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Abstract:   

Pathologists face difficulty in cell image detection as uneven dye causes 

overlapping, blurring, low contrast as well as weak boundary detection. The proposed 

Discrete Cosine Transform (DCT) based Dynamic Stochastic Resonance (DSR) 

technique enhances the histopathological images of cancer. DSR utilizes the internal 

noise of image to enhance it and automatic threshold method detects the cells. DSR 

processes intensity component of decomposed Hue, Saturation and Intensity (HSI). 

The DSR processed image helps in the better segmentation of histopathological images 

of four types of cancer cells i.e. breast, cervix, ovarian and prostate cancer. The 

comparison of segmentation results were performed on the University of California, 

Santabarbara (UCSB) available breast cancer datasets for analysis. The algorithm has 

been applied to total twenty-two (22) breast cancer images including benign and 

malignant and compared with ROI segmented Ground Truth images to validate our 

proposed DSR based Otsu’s thresholding method’s performance. DSR based 

segmentation obtained better results with 0.776 average Correlation, 0.979 average 

Normalized Probabilistic Rand (NPR) index, 0.011 average Global Consistency Error 

(GCE) and 0.185 average Variation of Information (VI). This approach has the 

advantage to identify the target objects of noisy and low contrast images. Based on the 

comparative study, the proposed methodology performs better than the other 

conventional methods, as it obtained high Correlation, NPR, and low VI, GCE. 

3.1 Introduction: 

Histopathological images provide an informative view of the underlying tissue 

since the structure of the tissue is preserved in the preparation process. It deals with the 

minute structure of the tissue and provides information about abnormalities present in 

the cellular structure of the tissue and cells. For better detection of cancer, pathologists 

use histopathology images for examination of tissue structure of the patient. Currently, 

scrutiny of histopathological images is the routinely used method to examine biopsy 

sample for the diagnosis of cancer (Fischer et al., 2008; Lillie et al., 1954). Moreover, 

diagnosis from histopathology images is considered to be the ‘gold standard’ in 

diagnosing a large number of diseases including, but not limited to many types of 

cancer (Rubin et al., 2008). 
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 Images obtained from different imaging modalities are contaminated with 

noise, low contrast and artifacts. Image pre-processing of histopathological images is 

an important step in medical diagnostic imaging as it influences the detection and 

classification of diseases. Primarily, the noises in histopathological images originate 

from procedural staining artifacts and nuclei debris (Arif et al., 2007). 

Histopathological images generally contain many types of noises and artifacts in the 

captured image such as additive noise, gaussian noise, multiplicative noise, speckle 

noise, salt and pepper noise, random and periodic noise (Cohen et al., 2015; Sadimin, 

et al., 2012), which leads to poor quality of image. 

Prior to further processing, the labelled images undergo contrast-enhancement 

and quality adjustment related steps. The main purpose of the pre-processing steps 

includes reduction of the background noises cum non-uniformities, improvement of 

finer details, and enhancement of image quality for accurate determination of Region 

of Interest (ROI) (Rolls et al., 2010; Gonzalez et al., 2004). Subsequent to image pre-

processing, the output of the enhanced images serves as the input for other automated 

image processing techniques such as (a) segmentation, (b) features extraction and (c) 

classifications for Computer Aided Diagnosis (CAD) technique based systems 

(Dougherty 2009; Gonzalez et al., 2002; Dhawan et al., 2003). The above-mentioned 

processes aids in avoiding misclassifications due to variation in result caused by the 

presence of noise, artifact, staining, poor visibility, weak boundary detection, uneven 

dying, overlapping of cells, low contrast and blurriness respectively (Dermir et al., 

2005).  

3.2 Enhancement: 

Image enhancement is required for better visualization of dark images to 

improve visual perception, and to enable accurate interpretation. Many images have  

very low dynamic range of the intensity values because of insufficient illumination, 

and therefore need to be processed before being displayed. The image enhancement 

will produce enhanced edges and better quality images free from noise impacts that 

contribute towards minimizing the blurring effects.  
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The enhanced images will aid in edge detection and image quality refinement. 

