
Chapter-3 

Finite Deformation Formulation 

3.1 Introduction 

To analyze the behavior of a material it is required to develop a constitutive model or use 

existing model which is capable to calculate/predict the behavior of that material. It is very 

necessary to understand the basic concepts of continuum mechanics before developing a new 

model or using existing one. After full understanding about the fundamentals of continuum 

mechanics a numerical technique is required to solve the equations of equilibrium which are 

obtained from continuum mechanics approach. In the present work, finite element method is 

used to solve the equations of equilibrium. In this chapter we introduce the basics of 

continuum mechanics, which includes kinematics and balance laws, used in the present finite 

deformation formulation. After explaining the various terms and equations related to 

continuum mechanics, finite strain descriptions of the governing/field equations have been 

provided based on a Lagrangian formulation and using convected coordinates. In order to 

make a generalization of physical laws in continuum mechanics one needs to use the 

powerful tool of tensor calculus. There are two aspects of tensor calculus that are of practical 

and fundamental importance: tensor notation and tensor invariance. Tensor notation is of 

great practical importance, since it simplifies handling of complex equation systems and 

presents the equations in compact form to save space. The idea of tensor invariance is of both 

practical and fundamental importance. In continuum mechanics, any formulation of a 

physical law should be independent of coordinate system based on tensor invariance 

property. In general, scalar fields are referred to as tensor fields of rank (or order) zero 

whereas vector fields are called tensor fields of rank one. Tensors are physical entities with 
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components that are the coefficients of a linear relationship between vectors. In most 

continuum mechanics problems the term tensor is used mainly for second order tensor such 

as stresses, strains etc. 

3.2 Continuum Mechanics 

The mathematical description of deformation and related stress is known as continuum 

mechanics. In continuum mechanics the fundamental assumptions inscribed in the name is 

that the materials are assumed to be continuous. Fourth order constitutive tensor is 

encountered frequently in continuum mechanics problems. The mathematical description of 

the deformation of a continuous body follows one of the two approaches: (i) the material 

description or (ii) the spatial description. The material description is also known as the 

Lagrangian description whereas the spatial description is known as the Eulerian description. 

In the material description, the motion of the body is referred to a reference configuration and 

this reference configuration is often selected to be the initial configuration. Hence, in the 

Lagrangian description, we express the current coordinates in terms of the reference 

coordinates. On the other hand, the motion is referred to the current configuration in the 

special description and is expressed with respect to the current position.  In solid mechanics, 

the Eulerian description is less useful because the current configuration is unknown and 

therefore we follow the Lagrangian description, Reddy (2013), Bower (2009), Jog (2015).  

3.2.1 Kinematics of Deformation 

We know that kinematics refers to the results obtained concerning the nature of a continuum 

with no reference to the dynamics of the continuum. Accordingly, kinematics refers to those 

results which can be obtained solely from geometrical considerations, without having any 
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reference to the force acting on the continuum. In this section we explain the motion of 

particle, deformation gradient, different strain measures, the velocity gradient, different stress 

measures etc. 

3.2.1.1 Motion 

Let’s consider that the continuum originally occupies a configuration in which a particle 𝑥 

occupies position 𝑥𝑖 referred to a reference frame of right handed rectangular Cartesian axes 

(𝑥1, 𝑥2, 𝑥3) at a fixed origin O with orthogonal basis vectors. After the application of some 

external stimuli, the continuum changes its geometric shape and thus assumes a new 

configuration called the current or deformed configuration. Particle 𝑥 now occupies position  

𝑥𝑖̅ in the deformed configuration. Here, in the Lagrangian description, the current coordinates 

are expressed in terms of the reference coordinates and the variation of a typical variable ∅ 

over the body is described with respect to the material coordinates 𝑥i and time  : 

∅ = ∅(𝑥i̅(𝑥i), 𝑡) = ∅(𝑥i, 𝑡)     (3.1) 

For a fixed value of 𝑥i , ∅(𝑥i, 𝑡) gives the value of ∅ at time 𝑡 associated with the fixed 

material particle whose position in the reference configuration is 𝑥i. Thus a change in time t 

implies that the same material particle occupying position 𝑥i has a different ∅. Fig. 3.1 shows 

the deformation of a fixed material volume with time.  

