
Chapter-5 

 Numerical Procedures and Geometry Analyzed 

5.1 Introduction 

The constitutive relations explained in the previous chapter will now be converted to rate 

tangent form (Pierce et al., 1984) and then to finite element equations before implementing 

into finite element code to analyze the crack tip deformation and fields in plastically 

compressible rate dependent solids. The advantages to use FEM over other numerical 

techniques are numerous. This is a versatile method in terms of structural geometry and 

material models. Complex shapes and structural components comprising different material 

properties also having material anisotropy are easily represented. The displacements or stress 

on the boundary nodes or elements of the idealized structure may be forced and the solutions 

of the unknowns at other locations within the body may be sought. Moreover, the method 

generates equilibrium equations producing usually a symmetric and positive definite matrix, 

which may be arranged in a banded form and solved with comparatively lesser storage and 

time. In the present chapter we will discuss the numerical procedure which is used to solve 

the problem and detailed description of geometry used for the present analysis.  

5.2 Description of Analyses 

The application of elastic-viscoplastic finite element technique in stress analysis due to 

various types of loads has become widespread and solutions of various complicated problems 

in fracture mechanics are now available. Such numerical techniques are inherently well 

suited for interpretation of the local effects in crack problems or similar situations where 

complex stress distributions are involved.  
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In the field of nonlinear fracture mechanics, a lot of work has been reported on various 

structural geometries subjected to mechanical loadings. Apart from the case of materials 

where classical plasticity theory is applicable for the analysis of deformation and fracture, 

some relatively new materials with their application areas as mentioned above exhibit plastic 

volume changes and/or pressure sensitive flow strength. When plastic compressibility is 

coupled with material softening, there is local intensification of crack tip opening 

accompanied by lower effective stress, which may affect crack propagation or eventual 

breakdown of a structure. Even though incorporating the effects of viscoplastic deformation 

ahead of a crack under different loading conditions require time-consuming and elaborate 

solutions steps but the availability of finite element technique provide means to deal with 

these difficult situations. Therefore, the computational model which includes unique 

characteristics like hardening-softening-hardening response, strain rate dependence, and 

plastically compressible solids with plastic non-normality, described in the previous chapter 

may be estimated by numerical assessment based on FEM technique. With these views in 

mind, using FORTRAN a finite element finite deformation code has been developed in this 

work for the simulation purpose and for plotting in Tecplot a preplot code also has been 

developed.  

5.2.1 Problem Formulation 

We briefly describe here the formulation of the quasi-static initial/ boundary value problem. 

In the present finite element analysis a convected coordinate Lagrangian formulation of the 

field equations is used with the independent variables being the particle positions in the 

initial stress free configuration and time. All field equations are taken to be functions of 

convected coordinates, 𝑦i, which serve as particle labels, and time, t. Such kind of 
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formulation has extensively been employed previously, as in (Hutchens et. al., 2011; 

Needleman et. al., 2012; Mohan et. al., 2013; Khan et. al., 2017). For quasi-static 

deformations and in absence of body forces the principle of virtual work can be written as 

∫ 𝜏ij
V

𝛿𝐸ij𝑑𝑉 = ∫ 𝑇i
S

𝛿𝑢i𝑑𝑆       (5.1) 

Where, 𝜏ij are the contravariant components of Kirchhoff stress in the deformed convected 

coordinate. V is volume and S is surface, of the body in the reference configuration. The 

nominal traction and Lagrangian strain components are, respectively given by  

𝑇i = (𝜏ij + 𝜏kj𝑢,k
i )𝑣j      (5.2) 

And 

𝐸ij =
1

2
(𝑢i,j + 𝑢j,i + 𝑢,i

k𝑢k,j)     (5.3) 

Where, 𝑣j and 𝑢j are components of the reference surface normal and displacement vector on 

the reference base vectors, respectively, and ( ),i denotes covariant  differentiation in the 

reference frame.  