Edge detection will direct towards originating the precise position of abnormalities 

present in cells (Plissiti et al., 2011; Madabhushi, 2009; Malik et al., 1990).  Further, 

the design and analysis of efficient algorithms for each step of CAD system executes 

the significant function in deciding the efficacy and correctness of the overall CAD 

system. Image enhancement plays an important role in the design and development of 

the CAD system. The better image enhancement techniques are applied prior to 

segmentation process, for highlighting and enhancing the details of the abnormalities 

in the histopathological image such as size, irregular shape etc. that further reduce the 

False Positive (FP) during cancer detection. Hence, image enhancement is very 

essential and important step that determines the sensitivity of the overall CAD system. 

The enhanced image used for segmentation aims at splitting an entire image into a set 

of region is supposed to have the following properties: circularity regularity and 

boundaries, homogeneity in terms of colour and texture, and differentiation from 

neighbour regions (Rahmadwati et al., 2012; Gurcan et al., 2009).  

The enhancement approaches present a large number of options for enhancing 

the visual feature of images (Maini et al., 2010; Gonzalez et al., 2002). The standard 

purpose of image enhancement is to develop an image for extraction of essential 

information. Further, this information acts an improved input for other automated 

image processing techniques (Gupta et al., 2014; Jagatheeswari et al., 2009). 

 

 

Figure 3.1: Basic enhancement process (Gupta et al., 2009). 

 

Image enhancement simply means, transforming an image “f” into image “g” 

using “T” (where “T” is the transformation of the image). The values of pixels in 

images “f” and “g” are denoted by “r” and “s” respectively.  As said, the pixel values 

“r” and “s” are related by the expression, 

𝑠 = 𝑇 𝑟                                                                            (3.1) 
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where “T”  is a transformation that maps a pixel value “r” into a pixel value 

“s”. The results of this transformation are mapped into the gray scale ranges as we are 

exploring with grayscale digital images only. Accordingly, the results are mapped back 

into the range (0, L-1], where L=2k, k being the number of bits in the image under 

considerations (Maini et al. 2010). Henceforth, for instance, in an 8-bit image, the 

range of pixel values will extend within (0, 255).  

The pre-processing steps such as (a) de-noising and (b) contrast enhancement 

play a significant role in histopathological image analysis to recognize and analyze the 

cells structure and shape, etc. Henceforth, the pre-processing method improves the 

interpretability or perception of information by eliminating the noise present in the 

images for significant analysis (McAndrew et al., 2014; Zhang et al., 2004). The brief 

descriptions about denoising and contrast enhancement are as follows:  

 3.2.1 Denoising: 

Images produced by histopathological needs denoising and enhancement for 

better diagnosis or further processing such as segmentation (Domingo et al., 2008; 

Prayitno et al., 2006). Denoising steps are used to reduce and remove noise from the 

image and to enhance features of interest for easier and more accurate analysis (Dermir 

et al., 2005; Gonzalez et al., 2002).  

Common noise in histology images is blood cells and artifact stains in the 

background (Rolls et al., 2010). The image that is gathered in digital format exhibits 

noise. The quality of the images will affect the accuracy of the diagnosis (Dermir et al., 

2005). To improve the visual quality of images, image enhancement techniques 

provide a variety of ways like deblurring, smoothing, improving contrast, denoising, 

(removing unwanted noise), sharpening, and unsharp masking etc. (Takashi et al., 

2009; Jain, 1989).  

The removal of noise from the given image is an usual process. Various types 

of noises are present with large number of optical characteristics represented as 

multiple tags, artifacts arisen during sample screenings, background shadow lines 

depicting as parallel in a row strips etc. Such extraneous noises are eliminated for 

better achievement of results from CAD based systems.  
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The hunt for an efficient de-noising technique is an open challenge in the area 

of image processing. Massive development has been observed in this area; however 

effective algorithms with required applications are still not available. Commonly, 

shortcomings exist in eliminating fine structures and artifacts from the images 

(Bhattacharjee et al., 2014; Cohen et al., 1995; Zhang et al., 2000; Gurcan et al., 

2009). Denoising technique includes the filtering process for reducing the noise and to 

enhance the image with an improvement. The accuracy of diagnosis depends on the 

quality of images and the elimination of noise. A number of de-noising methods 

proposed for enhancing the image such as median filter, mean filter, low-pass filter 

(LPF), high-pass filter (HPF), thresholding, adaptive filtering, gaussian filtering, 

homomorphic filtering and morphological operation etc. to eliminate and filter noises 

by various researchers (Rahmadwati et al., 2010; Gonzalez et al., 2004; Li et al., 2007; 

Dermir et al., 2005; Luck et al., 2003). Many medical images consist of a background 

and region of interest (ROI) and denoising can separate these (Moulin et al., 1999).  

