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                                                                           PREFACE 

Thin-film transistors (TFT) serve as the foundation of flat-panel display devices. In order to 

achieve great performance while lowering production costs, researchers looked into a variety of 

materials in TFTs. Metal-oxides have gained a lot of attention in recent years for thin film 

transistors due to their broad area manufacturing compatibility, high mobility, and low leakage 

density properties. At present time, higher resolution, larger screen sizes, and reduced power 

consumption in FPDs have become increasingly important, which pushes traditional amorphous 

Si (a-Si) TFT technology to its limits. On the other hand, metal-oxide TFTs have been widely 

explored for a variety of applications, including phototransistor arrays, gas and pressure sensors, 

light emitting transistors, photo-detectors, memory, and synaptic devices etc. These metal oxide 

TFTs possess excellent temperature and chemical robustness, as well as superior mobility and a 

significant ON/OFF ratio, all of which are crucial for practical applications. However, because of 

the low dielectric constant (κ) of traditional SiO2 gate dielectric, most of these TFTs require a 

fairly high voltage level (<40 V), limiting their utility in portable electronic gadgets (e.g., laptop, 

tablet, mobile, etc.). Furthermore, the high-κ polarisation response of dielectric materials, 

specifically binary oxide dielectric materials, has been studied extensively as gate dielectric 

materials in TFTs with low voltage operation. Although having various superiority, metal oxide 

dielectric materials encounter some issues due to their lower bandgap, low band offset with 

existing metal oxides, a higher number of interfacial trap states owing to high polarity, and 

hygroscopic nature, which limits their use in reliable and stable device applications. In 2009, Pal 

et al. first time developed a sol-gel derived gate dielectric material (Sodium--Alumina, SBA) 

with higher 'κ' value by introducing ionic doping into oxide lattices, and successfully employed 

as a gate insulator in low voltage TFTs. The higher 'κ' value in SBA is generated because ionic 
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polarization that originated due to the Na ion movement in alumina matrix which facilitates 

operation of TFTs in low voltage regions. This ion-conducting metal oxide (ICMO) class of 

dielectric material essentially meets the requirement of moderate bandgap in addition to high-κ 

value. But, further studies on these SBA based TFT reveal that the hygroscopic nature of SBA or 

other alkali ions incorporated aluminas significantly degrade the device operations. This device 

property deterioration is attributed to the charge trapping at dielectric/semiconductor interface 

caused by rapid movement of alkali ions after physisorption of water molecules. So in concern of 

current challenges faced by high-κ ICMO dielectrics, I established some interfacial engineering 

with the ion-conducting dielectric material by a) using metal oxides semiconductor (like TiO2, 

Mn2O3) in between gate electrode and gate dielectric, and b) implementing a very smooth 

amorphous carbon (a-C) layer in between the gate dielectric and semiconductor layer to enhance 

the device performance. Furthermore, because of its tiny cell size, low power consumption, rapid 

write/erase speed, and nonvolatility, ferroelectric field effect transistor (FEFET) based memory 

storage is a viable alternative to flash and other existing nonvolatile memory technologies. 

Moreover, nondestructive read operation is the additional superiority of FEFETs over 1-transitor 

2-capacitor (1T-2C) based memory technology. However, the reports on FEFET retention period 

are far from the ten-year retention standard for a non-volatile device, which is the main 

bottleneck in its widespread implementation. The two well studied reasons attributed to the 

shorter memory retention time are a) presence of the depolarization field and b) gate leakage 

current. Further, I have done some interfacial engineering with well established LiNbO3 

ferroelectric using ICMO to minimize depolarization field and leakage current. So, the main goal 

of my thesis work is to fabricate low operating voltage ICMO dielectric-based TFTs via a cost-

effective solution process and improvement of the device performances in terms of threshold 
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voltage, subthreshold swing and current ON/OFF ratio through some interfacial engineering. 

Also, improvement of LiNbO3 based FEFETs performances using ICMO dielectric as a charge 

compensating layer.  As a whole, the thesis gives an outline of the use of ion-conducting 

materials as gate dielectrics and the intervening of different interface layers to form a bilayer or 

trilayer dielectric stack for the fabrication of high-performance and low-voltage TFTs. The thesis 

is arranged into seven chapters based on the aforementioned discussion: 

Chapter 1 consists of a brief introduction of metal oxide thin-film transistors, its components and 

application along with the scope of my thesis work. 

Chapter 2 discusses the material preparation of dielectrics, semiconductor, interfacial layer and 

thin film deposition through solution processed technique. Specifically in this thesis, the thin 

film of dielectric, semiconductor, and interfacial layers are deposited by spin coating method and 

used for TFT fabrication. In addition, the methodologies for characterization of materials and 

devices are thoroughly covered in this chapter. 

