
Finite Deformation Analysis of Crack Tip Fields in 

Plastically Compressible Hardening-Softening-

Hardening Solids 

Thesis Submitted in partial fulfillment  

for The Award of The Degree   

Doctor of Philosophy 

By 

SHUSHANT SINGH 

      Supervisor                                                                        Co-Supervisor   

Dr. Debashis Khan         Prof. S. K. Panda 

  Associate Professor                       Professor 

                                                                                                          

 

DEPARTMENT OF MECHANICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY  

(BANARAS HINDU UNIVERSITY)  

VARANASI – 221 005 

 

Roll No. 13131011                                       2018 



ii 

 

CERTIFICATE 

 

It is certified that the work contained in the thesis titled “Finite Deformation Analysis of 

Crack Tip Fields in Plastically Compressible Hardening-Softening-Hardening 

Solids” by Shushant Singh has been carried out under our supervision and that this work 

has not been submitted elsewhere for a degree. 

It is further certified that the student has fulfilled all the requirements of Comprehensive 

Examination, Candidacy and SOTA for the award of Ph.D. Degree. 

 

 

 

        

         

              Dr. Debashis Khan      Prof. S.K.Panda 

                    (Supervisor)       (Co-Supervisor) 

              Associate Professor           Professor 

    Dept. of Mechanical Engineering            Dept. of Mechanical Engineering 

Indian Institute of Technology (BHU)               Indian Institute of Technology (BHU)                  

              Varanasi-221005                                                     Varanasi-221005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

DECLARATION BY THE CANDIDATE 

 

I, Shushant Singh, certify that the work embodied in this thesis is my own bonafide work 

and carried out by me under the supervisions of Dr. Debashis Khan and Prof. S.K. 

Panda from July 2013 to July 2018, at the Department of Mechanical Engineering, 

Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has 

not been submitted for the award of any other degree/diploma. I declare that I have 

faithfully acknowledged and given credits to the research workers wherever their works 

have been cited in my work in this thesis. I further declare that I have not wilfully copied 

any other's work, paragraphs, text, data, results, etc., reported in journals, books, 

magazines, reports, dissertations, theses, etc., or available at websites and have not 

included them in this thesis and have not cited as my own work. 

 

Date:                                                                                                 

Place: IIT (BHU) Varanasi                                                                       (Shushant Singh) 

 

CERTIFICATE BY THE SUPERVISORS 

It is certified that the above statement made by the student is correct to the best of our 

knowledge. 

 

   Dr. Debashis Khan                       Prof. S.K. Panda 

       (Supervisor)                                    (Co-Supervisor) 

   Associate Professor                                       Professor 

     

                                                           

                                                          Prof. S.K. Sinha 

Head of Department 

                                            Dept. of Mechanical Engineering  

                                        Indian Institute of Technology (BHU)                                 

                                                         Varanasi-221005    



iv 

 

COPYRIGHT TRANSFER CERTIFICATE 

 

Title of the Thesis:    Finite Deformation Analysis of Crack Tip Fields in Plastically   

                                       Compressible Hardening-Softening-Hardening Solids 

Name of the Student:   Shushant Singh 

  

 

Copyright Transfer 

 

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu 

University) Varanasi all rights under copyright that may exist in and for the above thesis 

submitted for the award of the Doctor of Philosophy.  

  

  

Date:                                                                                                 

Place: IIT (BHU) Varanasi                                                                       (Shushant Singh) 

 

  

 

 

 

 

Note: However, the author may reproduce or authorize others to reproduce material 

extracted verbatim from the thesis or derivative of the thesis for author's personal use 

provided that the source and the Institute's copyright notice are indicated. 

