It is certified that the work contained in the thesis titled **"Finite Deformation Analysis of Crack Tip Fields in Plastically Compressible Hardening-Softening-Hardening Solids"** by **Shushant Singh** has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Dr. Debashis Khan (Supervisor) Associate Professor Dept. of Mechanical Engineering Indian Institute of Technology (BHU) Varanasi-221005 Prof. S.K.Panda (Co-Supervisor) Professor Dept. of Mechanical Engineering Indian Institute of Technology (BHU) Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Shushant Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervisions of **Dr. Debashis Khan** and **Prof. S.K. Panda** from July 2013 to July 2018, at the Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: IIT (BHU) Varanasi

(Shushant Singh)

CERTIFICATE BY THE SUPERVISORS

It is certified that the above statement made by the student is correct to the best of our knowledge.

Dr. Debashis Khan (Supervisor) Associate Professor Prof. S.K. Panda (Co-Supervisor) Professor

Prof. S.K. Sinha Head of Department Dept. of Mechanical Engineering Indian Institute of Technology (BHU) Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:	Finite Deformation Analysis of Crack Tip Fields in Plastically
	Compressible Hardening-Softening-Hardening Solids
Name of the Student:	Shushant Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the **Doctor of Philosophy**.

Date:

Place: IIT (BHU) Varanasi

(Shushant Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

This thesis is dedicated to

Lord Sri Krishna

ॐ पूर्णमदः पूर्णमिदं पूर्णात्पुर्णमुदच्यते। पूर्णस्य पूर्णमादाय पूर्णमेवावशिष्यते ।।

Sri Isopanishad

The Personality of Godhead is perfect and complete. And because He is completely perfect, all emanations from Him, such as this phenomenal world, are perfectly equipped as a complete whole. Whatever is produced of the complete whole is also complete by itself. And because He is the Complete Whole, even though so many complete units emanate from Him, He remains the complete balance.

At the outset, let me pay my obeisance to Lord Krishna for catapulting me to this level of academic pursuit. Thereafter, let me express my sincere gratitude to my respected supervisors - Dr. Debashis Khan and Prof. S.K. Panda for their matured guidance, invaluable encouragement, moral support, friendship, providing enough space to work over the past five years. I owe them much for all of their superior guidance over the years.

I wish to acknowledge my sincere gratefulness to Prof. S.K. Sinha, Head, Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, the previous heads Prof. A.K. Jha, Prof. A.K. Agrawal, and Prof. V.P. Singh for their kind gesture and extending all sorts of facilities in the department to pursue this kind of research work.

I would like to express my grateful thanks to my RPEC members Prof. Rajesh Kumar and Prof. P. Maiti for being part of my Ph.D. Committee and for being kind enough to make evaluation of my work-progress, extend meaningful comments and fruitful suggestions from time to time.

I am deeply indebted to Prof. Sandeep Kumar, for his help, spiritual values, precious advice and for the patience shown in our long and useful discussions. I would like to extend special thanks Prof. A.P. Harsha for his invaluable support, insightful conversations and continuous encouragement. My sincere thanks also go to Ministry of Human Resource Development, Govt. of India, for providing me financial assistance during my research tenure.

I am also thankful to Convener DPGC, Prof. Rajesh Kumar, previous Conveners Prof. A.P. Harsha, Prof. K.S. Tripathi, Prof. Sandeep Kumar and all respected DPGC members for their kind support. I express my sincere thanks to the technical and office staff, especially Mr. S.P. Singh, Mr. Dinesh Kumar, Mr. J.K. Sinha, Mr. Akash Mishra, who helped me in various ways during this research work. I would like to thank all other people who have provided a truly conductive environment to successfully carry out this research. I shall be failing in my duty if I do not put on record my sincere appreciation and thankfulness to my seniors, lab mates and friends; Mr. Ambuj Sharma, Mr. Bharat S. Patel, Mr. Khemraj Sahu, Mr. Avinash Ravi Raja, Mr. Pushkar Jha, Mr. Rajeev Nayan Gupta, Mr. Manvandra K. Singh, Mr Parshant Kumar, Mr. Ankit Sharma, Mr. Sunil Kumar, Mr. Harish Babu, Mr. Gaurav Gugliyani, Mr. Arun Kumar, Mr. Ashish Srivastava, Mr. Ravindra Prasad, Mr. Vivek Gupta, Mrs. Prerna Mishra, Mr.Ashish Pareta. Mr. Hemant Nutiyal, Mr. Sooraj rawat, Mr. Homendra Kumar, Mr. Hemant Chaudhary, Mr. Amod Kashyap, Mr. Yash Mittal. My special thanks go to Mrs. Amrita Khan, for her help, spiritual values, and for providing me a family like atmosphere.

