel as relative stiffness of the flange increases.   

4.5.2 Variation of SLF with Varying l/w and Degree of Polynomial ‘a’ 

As ‘l/w’  increases, the effect of positive and negative shear lags decreases [Chang and 

Zheng 1987]. The study emphasized that the parameter significantly affects the negative 

shear lag, and more detailed parametric study should be undertaken. Therefore, the present 

study reinvestigates the variation of the shear lag factor with respect to ‘l/w’ . The same 

trend for cantilever beam could be noted as presented in Fig. 4.5 (ii). The present study 

provides a data set which is more versatile in terms of the following: (i) the degree of 

polynomial considered by other authors are only between 2 to 5, whereas, the present study 

‘a’ varies from 2 to 10 or 20. (ii) For any value of ‘a’, F(s) can be found. Therefore, this 

monograph for will be useful significantly for designers. It can be noted from Fig. 4.5, that 

F(s) is independent of l/w for simply supported beams with cosine loading. It increases with 

the degree of polynomial. For the case of a cantilever beam, initially the value of F(s) 

increases for value ‘a’  varying from 2 to 4. Thereafter, the F(s) decreases for higher values 

of ‘a’.  In Fig. 4.5 (iii), it would be interesting to see detailed variation.  

Some typical plots showing the variation of F(s) for certain practical values of rs 

and l/w with the degree of polynomial (a), are given in Figs. 4.6 and 4.7. It can be seen that, 

in simply supported box beam F(s) increases monotonically for a fixed value of rs and 

converses for the higher value of ‘a’. In the cantilever box beam, the shear lag factor firstly 



 

increases along with ‘a’ up to four and afterward it decreases linearly for t

of ‘a’. However, in the built

Fig.  4.5. Monograph for shear lag factor with varying 
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built

Another variation of the shear lag factor for a particular value of 

trend for simply supported box beam. Whereas, in cantilever box beam value of 

increases for the value of ‘

shear lag factor falls linearly for the higher value of ‘

up beam, the variation in the shear lag factor is similar as in t
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’ up to four and afterward it decreases linearly for t

built-up beam, this variation exhibit decreasing trend.

Fig.  4.5. Monograph for shear lag factor with varying l/w along with the degree of 
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built-up beam (at fixed 

end); (iv) built-up beam (at mid span) 
 
 

shear lag factor for a particular value of l/w represents

trend for simply supported box beam. Whereas, in cantilever box beam value of 

increases for the value of ‘a’ from 2 to 4. This variation is not significant and after that 

shear lag factor falls linearly for the higher value of ‘a’ but at the slower rate. In the built

p beam, the variation in the shear lag factor is similar as in the case of a fixed value of r

’ up to four and afterward it decreases linearly for the higher value 

up beam, this variation exhibit decreasing trend. 

 
along with the degree of 

p beam (at fixed 

represents the same 

trend for simply supported box beam. Whereas, in cantilever box beam value of F(s) 

’ from 2 to 4. This variation is not significant and after that 

the slower rate. In the built–

he case of a fixed value of rs. 



 

At the fixed support, for the value of 

linearly for the value of ‘a’ from 2 to 4 and then reduces accordingly. 

 

Fig.  4.6. Variation of  shear lag factor with degree of 
simply supported beam; (ii) cantilever beam; (iii) built

4.5.3 Variation of SLF with Varying G/E and Degree of Polynomial ‘a’

The effect of material property ha

cantilever box beam, it is clear from the figure that, for a fixed value of 

factor increases sharply for the degree of polynomial (

linearly for the higher value of ‘a’
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At the fixed support, for the value of l/w = 2.5 and lower, shear lag factor has increased 

’ from 2 to 4 and then reduces accordingly.  