 

 

 

 



v 

 

DEDICATION 

 

 

 

 

 

This thesis is dedicated to 

Lord Sri Krishna 

 

 

 

 

 

Sri Isopanishad 

 

The Personality of Godhead is perfect and complete.  And  because  He  is  completely  

perfect,  all  emanations  from  Him,  such  as this  phenomenal  world,  are  perfectly  

equipped as  a  complete whole.  Whatever  is  produced  of  the  complete  whole is  also  

complete  by  itself.  And  because  He  is  the  Complete  Whole,  even though  so  many  

complete  units  emanate  from  Him,  He  remains the  complete  balance. 

 

 

 

 

 

 

 

 

ॐ पूर्णमदः पूर्णममदं पूर्णणत्पुर्णमदुच्यते| 

  पूर्णस्य पूर्णमणदणय पूर्णमेवणवमिष्यते || 

 



vi 

 

ACKNOWLEDGEMENTS 

 

At the outset, let me pay my obeisance to Lord Krishna for catapulting me to this level of 

academic pursuit. Thereafter, let me express my sincere gratitude to my respected 

supervisors - Dr. Debashis Khan and Prof. S.K. Panda for their matured guidance, 

invaluable encouragement, moral support, friendship, providing enough space to work 

over the past five years. I owe them much for all of their superior guidance over the years. 

I wish to acknowledge my sincere gratefulness to Prof. S.K. Sinha, Head, Department of 

Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, the previous 

heads Prof. A.K. Jha, Prof. A.K. Agrawal, and Prof. V.P. Singh for their kind gesture and 

extending all sorts of facilities in the department to pursue this kind of research work.  

I would like to express my grateful thanks to my RPEC members Prof. Rajesh Kumar and 

Prof. P. Maiti for being part of my Ph.D. Committee and for being kind enough to make 

evaluation of my work-progress, extend meaningful comments and fruitful suggestions 

from time to time.  

I am deeply indebted to Prof. Sandeep Kumar, for his help, spiritual values, precious 

advice and for the patience shown in our long and useful discussions. I would like to 

extend special thanks Prof. A.P. Harsha for his invaluable support, insightful 

conversations and continuous encouragement. My sincere thanks also go to Ministry of 

Human Resource Development, Govt. of India, for providing me financial assistance 

during my research tenure. 

I am also thankful to Convener DPGC, Prof. Rajesh Kumar, previous Conveners Prof. 

A.P. Harsha, Prof. K.S. Tripathi, Prof. Sandeep Kumar and all respected DPGC members 

for their kind support. 



vii 

 

I express my sincere thanks to the technical and office staff, especially Mr. S.P. Singh, 

Mr. Dinesh Kumar, Mr. J.K. Sinha, Mr. Akash Mishra, who helped me in various ways 

during this research work. I would like to thank all other people who have provided a 

truly conductive environment to successfully carry out this research. I shall be failing in 

my duty if I do not put on record my sincere appreciation and thankfulness to my seniors, 

lab mates and friends; Mr. Ambuj Sharma, Mr. Bharat S. Patel, Mr. Khemraj Sahu, Mr. 

Avinash Ravi Raja, Mr. Pushkar Jha, Mr. Rajeev Nayan Gupta, Mr. Manvandra K. Singh, 

Mr Parshant Kumar, Mr. Ankit Sharma, Mr. Sunil Kumar, Mr. Harish Babu, Mr. Gaurav 

Gugliyani,  Mr. Arun Kumar, Mr. Ashish Srivastava, Mr. Ravindra Prasad, Mr. Vivek 

Gupta, Mrs. Prerna Mishra, Mr.Ashish Pareta. Mr. Hemant Nutiyal, Mr. Sooraj rawat, 

Mr. Homendra Kumar, Mr. Hemant Chaudhary, Mr. Amod Kashyap, Mr. Yash Mittal. 

My special thanks go to Mrs. Amrita Khan, for her help, spiritual values, and for 

providing me a family like atmosphere. 