I have no words to express my indebtedness and gratitude to my parents, Mrs. Asha and Mr. Satendra Kumar for showering their affectionate love and all possible support during my research-endeavour. They have been a guiding force all through my life, and I could always try to measure up to their expectations. I further express my sincere thanks to my elder brothers, Mr. Sachin Singh and Dr. Prashant Singh for their constant motivation and support during all these periods and all through my life. Words at my command are not sufficient enough to express my feelings especially for my Sister Dolly Singh and for my sweet nieces Ananya, Yashi, Kashvi, nephew Subh their smiling face always rejuvenates me.

I would fail in my duty if I fail to express my deep sense of gratefulness and thankfulness to my love Chetna, for being a constant source of love, energy and ecstasy to make each day of my life brimmed with a wonderfully pleasant experience. To all these people and to those unmentioned, my heartfelt thanks.

Shushant Singh

ABSTRACT

Considering the potential applications of relatively new materials like toughened structural polymers, metallic foams, plastics, transformation toughened ceramics, vertically aligned carbon nanotubes (VACNTs) etc and their limited exploration till now, it appears that there is a need to investigate more about the behavior of such materials under a wide range of loadings. Even though the effect of plastic dilatancy is neglected in classical plasticity theory, the above materials exhibit plastic volume changes and/or pressure-sensitive flow strength. In a recent study, it has been observed that the deformation of the entangled arrays of carbon nanotubes or VACNTs follow elasticviscoplastic constitutive relation which incorporates plastic compressibility, plastic nonnormality and a hardening-softening-hardening type hardness function. These VACNTs have prospective uses in a variety of applications like viscoelastic energy absorption, compliant thermal interfaces, biomimetic dry adhesives etc and hence it is useful to develop a predictive framework for the mechanical behavior of VACNTs under a wide range of loadings. In this thesis work, finite element finite deformation quasistatic mode I plane strain small scale yielding analysis of crack tip blunting and near crack tip fields was carried out for plastically compressible solids exhibiting a variety of uniaxial stress – strain responses. In particular solids with hardening-softening-hardening responses as can occur for foams and VACNTs have been considered. The novelty of this model includes unique characteristics as mentioned earlier like the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality.

As for localization studies it needs a finite strain description, using FORTRAN a finite element finite deformation code has been developed in this work for the simulation purpose. A convected coordinate Lagrangian formulation of the field equations was used. Quasistatic deformation conditions have been assumed and the equilibrium equations were expressed through the virtual work principle. The plane strain calculations were carried out for a semicircular region with a blunt notch. Quadrilateral elements each comprised of four crossed constant strain triangular elements have been used for mesh generation. Such elements with a proper aspect ratio and orientation are extensively used to replicate localized deformation pattern at finite strains. The initial part of the investigation refers to crack tip blunting and field quantities analyses under monotonic load while in the next part studies were conducted for fatigue loading to find the key results of crack tip blunting and fields. Even though most of the results presented are for plastic normality condition, however for comparison purpose some results have also been illustrated for constitutive relations exhibit plastic non-normality. While to simulate fatigue crack growth by means of finite elements, different techniques have been proposed over the years, however, in this work the crack growth modelling strategy employed was crack tip blunting/ resharpening mechanism where it is assumed that the crack tip blunts during the maximum load and resharpening of the crack tip takes place under minimum load. The simulations attempt to explain some of the salient features, like crack tip opening displacement, crack tip advancement, plastic zone shape and size, equivalent plastic strain distribution, equivalent stress, and distribution of hydrostatic stress at near crack region. The influences of plastic compressibility, material softening, cyclic stress intensity factor range, load ratio, number of fatigue load cycles on the near tip deformation and stress-strain fields were studied.