For the solution of boundary value problems, incremental equilibrium equations are required 

owing to material path dependence. When the current values of all field quantities are 

assumed known, e. g. Kirchhoff stresses 𝜏ij, Lagrangian strains 𝐸ij, displacements 𝑢i and 

nominal tractions 𝑇i, the conditions for satisfying incremental equilibrium during a time step 

Δt are obtained by expanding the Eq. (5.1) about the current state to obtain 
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∆𝑡 ∫ (𝜏̇ij𝛿𝐸ij + 𝜏ij𝑢̇,i
k𝛿𝑢k,j)

V

𝑑𝑉 = 

∆𝑡 ∫ 𝑇̇i
S

𝛿𝑢i𝑑𝑆 − [∫ 𝜏ij
V

𝛿𝐸ij𝑑𝑉 − ∫ 𝑇i
S

𝛿𝑢i𝑑𝑆 ]  (5.4) 

Here, V and S are the volume and surface, respectively, of the body in the reference 

configuration, ( ̇ ) =𝜕( ) 𝜕𝑡⁄  at fixed 𝑦i. The prescribed increment of the parameter 𝑡 is ∆𝑡, 

so that the corresponding increments in stresses, strains, displacements and tractions are 

∆𝜏ij = 𝜏̇ij∆𝑡, ∆𝐸ij = 𝐸̇ij∆𝑡, ∆𝑢i = 𝑢̇i∆𝑡 and ∆𝑇i = 𝑇̇i∆𝑡, respectively. The second term on the 

right hand side represents an equilibrium correction term. This equilibrium correction term is 

added to the incremental virtual work condition in order to avoid drifting off the solution 

from the true equilibrium path due to the finite time increments. The bracketed terms in 

equation (5.4) vanish if the current state satisfies equilibrium. However, in linear incremental 

analysis the solution tends to drift away from the true equilibrium path, and including the 

bracket terms in equation (5.4) tends to avoid such drifting.  

5.2.2 Rate Tangent Formulation 

Since numerical stability is always a key concern, we calculate the deformation history here, 

in a linear incremental manner and in order to increase the stable time step, the rate tangent 

modulus method proposed by Peirce et. al. (1984) is used. This rate tangent modulus method 

is one step time integration method for studying the quasi-static deformations of solids 

characterized by elastic-viscoplastic constitutive relations. This numerical procedure is aimed 

for use in combination with the displacement based finite element method. This approach is a 

forward gradient method and is based on an estimate of the viscoplastic strain rate in the 

interval between time 𝑡 and 𝑡 + ∆𝑡. The plastic strain rate in Eq. (4.5) is written as 
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𝜀ṗ = (1 − 𝜃)𝜀ṗ(t) + 𝜃𝜀ṗ(t+∆t)     (5.5) 

Where, the parameter 𝜃 can range from 0 to 1 (𝜃 = 0 corresponds to the explicit, Euler 

forward scheme). With the plastic strain rate being given as a function of the equivalent 

stress σe, its value at 𝑡 + ∆𝑡 is estimated by using a Taylor series expansion. Expanding the 

above equation using Taylor series and up to first order gives 

𝜀ṗ(t+∆t) = 𝜀ṗ(t) + (𝜃∆𝑡) [
𝜕𝜀̇p

𝜕σe
|

t
𝜎̇e +

𝜕𝜀̇p

𝜕εp
|

t

𝜀ṗ]   (5.6) 

Initially let’s formulate the rate tangent expression for the case when the constitutive 

equation is said to follow normality flow rule. After combining equations (4.1), (4.2) and 

(4.3) and solving for 𝜏̂𝑖𝑗 gives 

𝜏̂𝑖𝑗  = 𝐿𝑖𝑗𝑘𝑙𝐸̇𝑘𝑙 − 𝑃̇𝑖𝑗        (5.7)                                           

Where, 𝑃̇𝑖𝑗 = (
3𝜀̇p

2σe
) 𝐿𝑖𝑗𝑘𝑙𝑝kl      (5.8) 

Using equations (4.2) and (4.7)  

𝜎̇e =
3

2σe
𝜏̂𝑖𝑗𝑝ij =

3

2σe
𝑝ij𝐿

𝑖𝑗𝑘𝑙𝐷kl −
3

2σe
𝑝ij𝐿

𝑖𝑗𝑘𝑙𝐷kl
p

  (5.9) 