When ∅ is known in the material description,∅ = ∅(𝑥i, 𝑡), its total time derivative , 𝐷 𝐷𝑡⁄ , is 

simply the partial derivative with respect to time because the material coordinates 𝑥i do not 

change with time: 

𝐷

𝐷𝑡
[∅(𝑥i, 𝑡)] ≡

𝜕

𝜕𝑡
[∅(𝑥i, 𝑡)] =

𝜕∅

𝜕𝑡
    (3.2) 
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The displacement of the particle here is defined by 

𝑢i = 𝑥̅i − 𝑥i       (3.3)   

 

Figure 3.1: Reference and deformed configurations 

3.2.1.2 The Deformation Gradient 

In deformation analysis, one of the key quantities is the deformation gradient denoted by F or 

𝐹ijwhich provides the relationship between a material line 𝑑𝑥i before deformation and the 

line 𝑑𝑥̅i, consisting of the same material as 𝑑𝑥i after deformation. It is defined as follows: 

𝑑𝑥̅i = 𝐹ij𝑑𝑥j       (3.4) 

Where 

𝐹ij =
𝜕𝑥̅i

𝜕𝑥j
       (3.5) 

More explicitly we have  
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𝐹ij = [
𝐹11 𝐹12 𝐹13

𝐹21 𝐹22 𝐹23

𝐹31 𝐹32 𝐹33

] =

[
 
 
 
 
𝜕𝑥̅1

𝜕𝑥1

𝜕𝑥̅1

𝜕𝑥2

𝜕𝑥̅1

𝜕𝑥3

𝜕𝑥̅2

𝜕𝑥1

𝜕𝑥̅2

𝜕𝑥2

𝜕𝑥̅2

𝜕𝑥3

𝜕𝑥̅3

𝜕𝑥1

𝜕𝑥̅3

𝜕𝑥2

𝜕𝑥̅3

𝜕𝑥3]
 
 
 
 

   (3.6) 

The indices with bar refer to the current (spatial) coordinates and indices without bar refer to 

the reference (material) coordinates. The determinant of 𝐹ij is called the Jacobian of the 

motion i. e.  

𝐽 = det(𝐹ij)       (3.7)  

We can also define, in a similar way, volume and surface elements in the reference and 

deformed configurations. If an element of volume of the body in the reference configuration 

is 𝑑𝑉 and the corresponding volume element in the current configuration is 𝑑𝑉̅, then we can 

write  

𝑑𝑉̅ = det(𝐹ij) 𝑑𝑉 = 𝐽𝑑𝑉                 (3.8) 

In the same way, if an element of area of the body in the reference configuration is 𝑑𝑆 and 

the corresponding area element in the current configuration is 𝑑𝑆̅, then we can write using 

Nanson’s relation 

𝑛̅i𝑑𝑆̅ = 𝐽𝑛j𝐹ji
−1𝑑𝑆      (3.9) 

Where 𝑛j is the positive unit normal to the surface in the reference configuration and 𝑛̅i being 

the outward unit normal to the surface in the current configuration. 
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3.2.1.3 Strain Measures 

As deformation proceeds the particle gets strained and the relative position of the particle 

changes. There are various approaches to measure the strain of a particle. Due to the physical 

meaning and mathematical ease some strain measures are more common then others.  

Lagrangian strain tensor is one of the most important classes of strain measurement. The 

difference in the squared lengths that occurs during the deformation of a body from the 

reference to the current configuration can be expressed relative to the original length as  

(𝑑𝑙)̅2 − (𝑑𝑙)2 = 2𝑑𝑥i𝐸ij𝑑𝑥j     (3.10) 

Where 𝐸ij is called the Lagrangian strain tensor, 𝑑𝑙 ̅the length in current configuration and 𝑑𝑙 

the length in reference configuration. In particular, in the rectangular Cartesian coordinate 

system, the components of 𝐸ij are 

𝐸ij =
1

2
(

𝜕𝑢i

𝜕𝑥j
+

𝜕𝑢j

𝜕𝑥i
+

𝜕𝑢k

𝜕𝑥i

𝜕𝑢k

𝜕𝑥j
)     (3.11) 