Numerical results obtained from the quasistatic mode I plane strain analysis demonstrate that plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone shape and size are found to depend on the plastic compressibility. Even though, material softening does not have a significant effect on the plastic zone size and shape, however, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of softening or softening-hardening material response and plastic compressibility leads to major deviation in the near crack tip stress and deformation fields from those that prevail for a hardening material. Plastic compressibility coupled with a softening or softening material response leads to localized deformation in front of the initial crack tip, which in turn affects the shape of the blunted crack tip. The present numerical calculations show that the convergence of the cyclic trajectories of CTOD to stable self similar loops and plastic crack growth depend significantly on cyclic stress intensity factor range, load ratio, number of fatigue load cycles.

Keywords: Finite Deformation, Mode I crack, Plasticity, Compressible Solids, Material Softening, Monotonic Loading, Fatigue Loading, Finite Element Method.

TABLE OF CONTENTS

Certificate	ii
Acknowledgments	vi
Abstract	ix
Table of Contents	xii
List of Figures	xvii
List of Abbreviations and Symbols	xxvi
Chapter-1 Introduction	1-14
1.1 Background	1
1.2 Motivation for the Research	9
1.3 Objectives and Scope of Study	11
1.4 Organization of the Thesis	12
Chapter-2 Literature Review	15-49
2.1 Introduction	15
2.2 Linear Elastic Fracture Mechanics	16
2.2.1 Stress Intensity Factor	18
2.2.2 Energy Release Rate	20
2.2.3 Small Scale Yielding	21
2.3 Elastic Plastic Fracture Mechanics	21
2.3.1 The Path Independent <i>J</i> integral	23
2.3.2 Crack Tip Opening Displacement	24
2.3.3 Relation Between J and CTOD	26
2.3.4 Plastic Zone Shape	28
2.4 Fracture Mechanics of Pressure Sensitive Yielding Materials	29

2.5 Fracture Mechanics of Plastically Incompressible Materials: Crack Tip		34
Blunting	g and Fields	
2.6 Fracture	Mechanics under Fatigue Loading	36
2.6.1 Stu	dies Based on Small Deformation Formulation	37
2.6.2 Stu	dies Based on Large Deformation Formulation	38
2.7 Fracture	Mechanics of Elastic-Plastic Solids with Plastic Non-normality	39
2.8 Crack Gr	rowth Modeling Strategies	41
(a) Node	e Release Technique	41
(b) Exter	nded Finite Element Method	42
(c) Cohe	sive Zone Model	42
(d) Crac	k Tip Blunting Model	43
2.9 Computa	tional Methods in Fracture Mechanics	43
2.9.1 M	ethods of Stress Calculations	44
2.9.	1.1 Analytical Methods	44
2.9.	1.2 Numerical Methods	45
	(a) Finite Difference Method	46
	(b) Finite Element Method	46
	(c) Boundary Element Method	47
	(d) Meshless Method	48
2.10 Conclue	ling Remarks	49
Chapter-3	Finite Deformation Formulation	51-66
3.1.Introduct	ion	51
3.2 Continuum Mechanics		52

3.2.1 Kinematics of Deformation	52
3.2.1.1 Motion	53
3.2.1.2 The Deformation Gradient	54
3.2.1.3 Strain Measures	56
3.2.1.4 The Velocity Gradient	57
3.2.1.5 Stress Measures	57
3.2.1.6 The Rate Viewpoint	59
3.2.2 Fundamental/balance Laws	60
3.2.2.1 Conservation of Mass	60
3.2.2.2 Conservation of Linear Momentum	60
3.2.2.3 Conservation of Angular Momentum	61
3.3. Quasi-static Deformation Histories	61
3.3.1 Conservational Formulation	63
3.3.2.Convected Coordinate Formulation	64
3.4 Concluding Remarks	66
Chapter-4 Constitutive Relationships	67-73
4.1 Introduction	67
4.2 Constitutive Relations	68
4.3 Concluding Remarks	72
Chapter-5 Numerical Procedures and Geometry Analysed	75-94
5.1 Introduction	75
5.2 Description of Analyses	75
5.2.1 Problem Formulation	76
5.2.2 Rate Tangent Formulation	78
5.2.3 Finite Element Equations	81