Image filtering is a pre-processing method to suppress frequencies of images 

with preservation of image properties. In image processing, filtration is an important 

part of the image quality enhancement. It removes artifacts and cancels noises that may 

interfere with histology images (McAndrew et al., 2014). Such method in spatial 

domain for image filtering, the neighborhood pixels for any given pixel input 

contribute to assign a new output pixel in an image.  Henceforth, the filtering is 

commonly applied to reduce image noises including variable noises (other objects not 

contained within the (ROI)) from the background. Histogram equalization is used to 

ensure illumination invariance. The background correction method can be applied to 

solve the luminance problem. The most commonly used method described in the 

literature is the threshold-based approach. This method compares pixel intensities 

where noise is defined by a value of the declared threshold (Dermir et al., 2005).  

Some researchers had applied the median filter method in the preprocessing 

process for medical images (Rahmadwati et al., 2012; Li et al., 2008). The median 

filter sorts the value (according to the brightness or intensity) of each neighboring pixel 

in ascending order (Yang et al., 1995; Rahmadwati et al., 2012). Subsequently, the 

median value of this ordered sequence is selected. The output pixel is formed by the 

median of neighborhood pixel. 
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 However, the noise or dirt in the original image, such as salt and pepper noise, 

is removed and the sharpness of the image reduced. Median filters are suitable for pre-

processing of histopathological images as their performance is particularly good for 

removing random and periodic noises (Gonzalez et al., 2002; Luck et al., 2003). By 

using different high or low pass filters sharpening of the image achieved. Noise is 

filtered out utilizing various filters to sharpen the image edges. This de-noising step 

aids in the clear detection of cell boundary lines (Li et al., 2008). 

The design of unsharp masking is to subtract a scaled unsharp version of the 

image from the original. The result of unsharp masking appears to be a better image 

than the original; the edges are crisper and more clearly defined. The images, however, 

appeared to be much clearer to the human eye and perhaps to any pathologist. This can 

be explained by the fact that unsharp masking only deals with the edges in an image 

and therefore does not alter significantly the surfaces with important textural 

information. The usefulness of this image enhancement technique might be more 

appreciated when the morphological analysis is undertaken later in the study. 

Henceforth, unsharp masking is called ‘edge enhancement’ that results in enhanced 

edge pixel values (Dermir et al., 2005; McAndrew et al., 2004). Ling et al. (2002) 

denoised the low signal-to-noise ratio (SNR) molecular images using median diffusing 

algorithms. Alexandrov et al. (2010) presented edge preserving denoising to reduce 

pixel to pixel variability for better segmentation of matrix-assisted laser desorption 

imaging. 

3.2.2. Contrast Enhancement: 

Contrast enhancement is one of the most important technique for image 

enhancement (Kotkar et al., 2013). In this technique, the contrast of an image is 

improved to make the image better for human vision. The term contrast, as observed in 

digital images, is the separation of dark and bright areas present in the image. Contrast 

enhancement method includes (a) Gamma (ϒ) correction, (b) Single Scale Retinex 

(SSC), (c) Contrast Limited Adaptive Histogram Equalization (CLAHE) (Gonzalez et 

al., 1977). 
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The Gamma (ϒ) correction algorithm is utilized for coding and decoding the 

luminance (gray) or tri-stimulus (color) values as present in motionless images. The 

gamma values are adjusted to contrast with other still images for facilitating the 

identification of ROI zone in histopathological image slide (Veeramanikandan et al., 

2013; Belsare et al., 2012). 

Single Scale Retinex (SSC) provides either dynamic range compression (small 

scale), or tonal rendition (large scale) at a time. Application of this method leads to 

contrast enhancement of an image (Jobson et al., 1997).  

CLAHE algorithm improves the image contrast by improving the local contrast 

present in an image and by enhancing the weak boundary edges in each pixel of an 

image through limited amplification (Pisano et al., 1998; Zuiderveld et al., 1994; 

Srivastava et al., 2013).  