Another family of strain tensor is called Eulerian stain tensor. Here the change in the squared 

lengths that occurs during the deformation of a body from the initial to the current 

configuration can be expressed relative to the current length. We can write in this case   

(𝑑𝑙)̅2 − (𝑑𝑙)2 = 2𝑑𝑥̅i𝑒ij𝑑𝑥̅j     (3.12) 

Where 𝑒ij is called the Eulerian strain tensor. In particular, in the rectangular Cartesian 

coordinate system, the components of 𝑒ij are 

𝑒ij =
1

2
(
𝜕𝑢i

𝜕𝑥̅j
+

𝜕𝑢j

𝜕𝑥̅i
−

𝜕𝑢k

𝜕𝑥̅i

𝜕𝑢k

𝜕𝑥̅j
)     (3.13) 
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3.2.1.4 The Velocity Gradient 

We now consider velocity gradient which is the basic measure of deformation rate. This 

velocity gradient can be expressed in terms of the deformation gradient and its time 

derivative as  

𝐿ij = 𝐹̇im𝐹̇mj
−1       (3.14) 

Similar to the displacement gradient tensor we can also write the velocity gradient tensor 𝐿ij 

as the sum of symmetric 𝐷ij and skew symmetric 𝑊ij tensors as 

𝐿ij = 𝐷ij + 𝑊ij       (3.15) 

Where 𝐷ij is called the rate of deformation tensor (or rate of stretch tensor) and this stretch 

rate quantifies the rate of stretching of a material fiber in the deformed solid. 𝑊ij is called the 

vorticity tensor or spin tensor which can be shown to provide a measure of the average 

angular velocity of all material fibers passing through a material point. 

In index notation we can write them as 

𝐷ij =
1

2
(𝐿ij + 𝐿ji)      (3.16) 

𝑊ij =
1

2
(𝐿ij − 𝐿ji)      (3.17) 

3.2.1.5 Stress Measures 

When the deformations are small there is no difference between deformed configuration and 

reference configuration and using Cauchy stress we can describe the action of surface forces. 

However, in case of large deformations, one has to refer to some reference configuration. The 
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Cauchy stress, 𝜎ij, the Kirchhoff stress, 𝜏ij ,  and the first Piola - Kirchhoff stress, 𝑡ij are the 

three important stress measures. Out of these three stress measures, the Cauchy stress tensor 

is the most natural and physical measure of the state of stress at a point in the deformed 

configuration. It is most commonly used in spatial descriptions of problems in fluid 

mechanics. In order to use the Lagrangian description, which is common in solid mechanics, 

the equations of motion or equilibrium of a material body that are derived in the deformed 

configuration must be expressed in terms of the known reference configuration. In doing so 

we use the other measures of stress like Kirchhoff stress, first Piola – Kirchhoff etc. These 

stress measures come into view in a natural way as we transform volumes and areas from the 

deformed configuration to the reference configuration.  

The Cauchy stress tensor completely characterizes the internal forces acting in a deformed 

solid. It is also known as true stress in elementary strength of material courses and defined as  

𝑡i = 𝜎ij𝑛j        (3.18)                                                                                               

Where, 𝑡i is known as surface traction and 𝑛j is its associated normal vector. The Cauchy 

stress is having two parts one is hydrostatic part and second one is deviatoric term 

The second stress measure is the Kirchhoff stress tensor, denoted by 𝜏ij and defined as 

𝜏ij = 𝐽𝜎ij       (3.19) 

Kirchhoff stress can also be split into two parts as true (Cauchy) stress, one is deviatoric and 

other is hydrostatic (spherical) part. In many equations, the Cauchy stress appears together 

with the Jacobian and the use of  𝜏ij simplifies formula. 
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Here mentioned last stress measure is the first Piola - Kirchhoff stress tensor which is also 

known as nominal stress and denoted by 𝑡ij. This can be expressed as 

            𝑡ji = 𝐹jk
−1𝐽𝜎ik = 𝐹jk

−1𝜏ik       (3.20)                

In general, the first Piola - Kirchhoff stress tensor is unsymmetric even when the Cauchy 

stress tensor is symmetric.                              