5.2.4 Geometry Description	85
5.3 Finite Element Issues	87
5.3.1 Element Description	87
5.3.2 Mesh Generation	90
5.3.3 Material Model	91
5.3.4 Equation Solver and Solution Control Options	93
5.4 Concluding Remarks	93
Chapter-6 Results and Discussion	95-170
6.1 Introduction	95
6.2 Problem Definition with Boundary Conditions	96
6.2.1 Boundary Conditions for Monotonic Loading	96
6.2.2 Boundary Conditions for Cyclic Loading	97
6.3 Convergence Studies	99
6.3.1 Mess Convergence	99
6.3.2 Program Verification Analysis	102
6.4 Some Results under Monotonic Loading (Plastic Normality Condition)	104
6.4.1 Applied J versus Crack Tip Opening Displacement	104
6.4.2 Plastic Zone Shape and Size	107
6.4.3 Near Crack Tip Fields	109
6.5 Some Results under Cyclic Loading (Plastic Normality Condition)	123
6.5.1 Crack Tip Deformation	123
6.5.2 Plastic Zone Shape and Size	141
6.5.3 Near Crack Tip Fields	147
6.6 Some Results under Monotonic Loading (Plastic Non-normality	158
Condition)	

6.6.1 Crack Tip Deformation	158
6.6.2 Near Crack Tip Fields	160
6.7 Concluding Remarks	170
Chapter-7 Summary and Conclusion	171-175
7.1 Introduction	171
7.2 Numerical Investigations	171
7.3 Recommended Future Work	173
References	177
List of Publications	197
Appendix	199

LIST OF FIGURES

Figure No.	Caption	Page No.
Figure 2.1	Various basic loading modes in fracture mechanics (a) Opening	17
	mode (b) Sliding mode (c) Tearing mode	
Figure 2.2	Coordinate system at a crack tip region	19
Figure 2.3	Crack tip opening displacement	25
Figure 2.4	Comparison of plane stress and plane strain plastic zone	29
	boundaries	
Figure 3.1	Reference and deformed configurations	54
Figure 4.1	The typical definition of the hardening-softening-hardening	71
	flow stress function with the transition strains denoted by ϵ_1	
	and ϵ_2 and the slope of the three piece wise linear functions	
	given by h_1 , h_2 and h_3 , respectively	
Figure 5.1	The condensation of internal node in quadrilateral element	82
	comprised of four crossed constant strain triangular elements	
Figure 5.2	Triangular finite element	83
Figure 5.3	Geometry used in the finite element simulation of small scale	86
	yielding with K-field boundary conditions; a) Full geometry	
Figure 5.4	and b) Portion of the geometry showing the crack tip. Triangular finite element and it's representation in the local	88
C	coordinate system	
Figure 5.5	The variation of hardness function $g(\varepsilon_p)$ with plastic strain	92
-	$\varepsilon_{\rm p}$.a) material B ($h_2 = h_3 = 5.0$) and material C ($h_2 = h_3 =$	
	-	
	1.0), b) material E ($h_2 = -3.90$, $h_3 = 15.0$) and material G	

$$(h_2 = -3.90, h_3 = 15.0, \varepsilon_2 = 5.0)$$

Figure 6.1	Cyclic loading used in present fatigue crack simulation	98
Figure 6.1A	Typical mesh used in the finite element simulation (near tip	99
	mesh)	
Figure 6.2	Crack-tip opening displacement $\delta_t (= b/b_0 - 1)$ versus applied <i>J</i> -integral, J_{app} in material B; a) 22 x 54 quadrilateral mesh, b) 22 x 64 quadrilateral mesh, c) 22 x 74 quadrilateral mesh	100-101
Figure 6.3	Plastic strain distribution for plastically compressible solid, material B, $\alpha_p = 0.28$, a) 22 x 54 quadrilateral mesh, b) 22 x 64 quadrilateral mesh, c) 22 x 74 quadrilateral mesh	101-102
Figure 6.4	Stress distribution for a growing crack in material B, plastically incompressible, applied <i>J</i> -integral, $J_{app}/(\sigma_0 b_0) = 2.25$	103
Figure 6.5	Curves of crack-tip opening displacement $(b/b_0 - 1)$ versus the applied J-integral, J_{app} for plastically incompressible and compressible hardening solid, a) Material B. b) Material C	104
Figure 6.6	Curves of crack-tip opening displacement $(b/b_0 - 1)$ versus the applied J-integral, J_{app} for plastically incompressible and compressible solids. a) Material E. b) Material G	105
Figure 6.7	Distribution of plastic strain, $\varepsilon_{\rm p}$, for material B with $J_{\rm app}/(\sigma_0 b_0) = 2.25$ a) Plastically incompressible solid, $\alpha_{\rm p} = 0.333333$. b) Plastically compressible solid, $\alpha_{\rm p} = 0.28$	108
Figure 6.8	Distribution of plastic strain, $\varepsilon_{\rm p}$, for material G with $J_{\rm app}/(\sigma_0 b_0) = 2.25$ a) Plastically incompressible solid, $\alpha_{\rm p} = 0.333333$. b) Plastically compressible solid, $\alpha_{\rm p} = 0.28$	108