 I have no words to express my indebtedness and gratitude to my parents, Mrs. Asha and 

Mr. Satendra Kumar for showering their affectionate love and all possible support during 

my research-endeavour. They have been a guiding force all through my life, and I could 

always try to measure up to their expectations. I further express my sincere thanks to my 

elder brothers, Mr. Sachin Singh and Dr. Prashant Singh for their constant motivation and 

support during all these periods and all through my life. Words at my command are not 

sufficient enough to express my feelings especially for my Sister Dolly Singh and for my 

sweet nieces Ananya, Yashi, Kashvi, nephew Subh their smiling face always rejuvenates 

me. 

I would fail in my duty if I fail to express my deep sense of gratefulness and thankfulness 

to my love Chetna, for being a constant source of love, energy and ecstasy to make each 

day of my life brimmed with a wonderfully pleasant experience.              



viii 

 

To all these people and to those unmentioned, my heartfelt thanks. 

 

Shushant Singh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

ABSTRACT 

Considering the potential applications of relatively new materials like toughened 

structural polymers, metallic foams, plastics, transformation toughened ceramics, 

vertically aligned carbon nanotubes (VACNTs) etc and their limited exploration till now, 

it appears that there is a need to investigate more about the behavior of such materials 

under a wide range of loadings. Even though the effect of plastic dilatancy is neglected in 

classical plasticity theory, the above materials exhibit plastic volume changes and/or 

pressure-sensitive flow strength. In a recent study, it has been observed that the 

deformation of the entangled arrays of carbon nanotubes or VACNTs follow elastic-

viscoplastic constitutive relation which incorporates plastic compressibility, plastic non-

normality and a hardening-softening-hardening type hardness function. These VACNTs 

have prospective uses in a variety of applications like viscoelastic energy absorption, 

compliant thermal interfaces, biomimetic dry adhesives etc and hence it is useful to 

develop a predictive framework for the mechanical behavior of VACNTs under a wide 

range of loadings. In this thesis work, finite element finite deformation quasistatic mode I 

plane strain small scale yielding analysis of crack tip blunting and near crack tip fields 

was carried out for plastically compressible solids exhibiting a variety of uniaxial stress – 

strain responses. In particular solids with hardening-softening-hardening responses as can 

occur for foams and VACNTs have been considered. The novelty of this model includes 

unique characteristics as mentioned earlier like the hardening-softening-hardening 

material response, strain rate-dependence, and plastically compressible solids with plastic 

non-normality.  

As for localization studies it needs a finite strain description, using FORTRAN a finite 

element finite deformation code has been developed in this work for the simulation 
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purpose. A convected coordinate Lagrangian formulation of the field equations was used. 

Quasistatic deformation conditions have been assumed and the equilibrium equations 

were expressed through the virtual work principle. The plane strain calculations were 

carried out for a semicircular region with a blunt notch. Quadrilateral elements each 

comprised of four crossed constant strain triangular elements have been used for mesh 

generation. Such elements with a proper aspect ratio and orientation are extensively used 

to replicate localized deformation pattern at finite strains. The initial part of the 

investigation refers to crack tip blunting and field quantities analyses under monotonic 

load while in the next part studies were conducted for fatigue loading to find the key 

results of crack tip blunting and fields. Even though most of the results presented are for 

plastic normality condition, however for comparison purpose some results have also been 

illustrated for constitutive relations exhibit plastic non-normality. While to simulate 

fatigue crack growth by means of finite elements, different techniques have been 

proposed over the years, however, in this work the crack growth modelling strategy 

employed was crack tip blunting/ resharpening mechanism where it is assumed that the 

crack tip blunts during the maximum load and resharpening of the crack tip takes place 

under minimum load. The simulations attempt to explain some of the salient features, like 

crack tip opening displacement, crack tip advancement, plastic zone shape and size, 

equivalent plastic strain distribution, equivalent stress, and distribution of hydrostatic 

stress at near crack region. The influences of plastic compressibility, material softening, 

cyclic stress intensity factor range, load ratio, number of fatigue load cycles on the near 

tip deformation and stress-strain fields were studied.  