3.2.1.6 The Rate Viewpoint 

The equations describing finite deformation of elastic-viscoplastic solids may be derived in 

rate form. That is, attention is focused not upon field quantities such as stress and strain but 

rather upon their rates of change with respect to time.  

In analysis of infinitesimal deformation stress and strain tensors as well as all governing 

equations are referred to a single configuration of the body. Either deformed or undeformed 

states may be employed as they are by assumption indistinguishable from one another. Thus 

time derivatives of field quantities reflect only changes in component magnitudes with 

respect to an invariant frame of reference. When the deformation is regarded as finite, 

however, deformed and undeformed configurations must be distinguished. Time derivatives 

of the field quantities such as stress and strain must reflect changes in the fundamental 

reference frame provided by the deforming configuration of the body. 

The development of the constitutive and equilibrium equations is predicated upon the 

character of certain tensorial measures of stress and strain and their time rates of change. 

Subsequently the field equations are derived, boundary and initial conditions developed and 

full velocity problem is assembled. 
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3.2.2 Fundamental/ Balance Laws 

The fundamental laws are the same for all materials in contrast to constitutive equations that 

are different for each material. There are three basic fundamental laws which include the 

conservation of mass, conservation of linear momentum, conservation of angular momentum. 

Each of the balance laws is a general statement and can be used to calculate the specific 

response of a particular material body. The quantities and definitions mentioned above are 

known to be the essential mathematical relations of deformation.  

3.2.2.1 Conservation of Mass 

According to the law of conservation of mass, total mass of any part of a body does not 

change in any motion. In Lagrangian description of motion, the mathematical form of this 

law is 

∫ 𝜌𝑑𝑉 =
𝑉

∫ 𝜌̅
𝑉̅

𝑑𝑉̅      (3.21) 

Where ρ  and ρ  are the densities in the reference and current configurations, respectively. 

3.2.2.2 Conservation of Linear Momentum 

The principle of balance of linear momentum is also known as Newton’s second law of 

motion. This principle, when applied to a set of particles (or rigid bodies) can be stated as 

follows: The time rate of change of linear momentum of a collection of particles equals the 

net force exerted on the collection. Mathematically, it can be written as 

∮ 𝑇̅iS̅
𝑑𝑆̅ + ∫ 𝑏̅iV̅

𝑑𝑉̅ = ∫ 𝜌̅
V̅

𝜕2𝑢i

𝜕𝑡2
𝑑𝑉̅    (3.22) 
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Where, 𝑑𝑆̅ is an element of surface area in the current configuration and 𝑇̅i is the force per 

unit current area and  

𝑇̅i = 𝜎ij𝑛̅j       (3.23) 

Where, 𝑛̅j is the normal to 𝑑𝑆̅ and 𝜎ij is the Cauchy stress. 

3.2.2.3 Conservation of Angular Momentum 

According to the law of balance of angular momentum the resultant moment applied on a 

body must equal the rate of change of angular momentum of that material body. Assuming 

no distributed couple, it implies 

 𝜎ij = 𝜎ji        (3.24) 

3.3 Quasi-static Deformation Histories 

Now, using equation (3.9) in equation (3.22) balance of liner momentum (with no body 

forces) can be written as                                  

∮ 𝐽𝜎ikS
𝑛j𝐹jk

−1𝑑𝑆 = ∫ 𝜌
V

𝜕2𝑢i

𝜕𝑡2 𝑑𝑉    (3.25) 

The use of equation (3.20) in (3.25) yields 

∮ 𝑇iS
𝑑𝑆 = ∮ 𝑡jiS

𝑛j𝑑𝑆 = ∫ 𝜌
V

𝜕2𝑢i

𝜕𝑡2 𝑑𝑉    (3.26)   

The relation (3.26) is simply the expression of equilibrium written in the reference 

configuration. Using Green’s theorem, equation (3.25) can be written in Cartesian 

coordinates as 
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∫
𝜕𝑡ij

𝜕𝑥jV
𝑑𝑉 = ∫ 𝜌

V

𝜕2𝑢i

𝜕𝑡2
𝑑𝑉     (3.27) 

So that 

𝜕𝑡ij

𝜕𝑥j
= 𝜌

𝜕2𝑢i

𝜕𝑡2              (3.28) 

In quasi-static deformation load is applied very slowly and the structure deform also very 

slowly. Therefore due to very low strain rate, inertia force is very small and can be neglected. 