The development of a high-performance sol-gel derived low operating voltage SnO2 thin-film 

transistor with an ion-conduction Li-Al2O3 dielectric and a TiO2 gate interface layer between the 

gate insulator and gate electrode is described in chapter 3. A comparative study of a set of SnO2 

TFTs with and without TiO2 interface layer has been illustrated. The formation of a Schottky 

junction between p
++

-Si and n-type TiO2 aids in the accumulation of extra electrons at the Li-

Al2O3/SnO2 interface, which basically fills up the interface trap-states and diminishes the sub-

threshold swing (SS) as well as threshold voltage (VT) and increases the saturation carrier 

mobility of the device when compared to a device without TiO2 interface. As contrasted to a bare 

Li-Al2O3 dielectric, the TiO2/Li-Al2O3 stack dielectric with a high TiO2 value improves 
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capacitance and lowers leakage current. In a TiO2/Li-Al2O3 stack TFT with an ON/OFF ratio of 

7.2⨯10
3
, it attained effective carrier mobility (µ) of 16.4 cm

2
.V

-1
.s

-1
, SS of 250 mV.decade

-1
, and 

VT of 0.73 V. This research opens a new approach to developing high-performance TFT devices, 

using an appropriate bilayer stack of gate-dielectrics.  

Chapter 4 depicts that the Mn2O3 gate interface can be used in between gate electrode and ionic 

gate dielectric to fabricate a high-performance solution-processed sub-volt tin oxide thin film 

transistor (TFT). A comparison of device characterization of two distinct TFTs with and without 

Mn2O3 gate interface reveals that Mn2O3 induces excess electrons to the semiconductor/dielectric 

interface trap states, lowering the device's threshold voltage and subthreshold swing. 

Furthermore, the depletion layer of the ITO/Mn2O3 interface suppresses gate leakage current, 

which helps to increase the device's ON/OFF ratio. A high capacitance of the dielectric film has 

been achieved by introducing a high-Mn2O3 layer between the Li-Al2O3 gate dielectric and the 

gate electrode. This helps in achieving current saturation at lower gate bias. The electron 

mobility of such a sub-volt TFT with an additionl Mn2O3 layer in the gate dielectric is 17 cm
2
.V

-

1
.s

-1
, the ON/OFF ratio is 3.3⨯10

4
, and the sub-threshold swing is 124 mV.decade

-1
. By 

identifying suitable material combinations for gate dielectrics, this study proposes a promising 

alternative approach for the development of high-performance, sub-volt TFT fabrication. 

Chapter 5 illustrates a low-cost solution-processed LiNbO3 based FEFET device fabrication and 

enhancement of its performances by introducing interfacial Li-Al2O3 dielectric material. The 

improved carrier mobility of 1.9 cm
2
.V

-1
.s

-1
, ON/OFF ratio of 1.6⨯10

4
 and subthreshold swing of 

167 mV.decade
-1

 are attained with Li-Al2O3/LiNbO3/Li-Al2O3 stacked ferroelectric layer over 

only LiNbO3 ferroelectric. The device also has a relatively long retention time. The improved 

performance of this device is explained by using a band model.  It is proposed that the 
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intervening of the high bandgap Li-Al2O3 interfacial layer on both sides of LiNbO3 results in 

complete charge compensation that originated due to ferroelectric polarization of LiNbO3 thin 

film. In addition, this Li-Al2O3 interfacial layer prevents charge carrier injection from p
++

-Si and 

SnO2. These phenomena support the better operation of the FEFET device with Li-

Al2O3/LiNbO3/Li-Al2O3 stacked dielectric. This work demonstrates that the addition of an 

interfacial Li-Al2O3 layer significantly upgrades the electrical properties of the FEFET. 

Chapter 6 deals with the comparative studies of two sets of SnO2 thin film transistors with and 

without amorphous-carbon (a-C) semiconductor/dielectric interface layer using sol-gel-derived 

Li-Al2O3 as a gate dielectric. A remarkable change in the device performance has been realized 

by inserting a microwave synthesized ultra-smooth a-C layer between gate dielectric and 

semiconductor as a passivation layer. The coordination bond formation between N and Sn atoms 

helps for better growth of SnO2 on the top of a-C layer. In addition, the high smoothness of the a-

C layer essentially reduces the interface trap state densities by passivation of dangling bonds and 

defects of high-κ Li-Al2O3 dielectric. These phenomena effectively enhance the device 

performance and stability with a-C layer. Therefore, a better device performance has been 

achieved in terms of higher field effect mobility of 21.1 cm
2
.V

-1
.s

-1
, ON/OFF ratio of 7.0⨯10

4,
 

and lower SS value of 147 mV.decade
-1

 in the device with the a-C passivation layer. Also, this 

device exhibits lower hysteresis and better cyclic stability over the device without a-C layer. To 

the best of my knowledge, this is a very fast demonstration of the use of a-C layer as a 

semiconductor/dielectric interface modification layer to improve the metal oxide TFT device 

performance. 

Finally, chapter 7 is devoted to summarizing the thesis's major findings. Lastly, the future scopes 

of work relevant to the current thesis have been sketched out briefly. 
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At the end of the thesis, there is a list of periodicals and books that were utilized to bind the 

thesis together as references. 