3.3 Segmentation: 

The segmentation process extracts the ROI and locates the suspicious region 

that contains the irregular shape and varying size of cells to determine the level of 

malignancy in a histopathological image (Belsare et al., 2012; Madabhushi et al., 

2009). Image segmentation is a crucial part in making accurate useful information and 

characteristics of the ROI from images for computer-aided diagnosis of cancerous 

cells. Each segmentation method varies in its performance depending on the types of 

application and image modality (Dermir et al., 2005). 

However, the accuracy of segmentation largely depends on preprocessing steps 

(Rahmadwati et al., 2010). Segmentation is the process of dividing an image into a 

region having similar properties such as gray level, color, texture, brightness, and 

contrast (Gonzalez et al., 2004; Pratt, 2001; Pal et al., 1993). In pathology, 

segmentation of histopathological sections is the ubiquitous requirement due to the 

large variability of histopathological tissues. Further, machine learning techniques play 

a vital role in delivering superior performance over standard image processing 

methods. During image analysis, the segmentation process is an essential domain.  It is 

used to locate objects and boundaries in an image (Sharma et al., 2009). 
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The basic purpose of segmentation is to extract the important features from the 

image and perceive the information. Selection of appropriate segmentation method 

depends on the type of features, which has to be preserved for detection. Segmentation 

of cells from the background for qualitative comparison mainly utilizes (a) Otsu’s 

thresholding (b) k-mean clustering (c) Fuzzy c-mean clustering.  

3.3.1 Otsu’s Thresholding: 

Threshold method is widely used in medical image segmentation (Keenan et 

al., 2000; Arif et al., 2007; Stoitsis et al., 2006; Dougherty, 2009). One of the well 

known threshold method is the Otsu method, which is based on statistical analysis of 

variance. This method is conducted by maximizing the separation of image histogram 

partitions into two classes before deciding on the threshold. It means that the variances 

in the two classes should be as small as possible (Otsu et al., 1979). Otsu’s method 

used for bi-level thresholding on intensity values of Hue, Saturation, and Intensity 

(HSI) decomposed image (Stoitsis et al., 2006; Zhou et al., 2000). The Ostu's 

thresholding image segmentation (Otsu et al., 1979; Sezgin et al., 2004) method is 

based on gray level thresholding, which computes a global threshold level, that is used 

to convert a gray level image to binary image. The threshold level lies in the range (0, 

1]. Gray-level thresholding uses Otsu's method that chooses the threshold to minimize 

the interclass variance of the thresholded black and white pixels. Liu et al. (2007) 

introduced the microscopic image analysis with the help of adaptive threshold 

segmentation. Phukpattaranont et al. (2008) presented an algorithm for image 

segmentation by using a neural network. Naik et al. (2008) divided pixel values into 

low level and high level information between object pixels and the background pixels 

discrimination to segment cancer cells.   

Thresholding approaches use a value (threshold) to separate the objects from 

the background. This value is typically based on image intensity or its transforms such 

as Fourier descriptors or wavelets (Sahoo et al., 1998; Sezgin et al., 2003). The 

threshold is usually recognized to satisfy some constraints or to optimize certain 

objective functions.  
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For example, generally used Otsu’s method finds the threshold to maximize the 

between-class variance (Gonzalez et al., 2008). For microscopic biopsy image 

segmentation, multi-thresholding approaches are mostly used to extract objects of 

different classes, e.g., nuclei, cytoplasm, stroma, and background (Loukas et al., 2004; 

Gonzalez et al., 2004).  

The multilevel thresholding is necessary to extract different objects from 

histology images. For example, in the case of K object classes (s1, s2…..,sK) in a digital 

image I of size (X × Y), Otsu’s method finds the thresholds that maximize the between 

class variance given in Equation (3.2) 

 

𝜎𝐵
2 =   𝑃𝑘 𝜇𝑘 − 𝜇𝐺                                                   (3.2)

𝐾

𝑘=1

 

where 

     𝑃𝑘 =   𝑃1                                                                  (3.3)

1 𝜖 𝑠𝑘

 

 

 

𝑃1  is the normalized histogram (probability) of intensity l, i.e., 𝑃1 = 𝑛1/XY, and  

𝑛1 is the number of pixels with intensity l . 𝜇𝑘  is the current mean of 𝑠𝑘 , 

 

                            𝜇𝑘 =   
1

𝑃𝑘
 1𝑃1                                                (3.4) 

 

and 𝜇𝐺  is the whole image intensity mean. The K classes are separated by K − 1 

thresholds that maximize 𝜎𝐵
2. 
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3.3.2 k-means clustering: 

Clustering is a method that classifies an object into a group, or cluster, 

according to the measure of object similarity, intensity or texture (Dermir et al., 2005). 