Numerical results obtained from the quasistatic mode I plane strain analysis demonstrate 

that plastic compressibility is found to give an increased crack opening displacement for a 

given value of the applied loading. The plastic zone shape and size are found to depend 
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on the plastic compressibility. Even though, material softening does not have a significant 

effect on the plastic zone size and shape, however, the near crack tip stress and 

deformation fields depend sensitively on whether or not material softening occurs. The 

combination of softening or softening-hardening material response and plastic 

compressibility leads to major deviation in the near crack tip stress and deformation fields 

from those that prevail for a hardening material. Plastic compressibility coupled with a 

softening or softening hardening material response leads to localized deformation in front 

of the initial crack tip, which in turn affects the shape of the blunted crack tip. The present 

numerical calculations show that the convergence of the cyclic trajectories of CTOD to 

stable self similar loops and plastic crack growth depend significantly on cyclic stress 

intensity factor range, load ratio, number of fatigue load cycles.  

Keywords: Finite Deformation, Mode I crack, Plasticity, Compressible Solids, Material    

Softening, Monotonic Loading, Fatigue Loading, Finite Element Method. 
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end of loading phase, 𝐾 →  𝐾max    b) At the end of unloading 

phase, 𝐾 →  𝐾min for 5th cycle 

 

134 

Figure 6.28 Normalized crack extension (∆a/b0)  versus normalized time 

(t/t0 ) in plastically incompressible and compressible solids, 
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material B; a)  Kmax = 1.0  and  Kmin = 0  b)  Kmax = 2.0 

and  Kmin = 0  c)   Kmax = 1.5  and  Kmin =0.5 d)   Kmax = 2.0 

and Kmin=1.0 

 

Figure 6.29 Normalized crack extension (∆a/b0)  versus normalized time 

(t/t0 ) in plastically incompressible and compressible solids, 

material E; a)  Kmax = 1.0  and  Kmin = 0  b)  Kmax = 2.0 

and  Kmin = 0  c)   Kmax = 1.5  and  Kmin =0.5 d)   Kmax = 2.0 

and Kmin=1.0 
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Figure 6.30 Normalized crack extension (∆a/b0)  versus normalized time 

( t/t0 ) in plastically incompressible and compressible solids 

with overloading, material B; a)  Kmax = 1.0 and Kmin = 0 b) 

 Kmax = 2.0 and Kmin = 0  
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Figure 6.31 Normalized crack extension (∆a/b0)  versus normalized time 

( t/t0 ) in plastically incompressible and compressible solids 

with overloading, material E; a)  Kmax = 1.0 and Kmin = 0 b) 

 Kmax = 2.0 and Kmin = 0  
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Figure 6.32 Fatigue crack growth da/dN versus ΔK for plastically 

compressible solids, 𝛼p = 0.28 , (a) Material B and (b) 

Material E, (with R=0) at 5th cycle 
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Figure 6.33 Distribution of plastic strain, for plastically incompressible 

solid, material B,  Kmax = 1.0 and Kmin = 0 ; a) At the end of 

loading phase, 𝐾 →  𝐾max    b) At the end of unloading phase, 

𝐾 →  𝐾min for 10th cycle 
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Figure 6.34 Distribution of plastic strain, for plastically compressible solid, 

material B, 𝛼p = 0.28 ,  Kmax = 1.0 and Kmin = 0 ; a) At the 

end of loading phase, 𝐾 →  𝐾max    b) At the end of unloading 
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phase, 𝐾 →  𝐾min for 10th cycle 

 

