TABLE OF CONTENTS

Certificate	ii
Acknowledgments	vi
Abstract	ix
Table of Contents	xii
List of Figures	xvii
List of Abbreviations and Symbols	xxvi
Chapter-1 Introduction	1-14
1.1 Background	1
1.2 Motivation for the Research	9
1.3 Objectives and Scope of Study	11
1.4 Organization of the Thesis	12
Chapter-2 Literature Review	15-49
2.1 Introduction	15
2.2 Linear Elastic Fracture Mechanics	16
2.2.1 Stress Intensity Factor	18
2.2.2 Energy Release Rate	20
2.2.3 Small Scale Yielding	21
2.3 Elastic Plastic Fracture Mechanics	21
2.3.1 The Path Independent <i>J</i> integral	23
2.3.2 Crack Tip Opening Displacement	24
2.3.3 Relation Between J and CTOD	26
2.3.4 Plastic Zone Shape	28
2.4 Fracture Mechanics of Pressure Sensitive Yielding Materials	29

2.5 Fracture Mechanics of Plastically Incompressible Materials: Crack Tip		34
Blunting	and Fields	
2.6 Fracture	Mechanics under Fatigue Loading	36
2.6.1 Stu	dies Based on Small Deformation Formulation	37
2.6.2 Stu	dies Based on Large Deformation Formulation	38
2.7 Fracture	Mechanics of Elastic-Plastic Solids with Plastic Non-normality	39
2.8 Crack Gr	owth Modeling Strategies	41
(a) Node	e Release Technique	41
(b) Exter	nded Finite Element Method	42
(c) Cohe	sive Zone Model	42
(d) Crac	k Tip Blunting Model	43
2.9 Computa	tional Methods in Fracture Mechanics	43
2.9.1 M	ethods of Stress Calculations	44
2.9.	1.1 Analytical Methods	44
2.9.	1.2 Numerical Methods	45
	(a) Finite Difference Method	46
	(b) Finite Element Method	46
	(c) Boundary Element Method	47
	(d) Meshless Method	48
2.10 Conclud	ling Remarks	49
Chapter-3	Finite Deformation Formulation	51-66
3.1.Introduct	ion	51
3.2 Continuum Mechanics		52

3.2.1 Kinematics of Deformation	52
3.2.1.1 Motion	53
3.2.1.2 The Deformation Gradient	54
3.2.1.3 Strain Measures	56
3.2.1.4 The Velocity Gradient	57
3.2.1.5 Stress Measures	57
3.2.1.6 The Rate Viewpoint	59
3.2.2 Fundamental/balance Laws	60
3.2.2.1 Conservation of Mass	60
3.2.2.2 Conservation of Linear Momentum	60
3.2.2.3 Conservation of Angular Momentum	61
3.3. Quasi-static Deformation Histories	61
3.3.1 Conservational Formulation	63
3.3.2.Convected Coordinate Formulation	64
3.4 Concluding Remarks	66
Chapter-4 Constitutive Relationships	67-73
4.1 Introduction	67
4.2 Constitutive Relations	68
4.3 Concluding Remarks	72
Chapter-5 Numerical Procedures and Geometry Analysed	75-94
5.1 Introduction	75
5.2 Description of Analyses	75
5.2.1 Problem Formulation	76
5.2.2 Rate Tangent Formulation	78
5.2.3 Finite Element Equations	81

5.2.4 Geometry Description	85
5.3 Finite Element Issues	87
5.3.1 Element Description	87
5.3.2 Mesh Generation	90
5.3.3 Material Model	91
5.3.4 Equation Solver and Solution Control Options	93
5.4 Concluding Remarks	93
Chapter-6 Results and Discussion	95-170
6.1 Introduction	95
6.2 Problem Definition with Boundary Conditions	96
6.2.1 Boundary Conditions for Monotonic Loading	96
6.2.2 Boundary Conditions for Cyclic Loading	97
6.3 Convergence Studies	99
6.3.1 Mess Convergence	99
6.3.2 Program Verification Analysis	102
6.4 Some Results under Monotonic Loading (Plastic Normality Condition)	104
6.4.1 Applied J versus Crack Tip Opening Displacement	104
6.4.2 Plastic Zone Shape and Size	107
6.4.3 Near Crack Tip Fields	109
6.5 Some Results under Cyclic Loading (Plastic Normality Condition)	123
6.5.1 Crack Tip Deformation	123
6.5.2 Plastic Zone Shape and Size	141
6.5.3 Near Crack Tip Fields	147
6.6 Some Results under Monotonic Loading (Plastic Non-normality	158
Condition)	

6.6.1 Crack Tip Deformation	158
6.6.2 Near Crack Tip Fields	160
6.7 Concluding Remarks	170
Chapter-7 Summary and Conclusion	171-175
7.1 Introduction	171
7.2 Numerical Investigations	171
7.3 Recommended Future Work	173
References	177
List of Publications	197
Appendix	199