After defining the terms  

𝐻 = [(
3

2σe
) 𝑝ij𝑃

𝑖𝑗 −
𝜕𝜀̇p 𝜕εp⁄

𝜕𝜀̇p 𝜕σe⁄
]     (5.10) 

𝑃𝑖𝑗 = (
3

2σe
) 𝐿𝑖𝑗𝑘𝑙𝑝kl      (5.11) 

𝜉 = (𝜃∆𝑡)
𝜕𝜀̇p

𝜕σe
𝐻      (5.12) 
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the expression for 𝜀𝑝̇ can be written as  

𝜀ṗ =
𝜀̇p(t)

1+𝜉
+

𝜉

𝐻+𝐻𝜉
𝑃𝑖𝑗𝐷ij     (5.13) 

After putting the value of 
p
  from equation (5.13) in equation (5.7), the rate tangent 

expression for the Jaumann derivative of Kirchhoff stress finally leads to 

𝜏̂𝑖𝑗 = (𝐿𝑖𝑗𝑘𝑙 −
𝜉

𝐻+𝐻𝜉
𝑃𝑖𝑗𝑃𝑘𝑙) 𝐷kl −

𝜀̇p(t)

1+𝜉
𝑃𝑖𝑗   (5.14)  

Similarly, when the constitutive equation is said to follow non-normality flow rule, the rate 

tangent expression for the Jaumann derivative of Kirchhoff stress can be derived as follows: 

𝜎̇e =
3

2σe
𝜏̂𝑖𝑗𝑞ij =

3

2σe
𝑞ij𝐿

𝑖𝑗𝑘𝑙𝐷kl −
3

2σe
𝑞ij𝐿

𝑖𝑗𝑘𝑙𝐷kl
p

  (5.15) 

After defining the terms  

𝐻 = [(
3

2σe
) 𝑝ij𝑄

𝑖𝑗 −
𝜕𝜀̇p 𝜕εp⁄

𝜕𝜀̇p 𝜕σe⁄
]     (5.16) 

𝑄𝑖𝑗 = (
3

2σe
) 𝐿𝑖𝑗𝑘𝑙𝑞kl      (5.17) 

𝜉 = (𝜃∆𝑡)
𝜕𝜀̇p

𝜕σe
𝐻      (5.18) 

the expression for 𝜀ṗ can now be written as  

𝜀ṗ =
𝜀̇p(t)

1+𝜉
+

𝜉

𝐻+𝐻𝜉
𝑄𝑖𝑗𝐷ij     (5.19) 

After putting the value of p
  from equation (5.19) in equation (5.7), the rate tangent 

expression for the Jaumann derivative of Kirchhoff stress finally leads to 
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𝜏̂𝑖𝑗 = (𝐿𝑖𝑗𝑘𝑙 −
𝜉

𝐻+𝐻𝜉
𝑄𝑖𝑗𝑃𝑘𝑙) 𝐷kl −

𝜀̇p(t)

1+𝜉
𝑃𝑖𝑗                            (5.20)  

5.2.3 Finite Element Equations 

Here the full derivation of the finite element equations has been provided as an approximate 

solution of a variational principle in terms of a displacement field with a finite number of 

degrees of freedom. When viscous effects are accounted for, the problem is time - dependent, 

and here we let a parameter 𝑡 in equation (5.4) denotes time so that ( ̇ ) denotes the time 

derivative. 

For elastic-viscoplastic problems the constitutive relations are typically of the form (as 

observed from equations 5.14 and 5.20) 

τ̂ij = 𝐿∗
ijkl

𝐸̇𝑘𝑙 + τ̂∗
ij
      (5.21) 

In some cases the stress rate term τ̂∗
ij
 includes all viscous effects. In other cases, where 

forward gradient methods have been used to increase the maximum stable step size ∆𝑡 in the 

numerical solution, τ̂∗
ij
 may represent only part of the viscous effects.  