- Figure 6.9 Field distributions in the crack tip vicinity for material B (a 110 hardening material) with $\alpha_p = 0.28$ at $J_{app}/(\sigma_0 b_0) = 2.25$. a) Plastic strain, ε_p b) Hydrostatic stress, σ_h/σ_0
- Figure 6.10 Strain distributions in the crack tip vicinity for material E at 111-112 $J_{app}/(\sigma_0 b_0) = 2.25$. a) Distribution of ε_p for a plastically incompressible solid, $\alpha_p = 0.333333$. b) Distribution of ε_p for a plastically compressible solid, $\alpha_p = 0.28$. c) Distribution of ε_{vol} for a plastically compressible solid, $\alpha_p = 0.28$
- Figure 6.11 Distributions of normalized hydrostatic stress σ_h/σ_0 in the 113 crack tip vicinity for material E at $J_{app}/(\sigma_0 b_0) = 2.25$. a) Plastically incompressible solid, $\alpha_p = 0.333333$.b) Plastically compressible solid, $\alpha_p = 0.28$
- Figure 6.12 Distributions of normalized effective stress measures in the 114-115 crack tip vicinity for material E at J_{app}/(σ₀b₀) = 2.25. a) σ_e/σ₀ for a plastically incompressible solid, α_p = 0.333333.
 b) σ_e/σ₀ for a plastically compressible solid, α_p = 0.28. c) σ_M/σ₀ for a plastically compressible solid, α_p = 0.28
- Figure 6.13 Distributions of plastic strain, ε_p in the crack tip vicinity for 117-118 material G at $J_{app}/(\sigma_0 b_0) = 2.25.a$) Plastically incompressible solid, $\alpha_p = 0.333333.b$) Plastically compressible solid, $\alpha_p =$ 0.28.c) Distribution of ε_{vol} for a plastically compressible solid, $\alpha_p = 0.28$
- Figure 6.14 Distributions of normalized hydrostatic stress σ_h/σ_0 in the 119-120 crack tip vicinity for material G at $J_{app}/(\sigma_0 b_0) = 2.25$. a) Plastically incompressible solid, $\alpha_p = 0.333333$.b) Plastically compressible solid, $\alpha_p = 0.28$

Figure 6.15 Distributions of normalized effective stress measures in the 121-122

crack tip vicinity for material G at $J_{app}/(\sigma_0 b_0) = 2.25$. a) σ_e/σ_0 for a plastically incompressible solid, $\alpha_p = 0.333333$.b) σ_e/σ_0 for a plastically compressible solid, $\alpha_p = 0.28$. c) σ_M/σ_0 for a plastically compressible solid, $\alpha_p = 0.28$

- Figure 6.16 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 125 *J*-integral, J_{app} in material B with $K_{max} = 0.5$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)
- Figure 6.17 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 125 *J*-integral, J_{app} in material B with $K_{max} = 1.0$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)
- Figure 6.18 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 126 *J*-integral, J_{app} in material B with $K_{max} = 1.5$ and $K_{min} = 0.5$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)
- Figure 6.19 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 126 *J*-integral, J_{app} in material E with $K_{max} = 0.5$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)
- Figure 6.20 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 127 *J*-integral, J_{app} in material E with $K_{max} = 1.0$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)
- Figure 6.21 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 127 *J*-integral, J_{app} in material E with $K_{max} = 1.5$ and $K_{min} = 0.5$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$ (up to 10th cycle)