The clustering process involves quantitative, objective assessments in order to group 

objects into a cluster by similarity measurement. The common measurement used for 

measuring similarity is the distance measure such as Mahalanobis distance, Euclidian 

distance and Manhattan distance (Dermir et al., 2005). k-means clustering is a popular 

clustering method used in image segmentation and in this chapter, the following sub-

sections elaborates its applications. k-means clustering is one of the simplest methods 

of clustering. The algorithm of k-means clustering is used to classify an image based 

on its features (texture or color features). The process of clustering is achieved by 

measuring the sum of the distance between the data and the cluster centroid (Ilea et al., 

2006). In this method, the number of clusters is predefined. The general algorithm of 

k-means clustering is as follows: 

1. Assuming k classes, randomly select the k starting cluster centers from the 

set of feature vectors {(x1, x2, . . . , xN)} in the m - dimensional feature 

space. 

2. Assign all other feature vectors to the cluster center μj to which they are 

closest, using a distance measure such as the Euclidean distance: 

𝐷𝑗 (𝑥) =     𝑥𝑖 − 𝜇𝑗  
2

𝑚

𝑖=1

                                                  (3.5) 

 

3. Update the position of each cluster center 𝜇𝑗  as the center of gravity of the 

corresponding cluster, calculated as the mean of the 𝑁𝑗  feature vectors 

currently assigned to that cluster, that is 

  𝜇𝑗  =
1

𝑁𝑗  
 𝑋𝑗

𝑥 𝜖 𝑤𝑗  

       𝑗 = 1,2, … . . … . .𝑊                         (3.6)   

 

4. The second and third steps are repeated until convergence, that is, until no 

assignments change. 
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3.3.3 Fuzzy c-means clustering: 

In this algorithm, the test pixel is allowed to be the member of two or more 

clusters with different membership coefficient. Fuzzy c-means (FCM) algorithm is 

iterative in nature, generates fuzzy partition matrix, and requires cluster center along 

with objective function. The values for cluster center and objective function are 

updated at every single iteration and are stopped when the difference between two 

successive objective function value is less than some predefined threshold value. The 

objective function and the algorithm are given as follows (Yang, 2005).  

The FCM clustering algorithm was first introduced by (Dunn, 1973) and then 

extended by (Bezdek, 1975).  

The FCM algorithm is as follows: 

Let X = {xi} an image, i = {1, 2, 3,.....n} where xi are the pixels of X and n is the total 

number of pixels. 

The FCM algorithm minimizes the objective function (Bezdek, 1975): 

 𝐽𝐹𝐶𝑀 =    𝜇𝑖𝑘
𝑚𝑑2 𝑥𝑘 , 𝑉𝑖 

𝑛

𝑘=1

𝑐

𝑖=1

                                                 (3.7) 

where 𝜇𝑖𝑘  is the membership function matrix, d the Euclidian distance metric 

between 𝑥𝑘  and the cluster center Vi and m is the degree of fuzziness (m > 1). The 

membership function 𝜇𝑖𝑘   is the heart of the FCM, where the membership degrees are 

given by: 

𝜇𝑖𝑘 =  
1

  𝑑𝑖𝑘 𝑑𝑗𝑘  
2  𝑚−1  𝑐

𝑗=1

                                                (3.8) 

 

The cluster centers are: 

 

𝑉𝑖 =  
 𝜇𝑖𝑘

𝑚𝑥𝑘
𝑛
𝑖=1

 𝜇𝑖𝑘
𝑚𝑛

𝑘=1

                                                                          (3.9) 
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The choice of a distance which metric in clustering problems is crucial. The 

Euclidean distance metric is widely used because of its simplicity, the hypothesis that 

the data are uncorrelated and the clusters have super spherical shapes, which are not 

possible in image segmentation; therefore, the Mahalanobis distance is more suitable. 

Sharma et al. (2009) used annealing based FCM algorithm, modeled as graph search 

method for segmentation of the medical image (Zhang et al., 2004; Bezdek, 1975).   