Figure 6.35 Distribution of plastic strain, for plastically incompressible 

solid, material E,  Kmax = 1.0 and Kmin = 0 ; a) At the end of 

loading phase, 𝐾 →  𝐾max    b) At the end of unloading phase, 

𝐾 →  𝐾min for 10th cycle 
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Figure 6.36 Distribution of Plastic strain, for plastically compressible solid, 

material E, 𝛼p = 0.28 ,  Kmax = 1.0 and Kmin = 0 ; a) At the 

end of loading phase, 𝐾 →  𝐾max    b) At the end of unloading 

phase, 𝐾 →  𝐾min for 10th cycle 
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Figure 6.37 Distribution of plastic strain, for plastically incompressible 

solid, material B,  Kmax = 1.0  and  Kmin = 0 ; at the end of 

loading phase in 5th cycle a) With overload b) Without overload 
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Figure 6.38 Distribution of plastic strain, for plastically compressible solid, 

material B, 𝛼p = 0.28,  Kmax = 1.0 and Kmin = 0 ; at the end 

of loading phase in 5th cycle a) With overload b) Without 

overload 

 

145 

Figure 6.39 Distribution of plastic strain, for plastically incompressible 

solid, material E,  Kmax = 1.0  and  Kmin = 0 ; at the end of 

loading phase in 5th cycle a) With overload b) Without overload 
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Figure 6.40 Distribution of plastic strain, for plastically compressible solid, 

material E, 𝛼p = 0.28,  Kmax = 1.0 and Kmin = 0 ; at the end 

of loading phase in 5th cycle a) With overload b) Without 

overload 
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Figure 6.41 Plastic strain distribution for plastically compressible solid, 

material B, 𝛼p = 0.28 ,  a)  Kmax = 0.5  and  Kmin =

0 b)   Kmax = 1.0  and  Kmin = 0  c)  Kmax = 1.5  and  Kmin =

0.5 ; at the end of loading phase for 10th cycle 
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Figure 6.42 Plastic strain distribution for plastically compressible solid, 

material E, 𝛼p = 0.28 ,  a)  Kmax = 0.5  and  Kmin =

0 b)   Kmax = 1.0  and  Kmin = 0  c)  Kmax = 1.5  and  Kmin =

0.5 ; at the end of loading phase for 10th cycle 
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Figure 6.43 Hydrostatic stress for plastically incompressible solid, material 

B,  Kmax = 1.0 and Kmin = 0 ; a) At the end of loading phase    

b) At the end of unloading phase for 10th cycle 

 

152 

Figure 6.44 Hydrostatic stress for plastically compressible solid, 𝛼p =

0.28 , material B,  Kmax = 1.0 and Kmin = 0 ; a) At the end of 

loading phase    b) At the end of unloading phase for 10th cycle 
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Figure 6.45 Hydrostatic stress for plastically incompressible solid, material 

E,  Kmax = 1.0 and Kmin = 0 ; a) At the end of loading phase    

b) At the end of unloading phase for 10th cycle 
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Figure 6.46 Hydrostatic stress for plastically compressible solid, 𝛼p =

0.28 , material E ,  Kmax = 1.0 and Kmin = 0 ; a) At the end of 

loading phase    b) At the end of unloading phase for 10th cycle 
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Figure 6.47 Distributions of normalized effective stress measures for 

plastically compressible solid, αp = 0.28 , material B,  Kmax =

1.0 and Kmin = 0 ; a) At the end of loading phase    b) At the 

end of unloading phase for 10th cycle 
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Figure 6.48 Distributions of normalized effective stress measures for 

plastically compressible solid, 𝛼p = 0.28 , material E,  Kmax =

1.0 and Kmin = 0 ; a) At the end of loading phase    b) At the 

end of unloading phase for 10th cycle 
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Figure 6.49 Crack-tip opening displacement 𝛿t(= 𝑏 𝑏0 − 1⁄ ) versus applied 

J-integral, 𝐽app , 𝐽app/(𝜎0𝑏0) = 2.25 a) Material B, b) Material 
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E, plastically incompressible and compressible conditions  

(𝛼p = 𝛽p = 0.28), c) Material E, plastically incompressible and 

compressible conditions (𝛼p =0.28 & 𝛽p =0.20) 