- Figure 6.22 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 128 *J*-integral, J_{app} in material B with $K_{max} = 2.0$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$, with overload, (up to 10th cycle)
- Figure 6.23 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 129 *J*-integral, J_{app} in material E with $K_{max} = 2.0$ and $K_{min} = 0$; a) Plastically incompressible solid b) Plastically compressible solid, $\alpha_p = 0.28$, with overload, (up to 10th cycle)
- Figure 6.24 Crack-tip deformations for plastically incompressible solid, 131 material B, $K_{\text{max}} = 2.0$ and $K_{\text{min}} = 0$; a) At the end of loading phase, $K \rightarrow K_{\text{max}}$ b) At the end of unloading phase, $K \rightarrow K_{\text{min}}$ for 5th cycle
- Figure 6.25 Crack-tip deformations for plastically compressible solid, 132 material B, $\alpha_p = 0.28$, $K_{max} = 2.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading phase, $K \rightarrow K_{min}$ for 5th cycle
- Figure 6.26 Crack-tip deformations for plastically incompressible solid, 133 material E, $K_{\text{max}} = 2.0$ and $K_{\text{min}} = 0$; a) At the end of loading phase, $K \rightarrow K_{\text{max}}$ b) At the end of unloading phase, $K \rightarrow K_{\text{min}}$ for 5th cycle
- Figure 6.27 Crack-tip deformations for plastically compressible solid, 134 material E, $\alpha_p = 0.28$, $K_{max} = 2.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading phase, $K \rightarrow K_{min}$ for 5th cycle
- Figure 6.28 Normalized crack extension $(\Delta a/b_0)$ versus normalized time 136-137 (t/t_0) in plastically incompressible and compressible solids,

material B; a) $K_{max} = 1.0$ and $K_{min} = 0$ b) $K_{max} = 2.0$ and $K_{min} = 0$ c) $K_{max} = 1.5$ and $K_{min} = 0.5$ d) $K_{max} = 2.0$ and $K_{min} = 1.0$

- Figure 6.29 Normalized crack extension $(\Delta a/b_0)$ versus normalized time 137-138 (t/t₀) in plastically incompressible and compressible solids, material E; a) $K_{max} = 1.0$ and $K_{min} = 0$ b) $K_{max} = 2.0$ and $K_{min} = 0$ c) $K_{max} = 1.5$ and $K_{min} = 0.5$ d) $K_{max} = 2.0$ and $K_{min} = 1.0$
- Figure 6.30 Normalized crack extension $(\Delta a/b_0)$ versus normalized time 139 (t/t₀) in plastically incompressible and compressible solids with overloading, material B; a) $K_{max} = 1.0$ and $K_{min} = 0$ b) $K_{max} = 2.0$ and $K_{min} = 0$
- Figure 6.31 Normalized crack extension $(\Delta a/b_0)$ versus normalized time 139 (t/t₀) in plastically incompressible and compressible solids with overloading, material E; a) $K_{max} = 1.0$ and $K_{min} = 0$ b) $K_{max} = 2.0$ and $K_{min} = 0$
- Figure 6.32 Fatigue crack growth da/dN versus ΔK for plastically 140 compressible solids, $\alpha_p = 0.28$, (a) Material B and (b) Material E, (with R=0) at 5th cycle
- Figure 6.33 Distribution of plastic strain, for plastically incompressible 142 solid, material B, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading phase, $K \rightarrow K_{min}$ for 10th cycle
- Figure 6.34 Distribution of plastic strain, for plastically compressible solid, 143 material B, $\alpha_p = 0.28$, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading

phase, $K \rightarrow K_{\min}$ for 10th cycle

- Figure 6.35 Distribution of plastic strain, for plastically incompressible 143 solid, material E, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading phase, $K \rightarrow K_{min}$ for 10th cycle
- Figure 6.36 Distribution of Plastic strain, for plastically compressible solid, 144 material E, $\alpha_p = 0.28$, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase, $K \rightarrow K_{max}$ b) At the end of unloading phase, $K \rightarrow K_{min}$ for 10th cycle
- Figure 6.37 Distribution of plastic strain, for plastically incompressible 145 solid, material B, $K_{max} = 1.0$ and $K_{min} = 0$; at the end of loading phase in 5th cycle a) With overload b) Without overload
- Figure 6.38 Distribution of plastic strain, for plastically compressible solid, 145 material B, $\alpha_p = 0.28$, $K_{max} = 1.0$ and $K_{min} = 0$; at the end of loading phase in 5th cycle a) With overload b) Without overload
- Figure 6.39 Distribution of plastic strain, for plastically incompressible 146 solid, material E, $K_{max} = 1.0$ and $K_{min} = 0$; at the end of loading phase in 5th cycle a) With overload b) Without overload
- Figure 6.40 Distribution of plastic strain, for plastically compressible solid, 146 material E, $\alpha_p = 0.28$, $K_{max} = 1.0$ and $K_{min} = 0$; at the end of loading phase in 5th cycle a) With overload b) Without overload
- Figure 6.41 Plastic strain distribution for plastically compressible solid, 148-149 material B, $\alpha_p = 0.28$, a) $K_{max} = 0.5$ and $K_{min} =$ 0 b) $K_{max} = 1.0$ and $K_{min} = 0$ c) $K_{max} = 1.5$ and $K_{min} =$ 0.5; at the end of loading phase for 10th cycle