In the finite element method the volume V in the reference state is divided into K 

subvolumes (i. e. K elements), such that 

V = ∑ V(K) , S =K
k=1 ∑ S(K) K

k=1                                 (5.22) 

Inside the volume V(K)  the displacement components i
u are expressed in terms of Fe 

different displacement fields Ui
(n)

, such that 

 u̇i = ∑ Ui
(n)

Ḋ(n) ,
Fe
n=1 Ėij = ∑ Eij

(n)
Ḋ(n) ,

Fe
n=1  
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Eij
(n)

=
1

2
(Ui,j

(n)
+ Uj,i

(n)
+ u,i

kUk,j
(n)

+ u,j
kUk,i

(n)
)   (5.23)      

Here, Fe denotes the number of degree of freedom for the element, Ui
(n)

(ξ
j
) are the 

corresponding shape functions, and D(n) are the node point displacements. Node points are 

mostly located at element boundaries, and neighbouring elements use the same node points at 

the common element interface. The shape functions are assumed to be specified such that the 

displacements are continuous across element boundaries, when the common node points have 

the same displacement values. In the present analysis quadrilateral elements comprised of 

four crossed linear displacement triangular elements have been used for discretization, Fig. 

5.1. For the planer, 3 noded element used in fig 5.2 each node has 2 degree of freedom, so 

that the number of degrees of freedom for the element is 6.           

 

Figure 5.1: The condensation of internal node in quadrilateral element comprised of four 

crossed constant strain triangular elements                   

x, u 
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Figure 5.2:  Triangular finite element 

If the internal virtual work is denoted by δWint and the external virtual work is denoted by 

δWout, the incremental principle of virtual work (5.4) can be written as 

∆(δWint.) = ∆(δWext.) + ∆(δWcorr.)                             (5.24) 

Where ∆(δWcorr.) is the equilibrium correction term. Using (5.22) in (5.4), each of terms in 

equation (5.24) comes out as a sum over the elements 

∑ ∆(δWint.)
K
k=1 (k)

= ∑ ∆(δWext.)
K
k=1 (k)

+ ∑ ∆(δWcorr.)
K
k=1 (k)

 (5.25) 

Now, the virtual displacements,δui, for which equation (5.4) is satisfied, can be chosen as the 

finite element approximation of the displacement field corresponding to one nodal 

displacement, D(M) = 1, with all other nodal displacement equal to zero. Thus, with δui 

replaced by Ui
(m)

, and with equation (5.23) substituted into (5.25), the contributions from 

each element take the form 

∆(δWint.)(k) = ∑ A(mn)∆D(n)
Fe
n=1                      (5.26) 

1 
3 

2 y, v 

x, u 
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∆(δWext.)(k) = ∆B(m)                    (5.27) 

 ∆(δWcorr.)(k) = ∆C(m)                           (5.28) 

Here, ∆D(n) = ∆tD(n), and the element stiffness matrix A(mn), the load increment vector 

∆B(m), and the equilibrium correction vector ∆C(m) are given by 

A(mn) = ∫ (L∗
ijkl

Ekl
(n)

Eij
(m)

+ τijgklUl,i
(n)

Uk,j
(m)

)
V(k)

dV     (5.29)  

∆B(m) = ∆t ∫ −τ̂∗
𝑖𝑗

Eij
(m)

dV + ∆t ∫ ṪiUi
(m)

dS
S(k)V(k)

    (5.30)  

 ∆C(m) = [− ∫ τijEij
(m)

dV + ∫ TiUi
(m)

dS
S(k)V(k)

]  (5.31) 

Finite element solutions make use of a connectivity matrix, which specifies the global node 

number corresponding to a local node number in a given element. From these connectivities 

one easily obtains the global degree of freedom no. N corresponding to the local degree of 

freedom no. n in element no. k, i.e. N = N (n, k). These relations are needed to replace all 

local numbers by global numbers when the summations in equation (5.25) are carried out to 

obtain the system of liner algebraic equations 

∑ A(MN)∆D(N) = ∆B(M) + ∆C(M)
F
N=1                        (5.32) 

For M = 1,2, … . . F 

Here, F is the global number of degrees of freedom in the finite element model, A(MN)is the 

global stiffness matrix, etc. 
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After solving equation (5.32), the nodal displacement increments ∆D(N) are used in equation 

(5.23), element by element, to calculate the strain increments ∆Eij 
in the integration points, 

from which stress increments ∆τ
ij
 in the integration points are obtained using equation (5.21). 