Fig.  4.6. Variation of  shear lag factor with degree of polynomial for Is/I = 0.65, 0.85: (i) 
simply supported beam; (ii) cantilever beam; (iii) built-up beam (at fixed end); (iv) built

beam (at mid span) 
 

4.5.3 Variation of SLF with Varying G/E and Degree of Polynomial ‘a’ 

The effect of material property has also been reinvestigated (Figs. 4.8, 4.9). In the 

cantilever box beam, it is clear from the figure that, for a fixed value of G/E, the shear lag 

factor increases sharply for the degree of polynomial (a) 2 to 3 and decreases almost 

a’. The variation for the other type of beams is presented in 

= 2.5 and lower, shear lag factor has increased 

 
/I = 0.65, 0.85: (i) 

up beam (at fixed end); (iv) built-up 

s also been reinvestigated (Figs. 4.8, 4.9). In the 

, the shear lag 

) 2 to 3 and decreases almost 

. The variation for the other type of beams is presented in 



 

the figure clearly. Therefore

material properties in terms of varying poison’s ratio.

Fig.  4.7. Variation of  shear l
10: (i) simply supported beam; (ii) cantilever beam; (iii) built
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the figure clearly. Therefore, these monographs can also be used to interpret the effect of 

material properties in terms of varying poison’s ratio. 

 

Fig.  4.7. Variation of  shear lag factor with degree of polynomial for l/w = 2.5, 5, 7.5 and 
10: (i) simply supported beam; (ii) cantilever beam; (iii) built -up beam (at fixed end); (iv) 

built-up beam (at mid span) 
 

these monographs can also be used to interpret the effect of 

 
= 2.5, 5, 7.5 and 

up beam (at fixed end); (iv) 



 

Fig.  4.8. Monograph for shear lag factor with varying 
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built

end); (iv) built
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Fig.  4.8. Monograph for shear lag factor with varying G/E along with the degree of 
polynomial: (i) simply supported beam; (ii) cantilever beam; (iii) built-up beam (at fixed 

end); (iv) built-up beam (at mid span) 

 

 
along with the degree of 

up beam (at fixed 



 

Fig.  4.9. Variation of  shear lag factor with degree of polynomial for 
simply supported beam; (ii) cantilever beam; (iii) built

4.6 SUMMARY AND CONCLUDING REMARKS 

A clear understanding of the effects of variation of parameters is essential to effect

control the shear lag phenomenon. However, the following conclusions are drawn:

 The present study involves extensive parametric study over a wide range of variation of 

assumed cover sheet displacement. It elaborates the different type of loading and

conditions. Shear lag is more pronounce as the relative stiffness of cover sheet increase. 

simply supported case the r

great impact on shear lag. The parameters 
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Fig.  4.9. Variation of  shear lag factor with degree of polynomial for G/E
simply supported beam; (ii) cantilever beam; (iii) built-up beam (at fixed end); (iv) built

beam (at mid span) 
 

4.6 SUMMARY AND CONCLUDING REMARKS  

A clear understanding of the effects of variation of parameters is essential to effect

control the shear lag phenomenon. However, the following conclusions are drawn:

The present study involves extensive parametric study over a wide range of variation of 

assumed cover sheet displacement. It elaborates the different type of loading and

conditions. Shear lag is more pronounce as the relative stiffness of cover sheet increase. 

simply supported case the rs and the parameter l/w in case of built-up beam, which have 

The parameters rs, l/w and G/E are the main features in design of 

 
G/E = 0.38, 0.40: (i) 

ixed end); (iv) built-up 

A clear understanding of the effects of variation of parameters is essential to effectively 

control the shear lag phenomenon. However, the following conclusions are drawn: 

The present study involves extensive parametric study over a wide range of variation of 

assumed cover sheet displacement. It elaborates the different type of loading and support 

conditions. Shear lag is more pronounce as the relative stiffness of cover sheet increase. In 

up beam, which have a 

are the main features in design of 
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tubular structures. The effect of variation of all these parameters in the design can be 

estimated precisely and accurately. The monographs presented herein are applicable to the 

both tubular framed buildings and box girder bridges as well. 

Ductility of a composite tubular structure is difficult to assess, however, the effect of 

material properties on shear lag phenomenon can be assessed. Therefore, the present study 

is useful towards solving the assumption of polynomial of the flange panels. 

 

 

 

 

 

 

 

 

 

 

 

  