- Figure 6.42 Plastic strain distribution for plastically compressible solid, 149-150 material E, $\alpha_p = 0.28$, a) $K_{max} = 0.5$ and $K_{min} = 0$ b) $K_{max} = 1.0$ and $K_{min} = 0$ c) $K_{max} = 1.5$ and $K_{min} = 0.5$; at the end of loading phase for 10th cycle
- Figure 6.43 Hydrostatic stress for plastically incompressible solid, material 152 B, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10^{th} cycle
- Figure 6.44 Hydrostatic stress for plastically compressible solid, $\alpha_p = 153$ 0.28, material B, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10th cycle
- Figure 6.45 Hydrostatic stress for plastically incompressible solid, material 154 E, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10th cycle
- Figure 6.46 Hydrostatic stress for plastically compressible solid, $\alpha_p = 155$ 0.28, material E, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10th cycle
- Figure 6.47 Distributions of normalized effective stress measures for 156 plastically compressible solid, $\alpha_p = 0.28$, material B, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10th cycle
- Figure 6.48 Distributions of normalized effective stress measures for 157 plastically compressible solid, $\alpha_p = 0.28$, material E, $K_{max} = 1.0$ and $K_{min} = 0$; a) At the end of loading phase b) At the end of unloading phase for 10th cycle
- Figure 6.49 Crack-tip opening displacement $\delta_t (= b/b_0 1)$ versus applied 159-160 *J*-integral, J_{app} , $J_{app}/(\sigma_0 b_0) = 2.25$ a) Material B, b) Material

E, plastically incompressible and compressible conditions ($\alpha_p = \beta_p = 0.28$), c) Material E, plastically incompressible and compressible conditions ($\alpha_p = 0.28 \& \beta_p = 0.20$)

- Figure 6.50 Distribution of accumulated plastic strain ε_p at the crack tip of 161-162 maerial B, J_{app}/(σ₀b₀) = 2.25. a) Plastically incompressible,
 b) Plastically compressible (α_p = β_p = 0.28), c) plastically compressible (α_p =0.28 & β_p =0.20)
- Figure 6.51 Distribution of accumulated plastic strain ε_p at the crack tip of 163-164 maerial E, J_{app}/(σ₀b₀) = 2.25. a) Plastically incompressible,
 b) Plastically compressible (α_p = β_p = 0.28), c) plastically compressible (α_p =0.28 & β_p =0.20)
- Figure 6.52 Distribution of volumetric strain ε_{vol} at the crack tip, $J_{app}/$ 165 $(\sigma_0 b_0) = 2.25$. material E a) $\alpha_p = 0.28 \& \beta_p = 0.20$ b) $\alpha_p = \beta_p = 0.28$
- Figure 6.53 Normalized hydrostatic stress distribution at the crack tip 167-168 vicinity for material E, $J_{app}/(\sigma_0 b_0) = 2.25$. a) Plastically incompressible, b) Plastically compressible ($\alpha_p = \beta_p = 0.28$), c) Plastically compressible ($\alpha_p = 0.28 \& \beta_p = 0.20$)
- Figure 6.54 Effective stress distribution at the crack tip vicinity for 169 material E, $J_{app}/(\sigma_0 b_0) = 2.25$. a) Plastically compressible ($\alpha_p = \beta_p = 0.28$), b) Plastically compressible ($\alpha_p = 0.28 \& \beta_p = 0.20$)