So if we consider a loading where inertial effects are negligible so that equation (3.28) 

becomes  

𝜕𝑡ij

𝜕𝑥j
= 0            (3.29) 

We can start from equation (3.29) and go through our virtual work procedure to obtain 

∫ 𝑡jiV
𝛿𝑢i,j𝑑𝑉 = ∮ 𝑇iS

𝛿𝑢i𝑑𝑆          (3.30) 

Now we can expand equation (3.30) about the current state to obtain 

∫ 𝑡̇jiV
𝛿𝑢̇i,j𝑑𝑉 = ∮ 𝑇̇iS

𝛿𝑢̇i𝑑𝑆 −
1

𝑑𝑡
[∫ 𝑡jiV

𝛿𝑢i,j𝑑𝑉 − ∮ 𝑇iS
𝛿𝑢i𝑑𝑆] (3.31) 

We will consider circumstances where we can write the constitutive relation in the form 

𝑡̇ij = 𝐾ijkl𝐹̇kl = 𝐾ijkl𝑢̇k,l         (3.32)  

A key step in the generalization to finite deformations of what we have done so far is the 

relation between 𝐾ijkl and the moduli that “naturally” arise in finite deformation constitutive 

formulations. In particular, a range of constitutive relations of interest can be written as 
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𝜏̂ij = 𝐶ijkl𝐷kl            (3.33) 

Where 𝜏̂ij is the Jaumann derivative of Kirchhoff stress and it can also be expressed by 

𝜏̂ij =
𝐷𝜏ij

𝐷𝑡
− 𝑊im𝜏mj − 𝑊jm𝜏mi          (3.34) 

Thus the problem is to determine the relation between 𝐶ijkl and 𝐾ijkl .  

3.3.1 Conventional Formulation   

Differentiating equation (3.20) with respect to time gives 

𝑡̇ji = 𝐹̇jk
−1𝜏ki + 𝐹jk

−1𝜏̇ki             (3.35)                                                      

But 

𝐹̇jk
−1 = −𝐹jm

−1𝐹̇mn𝐹nk
−1               (3.36)                                    

Hence, 

𝑡̇ji = −𝐹jm
−1𝐹̇mn𝐹nk

−1𝜏ki + 𝐹jk
−1(𝐶kimn𝐹̇mp𝐹pn

−1 + 𝑊km𝜏mi + 𝑊im𝜏mk) (3.37) 

Upon using equation (3.17)  

𝑡̇ji = 𝐾ijnm𝐹̇mn       (3.38) 

Where  

𝐾ijnm = 𝐹jk
−1𝐶kimq𝐹nq

−1 +
1

2
𝐹jm

−1𝐹np
−1𝜏pi −

1

2
𝐹jk

−1𝐹nk
−1𝜏mi 

+
1

2
𝐹jk

−1𝐹np
−1𝜏pm −

1

2
𝐹jk

−1𝐹ni
−1𝜏mk − 𝐹jm

−1𝐹nk
−1𝜏ki (3.39)   
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In an updated Lagrangian formulation, the current configuration is taken as reference so that 

𝐹ij = 𝛿ij and equation (3.39) simplifies to 

𝐾ijnm = 𝐶jimn +
1

2
𝛿jm𝜏ni −

1

2
𝛿jn𝜏mi +

1

2
𝛿jk𝜏nm −

1

2
𝛿ni𝜏mj − 𝛿jm𝜏ni (3.40) 

3.3.2 Convected Coordinate Formulation  

A computationally convenient way is to use a convected coordinate representation of the 

governing equations. In this formulation, a convected coordinate net is introduced which can 

be visualized as being inscribed on the body in the reference configuration and deforming 

with the material. Since the convected coordinate net can undergo a general transformation it 

will not necessarily remain orthogonal and therefore general tensor notation needs to be used. 