3.3.4 Dynamic Stochastic Resonance:  

Typically, the enhancement of low contrast noisy images is challenging as 

noises degrade signal performances. For that reason, researchers used to screen it out 

(Bhattacharjee et al., 2014). Several techniques are proposed for de-noising, 

enhancement, and segmentation of histopathological images, in order to increase the 

contrast between the cells and tissues. However, these methods not capable of 

improving the desired image contrast and distortion of the image information contents. 

Further, simple linear de-noising methods used to degrade the image details and edges 

(Belsare et al., 2012; Dermir et al., 2005; Gurcan et al., 2005). In the context of the 

above-mentioned techniques, we have proposed DSR based method for image contrast 

enhancement by denoising the images in a single step. 

The fundamental theory of Dynamic Stochastic Resonance:  

DSR is a noise induced phenomenon. It occurs when noise enhances the 

performance of signal in a nonlinear system. It is effective for enhancement and 

denoising of low contrast images. The noise present in the image decreases when it 

interacts with a nonlinear dynamic system. In other words, noise is useful when 

combined with a nonlinear dynamical system. DSR is the signal information in a non 

linear system in the presence of an appropriate amount of noise, which is greater than 

the signal information alone in the nonlinear system (Gammaitoni et al., 1998; Jung, 

1991; McNamara et al., 1989; Fauve et al., 1983). Stochastic Resonance (SR) helps to 

amplify a weak signal with the help of appropriate level of noise in the presence 

nonlinear system. The following three conditions lead to occur in SR phenomenon (a) 

signal of low amplitude, (b) appropriate level of noise and (c) non-linear system with a 

threshold (Gammaitoni et al., 1998). 
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In this method, a sufficient amount of noise and signal of low amplitude 

together cross the threshold of a non linear system. The noise, which is added to the 

weak signal, must be high enough that a system can change its state by crossing the 

threshold value. However, the large amount of noise may lead to oscillations between 

two states and degrades the performance whereas the low amount of noise is incapable 

of changing the state (Gammaitoni et al., 1998; McNamara et al., 1989). The first 

experimental work on visualization of SR was reported in (Ryu et al.  (2011).  

Quartic bi-stable model of SR has been used Fourier transform coefficient of 

the image and found valuable for diagnosing of brain lesions in MRI (Rallabandi et al., 

2010). The wavelet transform based SR enhanced the appearance of sonar images; 

followed by fuzzy c-means was used to extracting the ROI to calculate the position of 

obstacle (Banerjee et al., 2014). The drawbacks of these methods were non-optimum 

DSR parameter values and sophisticated selection of the number of iterations. 

However, few studies used the approaches of optimum DSR parameter for MRI data 

using Quartic bi-stable model and potential neuron model of SR (Singh et al., 2017; 

Singh et al., 2016). 

Our investigation includes the utilization of internal noise of an image for the 

purpose of contrast enhancement in spatial domain. DSR process includes intensity 

component of decomposed Hue, Saturation, and Intensity (HSI). Henceforth, the DSR 

technique utilizes the noise associated with the image itself to enhance the image 

quality. The present study explores the effects of different image transformation 

methods that work as the input source to DSR based image enhancement techniques. 

Various histopathological images of different cancerous tissue undergoes image 

processing, resulting in the poor state pixels transition to enhanced pixel states. The 

characteristics of DSR based processes aids in image contrast enhancement using the 

internal noise of the images. 
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Dynamics of Quartic Bi-stable based SR System:  

The signal information in the non-linear system in the presence of appropriate 

noise is greater than the signal information alone in the non-linear system 

(Gammaitoni et al., 1998; Jung, 1991). Many non-linear dynamics involved in SR 

phenomena were presented in the last three decades. (McNamara et al., 1989; Fauve et 

al., 1983). Quartic bi-stable is one of the most famous models of SR system. The 

dynamic equation obtained with the help of Langev in equation (Coffey et al., 2012): 

𝑑

𝑑𝑡
𝑥 𝑡 = −  

𝑑

𝑑𝑡
𝑈  𝑥, 𝑡 𝑠 𝑡  𝑛 𝑡                                                 (3.10) 

where 𝑈 (𝑥, 𝑡) is quartic potential, 𝑠 (𝑡) is input signal and 𝑛 (𝑡) is the added 

Gaussian white noise (with zero mean) to the system.     