The current values of the stresses after the increments are updated by calculating τij + ∆τ
ij
 

for each integration point, and the current values of the nodal displacement are updated by 

calculating D(M) + ∆D(M). 

5.2.4 Geometry Description 

Due to the widespread use of plate structures of complex geometry in practical problems, 

their analyses have become very important in engineering practice. Cracks in plates of finite 

size and shapes are of great practical interest even though for these cases no closed form 

solutions of fracture parameter are available. Further, FEM achieved remarkable success in 

static and dynamic analyses of cracked plate problems in fracture parameter estimation. Here, 

plain strain calculations are carried out for a semi circular region of radius 𝑅0=2.0 in 

arbitrary units as shown in Fig.5.3a. The loading and the geometry are symmetric with 

respect to the crack plane. There is a notch of initial radius 𝑏0 =0.001 in the same arbitrary 

units with its centre at the origin of the coordinate system as shown in figure 5.3b, so that 

𝑅0 𝑏0⁄ = 2 𝑥 103. The aim is to simulate small scale yielding conditions for which plastic 

zone sizes remain small compared to 𝑅0. Although different crack tip shapes are possible 

from the point of view of plastic slip geometry (McClintok, 1971), the semicircular one 

seems to be a suitable averaging. 
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 (a) 

 

 (b) 

Figure 5.3: Geometry used in the finite element simulation of small scale yielding with K-

field boundary conditions; a) Full geometry  and b) portion of the geometry showing the 

crack tip 

Crack-tip 
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5.3 Finite Element Issues 

This section presents some of the basic finite element issues related to the present 

computational model used in the estimation of the crack tip fields and crack tip deformation. 

The purpose of this brief description is to familiarize the readers, who are not very 

conversant with the basic features of FEM techniques.  

5.3.1 Element Description  

There are various types of element geometries, which are commonly used in finite element 

analyses. The interpolation functions used depend not only on the number of nodes in the 

element but also on the element shape. The shape of the element should be such that its 

geometry is uniquely defined by a set of points, which are the element nodes, used in the 

description of interpolation functions. In the present analysis quadrilateral elements, each 

comprised of four “crossed” constant strain triangular elements have been used for mesh 

generation. This crossed-triangle configuration also helps to avoid volumetric locking. Such 

type of elements, with a proper aspect ratio and orientation, are widely used to reproduce 

localized deformation pattern in case of finite strains.  

As quadrilateral elements with four crossed triangular element is used then due to these four 

crossed such elements one extra node will be there to connect all four crossed elements as 

shown in figure 5.4. So the total number of nodes will be 5 in place of four nodes. If all 

elements are with 2 degree of freedom per node then total number of degrees of freedom will 

be 10. Thus the size of the assembled stiffness matrix is 10 x 10.  When merging the element 

into a mesh, in order to reduce the number of algebraic equations, the internal degree of 

freedom of 5th node should be eliminated or condensed. The technique for deleting the 
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unwanted degree of freedom is known as condensation. As the dynamic effects are ignored in 

the condensation process, this method is usually called static condensation. Consequently, 

only the degrees of freedom associated with the external nodes enter the equations and the 

stiffness matrix dimension becomes 8 x 8. The stiffness matrices of the four triangular 

elements should be superimposed in order to create the stiffness matrix of the quadrilateral 

element. The static condensation processed has been described in Appendix. 