LIST OF ABBREVIATIONS AND SYMBOLS

FEM	Finite Element Method
BEM	Boundary Element Method
LEFM	Elastic Fracture Mechanic
EPFM	Elastic Plastic Fracture Mechanics
CTOD	Crack Tip Opening Displacement
VACNT	Vertically Aligned Carbon Nano Tube
PFM	Probabilistic fracture mechanics
SSY	Small Scale Yielding
HRR	Hutchinson, Rice and Rosengren
X-FEM	Extended Finite Element Method
CZM	Cohesive Zone Model
FDM	Finite Difference Method
$\sigma_{_{ m ij}}$	Stress Tensor
$\sigma_{ m ij}$ $\sigma_{ m xx}, \sigma_{ m yy}, \sigma_{ m zz}$	Stress Tensor Stress Components in x, y and z direction
5	
$\sigma_{_{\mathrm{XX}}},\sigma_{_{\mathrm{YY}}},\sigma_{_{\mathrm{ZZ}}}$	Stress Components in x, y and z direction
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$	Stress Components in x, y and z direction Poisson ratio
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ u μ	Stress Components in x, y and z direction Poisson ratio Shear modulus
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ v μ K	Stress Components in x, y and z direction Poisson ratio Shear modulus Stress Intensity Factor
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_{t}	Stress Components in x, y and z direction Poisson ratio Shear modulus Stress Intensity Factor Radius
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ ν μ K r_t u_{xx}, u_{yy}, u_{zz}	Stress Components in x, y and z direction Poisson ratio Shear modulus Stress Intensity Factor Radius Displacement in x, y and z direction
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_t u_{xx}, u_{yy}, u_{zz} K_{IC}	Stress Components in x, y and z direction Poisson ratio Shear modulus Stress Intensity Factor Radius Displacement in x, y and z direction Mode I Critical Stress Intensity Factor
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_{t} u_{xx}, u_{yy}, u_{zz} K_{IC} U	 Stress Components in x, y and z direction Poisson ratio Shear modulus Stress Intensity Factor Radius Displacement in x, y and z direction Mode I Critical Stress Intensity Factor Potential Energy
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_t u_{xx}, u_{yy}, u_{zz} K_{IC} U V W	Stress Components in x, y and z directionPoisson ratioShear modulusStress Intensity FactorRadiusDisplacement in x, y and z directionMode I Critical Stress Intensity FactorPotential EnergyVolume of the Body
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_{t} u_{xx}, u_{yy}, u_{zz} K_{IC} U V W S_{t}	Stress Components in x, y and z directionPoisson ratioShear modulusStress Intensity FactorRadiusDisplacement in x, y and z directionMode I Critical Stress Intensity FactorPotential EnergyVolume of the BodyStrain Energy Density
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ V μ K r_t u_{xx}, u_{yy}, u_{zz} K_{IC} U V W	Stress Components in x, y and z directionPoisson ratioShear modulusStress Intensity FactorRadiusDisplacement in x, y and z directionMode I Critical Stress Intensity FactorPotential EnergyVolume of the BodyStrain Energy DensityPart of the body Subjected to Traction

F	Contain Englacing the Creat Tin
Γ	Contour Enclosing the Crack Tip
n	Unit Outward Normal on Γ
$ar{T}$	Surface Traction
$T_{ m i}$	Traction Vector
r _y	Irwin Plastic Zone Correction
d	Crack Tip Opening Displacement
a	Half Crack Length
$m{J}_{ ext{app}}$	Applied J integral
$F_{ m ij}$	Deformation Gradient
e _{ij}	Eulerian Strain Tensor
$D_{ m ij}$	Deformation Tensor
$L_{ m ij}$	Velocity Gradient
$W_{ m ij}$	Velocity tensor or spin tensor
ρ	Density
$\hat{ au}_{ m ij}$	Jaumann rate of Kirchhoff stress
$\dot{\mathcal{E}}_{ m p}$	Plastic Strain Rate
$\sigma_{ m e}$	Effective Equivalent Stress
$\delta_{ m ij}$	Kronecker Delta
$P_{ m ij}$	Deviatoric Kirchhoff Plastic Stress Tensor
$L_{ m ijkl}$	Tensor of elastic Moduli
$\dot{\mathcal{E}}_0$	Reference Strain Rate
т	Rate Hardening Exponent
$\sigma_{_0}$	Reference Stress
$lpha_{ m p}$	Plastic Compressibility

Symbols not listed here, are defined as they appear in text.