 

Figure 6.50 Distribution of accumulated plastic strain εp at the crack tip of 

maerial B,   𝐽app/(𝜎0𝑏0) = 2.25.  a) Plastically incompressible, 

b) Plastically compressible ( 𝛼p = 𝛽p = 0.28 ), c) plastically 

compressible (𝛼p =0.28 & 𝛽p =0.20) 
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Figure 6.51 Distribution of accumulated plastic strain εp at the crack tip of 

maerial E,   𝐽app/(𝜎0𝑏0) = 2.25.  a) Plastically incompressible, 

b) Plastically compressible ( 𝛼p = 𝛽p = 0.28 ), c) plastically 

compressible (𝛼p =0.28 &  𝛽p =0.20) 
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Figure 6.52 Distribution of volumetric strain εvol  at the crack tip,   𝐽app/

(𝜎0𝑏0)  = 2.25.  material E a) 𝛼p = 0.28 &  𝛽p = 0.20 b) 

𝛼p =  𝛽p =0.28 
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Figure 6.53 Normalized hydrostatic stress distribution at the crack tip 

vicinity for material E, 𝐽app/(𝜎0𝑏0)  = 2.25. a) Plastically 

incompressible, b) Plastically compressible (𝛼p = 𝛽p = 0.28), 

c) Plastically compressible (𝛼p = 0.28 &  𝛽p =0.20) 
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Figure 6.54 Effective  stress  distribution at the crack tip vicinity for 

material E,  𝐽app/(𝜎0𝑏0)  = 2.25. a) Plastically compressible 

( 𝛼p = 𝛽p = 0.28 ),  b) Plastically compressible ( 𝛼p =

0.28 &  𝛽p =0.20) 
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LIST OF ABBREVIATIONS AND SYMBOLS 

 

FEM  Finite Element Method 

BEM Boundary Element Method 

 

LEFM Elastic Fracture Mechanic 

EPFM Elastic Plastic Fracture Mechanics 

CTOD Crack Tip Opening Displacement 

VACNT Vertically Aligned Carbon Nano Tube 

PFM Probabilistic fracture mechanics 

SSY Small Scale Yielding 

HRR  Hutchinson, Rice and Rosengren 

 

X-FEM Extended Finite Element Method 

CZM Cohesive Zone Model 

FDM Finite Difference Method 

ij  Stress Tensor 

 xx yy zz, ,    Stress Components in x, y and z direction 

  Poisson ratio 

  Shear modulus 

K  Stress Intensity Factor 

tr  Radius 

xx yy zz, ,u u u  Displacement  in x, y and z direction 

ICK   Mode I Critical Stress Intensity Factor 

U  

V 

W 

tS  

E 

Potential Energy 

Volume of the Body 

Strain Energy Density 

Part of the body Subjected to Traction 

Young’s Modulus 

G  Energy Release Rate 



xxvii 

 

  Contour Enclosing the Crack Tip 

n Unit Outward Normal on Γ 

T  Surface Traction  

iT  Traction Vector 

yr  Irwin Plastic Zone Correction 

d Crack Tip Opening Displacement 

a Half Crack Length 

appJ  Applied J integral 

ijF  Deformation Gradient 

ije  Eulerian Strain Tensor 

ijD   Deformation Tensor 

ijL  Velocity Gradient 

ijW  Velocity tensor or spin tensor 

ρ Density 

iĵ  Jaumann rate of Kirchhoff stress 

p   Plastic Strain Rate 

e  Effective Equivalent Stress 

ij  Kronecker Delta 

ijp  Deviatoric Kirchhoff Plastic Stress Tensor 

ijklL  Tensor of elastic Moduli 

0  Reference Strain Rate 

m Rate Hardening Exponent 

0  Reference Stress 

p  

 

Plastic Compressibility 

Symbols not listed here, are defined as they appear in text. 
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