 

Figure 5.4: Triangular finite element and it’s representation in the local coordinate system 

A 3-noded constant strain triangular element is described here in some detail. This is a planar 

element with 𝑢3 ≡ 0. Thus each node has 2 degrees of freedom, corresponding to the nodal 

displacements in the 𝑥1 and 𝑥2 directions, respectively. The element is used for conditions of 

plane strain problems. The local node numbers are specified in the Fig. 5.4 and (𝜉r, 𝜂r) 

denotes the values of the coordinates in node number 𝑟. Then shape functions (n)

i
U

 
can be 

expressed in terms of 3 functions 𝜙r(𝜉, 𝜂), specified by 

𝜙r(𝜉, 𝜂) = 𝜉 for 𝑟 = 1 

x, u 

y, v 2 

3 

ξ 

η 

 

1 
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           = 𝜂 for 𝑟 = 2 

= 1 − 𝜉 − 𝜂 for 𝑟 = 3                                             (5.33) 

It is emphasized that here 𝑟 is not a tensor index, but is used to denote the local node number. 

Now the same functions 𝜙r(𝜉, 𝜂)are used to express the Cartesian coordinates (𝑥, 𝑦) of a 

point (𝜉, 𝜂)inside the element 

  x = ∑ 𝜙r(ξ, η)𝑥r, y = ∑ 𝜙r(ξ, η)𝑦r
3
r=1

3
r=1                            (5.34) 

such that the mapping is completely specified by giving the coordinate values (𝑥r, 𝑦r) of the 

3 nodal points. With (𝑢r, 𝑣r) denoting the displacements of nodal point no. r in the  𝑥 and 𝑦  

directions, the displacement fields are approximated by           

 u = ∑ 𝜙𝑟(ξ, η)𝑢r, v = ∑ 𝜙𝑟(ξ, η)𝑣r
3
r=1

3
r=1    (5.35) 

By comparing with the notation in expression (5.23), it is seen that the nodal displacements 

are 

 (𝐷(2r−1), 𝐷(2r)) = (𝑢r, 𝑣r)                                                      (5.36) 

and the shape functions are  

 (U1
(2r−1)

, U2
(2r−1)

) = (𝜙r(𝜉, 𝜂), 0)     (5.37) 

 (U1
(2r)

, U2
(2r)

) = (0, 𝜙r(𝜉, 𝜂))     (5.38) 

for r = 1,2,3 
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Now the shape functions Ui
n are given as functions of  𝜉 and 𝜂: but in order to find the 

expressions for 𝐸ij
(n)

 in (5.23) we need to find the covariant derivatives and thus also the 

partial derivatives with respect to 𝑥 and 𝑦. The chain rule gives 

 {

𝜕𝜙r

𝜕𝜉

𝜕𝜙r

𝜕𝜂

} = {

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

} {

𝜕𝜙r

𝜕𝑥
𝜕𝜙r

𝜕𝑦

} = 𝐽 {

𝜕𝜙r

𝜕𝑥
𝜕𝜙r

𝜕𝑦

}   (5.39) 

Where 𝐽 is the Jacobi matrix for the coordinate transformation. Inverting the relationship 

gives 

 {

𝜕𝜙r

𝜕𝑥
𝜕𝜙r

𝜕𝑦

} = 𝐽−1 {

𝜕𝜙r

𝜕𝜉

𝜕𝜙r

𝜕𝜂

}      (5.40) 

Which gives the partial derivatives of the shape functions with respect to 𝑥 and 𝑦 as needed.  

5.3.2 Mesh Generation 

The mesh generation for the two-dimensional geometry was performed using the GRIDGN 

subroutine of the code without the use of any special crack tip elements. Adequate mesh 

refinement is always an issue when carrying out finite element solutions with an objective to 

capture accurate stress and strain gradients of interest in fracture mechanics but excessive 

refinement are generally avoided to reduce unnecessary long run time. In the present analyses 

adequate mesh size was obtained based on the mesh convergence studies described in next 

chapter. 
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5.3.3 Material Model 

Figure 5.5 shows the hardness function g(εp) of four different materials B, C, E and G as 

mentioned in (Mohan et. al., 2013). In order to compare the effect of hardening-softening-

hardening type hardness function in contrast to the bilinear hardening-hardening type, we 

consider materials B and C. In materials B and C, ℎ2 is positive and ℎ2 = ℎ3; so the value of 

ε2 is irrelevant here. When ℎ1 > 0,  ℎ2 < 0 and  ℎ3 > 0, the parameters  ℎ1,  ℎ2 and  ℎ3 give 

a hardening-softening-hardening relation. The value of ε1 specifies the plastic strain at which 

the hardening slope is changed for material B and C whereas material E and G at this strain, 

transition from hardening to softening takes place and ε2 species the strain at which the 

transition back to hardening occurs. The parameters  ℎ1and ε1 are fixed at ℎ1 = 24 and ε1 =

0.085 for all four materials while the value of  ℎ2 = 5.0 for material B and for material C it 

is 1.0. For material E, ℎ2 = −3.90 , ℎ3 = 15.0, ε2 = 0.6 and for material G, ℎ2 = −3.90 , ℎ3 = 

15.0, ε2 = 5.0. 