Assume that the reference coordinate is Cartesian and we denote its base vectors by 𝐠𝑖 so that 

𝑑𝐱 = 𝑑𝑦i𝐠i        (3.41)                                                      

The convected coordinates 𝑦i serve as particle labels and the displacement vector and 

deformation gradient are considered as functions of the convected coordinates and of time. 

In the current configuration 

𝑑𝐱̅ = 𝑑𝑦i𝐠̅i        (3.42)                                                     

So that  

𝐠̅i =
𝜕𝐱̅

𝜕𝑦i
= 𝐅. 𝐠i = (𝛿i

j
+ 𝑢,i

j
)𝐠j        (3.43)                        

Where, assuming a Cartesian reference frame, 𝑢,i
j
 denotes the partial derivatives of the 

displacements with respect to 𝑦i.   
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Metric tensors are introduced via 

𝑔ij = 𝐠i. 𝐠j       (3.44)      

 𝑔̅ij = 𝐠̅i. 𝐠̅j              (3.45)                                                                          

with inverses 𝐠ij and 𝐠̅ijrespectively.  

The Lagrangian strain tensor is  

𝐸ij =
1

2
(𝑔̅ij − 𝑔ij)      (3.46) 

Now, in terms of derivatives of displacement components  

𝐸ij =
1

2
(𝑢i,j + 𝑢j,i + 𝑢,i

k𝑢k,j)     (3.47) 

The Lagrangian strain rate is  

𝐸̇ij =
1

2
(𝑢̇i,j + 𝑢̇j,i + 𝑢̇,i

k𝑢k,j + 𝑢,i
k𝑢̇k,j)    (3.48) 

Now we need a relation between 𝑡̇ij and 𝜏̂ij. The equation (3.20) in tensor form is 

𝐭 = 𝐅−1. 𝝉       (3.49) 

and to get the component form we use 

𝐠i. 𝐭. 𝐠j = 𝐠i. 𝐅−1. 𝝉. 𝐠j = 𝐠̅i. 𝝉. 𝐠
𝑗    (3.50)                              

to obtain  

𝑡ij = 𝜏ik𝐹,k
j
       (3.51) 

Now differentiating equation (3.51) with respect to time gives 

𝑡̇ij = 𝜏̇ik𝐹,k
j
+ 𝜏ik𝐹̇,k

𝑗
      (3.52) 

Next, we need the relation between the Jaumann and convected stress rates which is 
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𝝉̂ = 𝝉̇c + 𝐃. 𝝉 + 𝝉. 𝐃      (3.53)                                     

We also make use of the fact that 

𝐸̇ij = 𝐠i. 𝐃. 𝐠j       (3.54) 

The component form of equation (3.33) is  

𝜏̂𝑖𝑗 = 𝐶ijkl𝐸̇kl       (3.55)                                                        

Define 

𝐿ijkl = 𝐶ijkl −
1

2
(𝑔̅ik𝜏jl + 𝑔̅jk𝜏il + 𝑔̅il𝜏jk + 𝑔̅jl𝜏ik)  /(3.56)             

then we obtain 

 𝐾ijkl = 𝐿piqk𝐹,q
𝑙𝐹,p

𝑗
+ 𝜏ik𝑔jl     (3.57) 

3.4 Concluding Remarks 

In this chapter the essential continuum mechanics relations and the quasi-static convected 

coordinate formulation have been presented, which is useful in the derivation of the 

constitutive equation in chapter 4 and later. The purpose of the fundamental relations of solid 

mechanics is also important to describe the elastic and plastic material behavior in the present 

context. Further these key relations are also referred in different places as and when required 

in other chapters. Apart from these, two other important and fundamental topics necessary 

for the derivation presented in the next chapter are the virtual work principle and the 

divergence theorem. The virtual work principle may be viewed as an alternative statement of 

the equilibrium equation in mechanics and this principle has been explained at the 

appropriate places. The divergence theorem converts a volume integral into a surface integral 

or vice versa. This is also valid in two-dimensions where the volume and surface integrals are 

replaced by surface and line integrals, respectively.  