The constant parameters considered for the present analysis are E/𝜎0=100, reference strain 

rate ε̇1 = 1 s−1 and rate hardening exponent m = 0.02. While these parameters in the present 

model have been considered constant, for actual materials their values may depend on strain 

rate and temperature.  

The parameters varied in Eq. (4.6) are ℎ2, ℎ3 and ε2. For material G with ℎ2 = −3.90, g(εp) 

would vanish at about εp = 0.77. To preclude this in the calculations, the minimum value of 

g(εp) is set to 0.1𝜎0 so that for this material, g(εp) = 0.1𝜎0 for 0.77 ≤ εp ≤ 5. 
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Results are presented for two values of 𝛼p, 𝛼p = 0.333333 and 𝛼p = 0.28. The value of 𝛼p 

is related to the plastic Poisson’s ratio via Needleman at al. (2015) 

 𝜈p =
𝛼p

1−𝛼p
       (5.41) 

so that 𝛼p = 1/3 corresponds to 𝜈p = 1/2 ( a plastically incompressible solid); 𝛼p = 0.28 

corresponds to 𝜈p = 0.389 and 𝛼DF =0.849. The results obtained with 𝛼p = 0.333333 

(𝜈p = 0.499997, 𝛼DF ≈ 0) will be referred to subsequently as corresponding to a plastically 

incompressible solid. It is worth noting that because of the assumed plastic compressibility 

(𝛼p ≠ 1/3) implies hydrostatic stress dependent plastic flow. 

          

                                    (a)                                                                     (b) 

Figure 5.5: The variation of hardness function g(εp) with plastic strain εp.a) material B 

(ℎ2 = ℎ3 = 5.0) and material C (ℎ2 = ℎ3 = 1.0),  b) material E (ℎ2 = −3.90, ℎ3 = 15.0) 

and material G ( )2 3 2
3 90 15 0 5 0. , . , .= − =  =h h   (Mohan et. al., 2013) 
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5.3.4 Equation Solver and Solution Control Options 

The equation solver used by the present work is based on the size of the problem and in this 

investigation the Cholesky decomposition solver was used. Cholesky decomposition is a 

special version of LU decomposition and this can handle symmetric matrices more 

efficiently. For a symmetric matrix 𝐴, by definition, we know that 𝑎𝑖𝑗 = 𝑎𝑗𝑖. LU 

decomposition is not efficient enough for handling symmetric matrices. The computational 

load can be halved when we use Cholesky decomposition. This procedure approximates a 

solution to within a specified convergence tolerance. The details of the Cholesky 

decomposition method are provided in Appendix.  

Here integration is performed using present rate tangent formulations of the constitutive 

equations. Fixed time steps have been used rather than the adaptive time stepping. The 

deformation history is calculated using a linear incremental update with time step size 𝑑𝑡 =

0.0002 s.  This breaks each of the load steps into smaller steps to ease convergence.  

5.4 Concluding Remarks 

In this chapter, initially the problem formulation has been presented while using the rate form 

of the virtual work principle. A rate tangent method has been used for the constitutive update. 

As the rate tangent formulation of the constitutive equations is in the classical form of 

elastic-viscoplastic equations, these constitutive equations have further been converted into 

finite element equations. The geometry on which the plane strain calculations are carried out 

has been described next. Some finite element issues in the context of the present problems 

are also briefly described and finally, some typical aspects of computational procedure in the 
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context of finite element technique have been described. The next chapter contains the 

descriptions of various results obtained from the numerical studies. 

 