𝑈 𝑥, 𝑡 = −𝑎
𝑥2

2
+  b

𝑥4

4
                                                                    (3.11) 

  where a > 0, b > 0 are bi-stable double well parameters. The Brownian 

particle in this double well system will have two stable states at points: 𝑥𝑚 =  ± 
𝑎

𝑏
 

and one metastable at 𝑥 =  0. As shown in Figure 3.2, the particle has to cross 

potential the barrier 𝛥𝑈 =
𝑎2

4 𝑏
 to acquire one stable state to another. The final dynamic 

equation for SR after replacing the value of 𝑈 𝑥, 𝑡   in (3.10) is: 

𝑑

𝑑𝑡
𝑥 𝑡 = 𝑎𝑥 − 𝑏𝑥3   +  𝑠 𝑡 +  𝑛 𝑡                                               (3.12) 

Here, 𝑠(𝑡)  +  𝑛(𝑡) term can be written as 𝑖𝑛𝑝𝑢𝑡, because the study considered 

𝑛(𝑡) as the internal noise of input image itself. Equation (3.12) can be rewritten and 

discretized in 𝑘 steps using Euler-Maruyama’s method: 

𝑥 𝑛 + 1 = 𝑥 𝑛 + 𝑘 (𝑎 𝑥(𝑛) − 𝑏 𝑥3(𝑛) + 𝑖𝑛𝑝𝑢𝑡 )                        (3.13)  
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There are two assumptions for SR phenomena: the strength of the input signal 

must be less than the potential barrier to maintain bi-stability of the system. In the 

absence of noise, there is no switching occurs. After adding the noise, switching must 

occur as noise added system crosses the barrier height. Figure 3.2 (a) shows double 

well-unforced quartic potential for 𝑎 =  4, 𝑏 =  1, which helps to get minima at 

𝑥𝑚 =  ± 2 and  𝛥𝑈 =  4 and figure 3.2 (b) shows modulated system in the presence of 

sufficient amount of energy i. e. noise intensity. 

 

Figure 3.2: Quartic bi-stable based DSR system. 
(a) Quartic potential for the unmodulated system at 𝑡 =  0, 𝑛 (𝑡)  =  0, (b) modulated system 

in presence of sufficient amount of energy i. e. noise intensity 

Quartic bi-stable model was used for DSR in most of the previous studies for 

either image enhancement or segmentation but the other DSR models can also be 

applied to different image processing applications that depend on characteristics of 

input images, associated noise with it and the desired outcomes (Gammaitoni et al., 

1998; Fauve et al., 1983). 

Discrete Cosine Transform: 

The spectral separation property of Discreet Cosine Transform (DCT) domain 

helps to enhance the image features as it treats various frequency components 

independently. Transformed image I (ki,kj) obtained after applying 2-D DCT on input 

image I (i,j) defined as: 
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1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

where the size of the input image is N×M. The transformed image I (ki,kj) 

serves as input to DSR. So the final dynamic equation for SR system for image 

enhancement is: 

𝑥 𝑛 + 1 = 𝑥 𝑛 + 𝑘 (𝑎 𝑥 𝑛 − 𝑏 𝑥3 𝑛 ) +   I’(kikj)                (3.15)  

3.4 Materials and Methods: 

For the enhancement and segmentation of the cells, we have acquired the 

images of cancerous tissues from the following histopathological procedure. The 

present study includes tissue preparation of histopathological stained images of various 

types of cancer cells i.e. cervix, ovarian, breast, and prostate cancer. The experiments 

were performed at S. S. Hospital and Research Centre, Patna with the consent of 

patients. The ethical committee of the above mentioned institute had approved the 

investigation procedures and are provided in appendix-5(a) and 5(b) respectively.  

3.4.1 Preparation of histopathological slide:  

The histopathological slide preparation techniques normally consist of  

following steps (1) tissue fixation, (2) tissue processing (3) embedding and block 

preparation (4) sectioning and slide preparation (5) staining for the acquisition of 

images. The steps in the preparation of tissue slide are depicted in figure 3.3 
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Figure 3.3: Basic steps for slide preparation for histopathological image. 

Tissue fixation:  

Fixation is the primary step of tissue processing. Fixation was done to prevent 

decay and to stabilize the tissue cell components. Immediately tissues were washed 

and transferred into 10% neutral buffered formalin for their fixation for 24 hours. The 

formalin fixed tissues were washed overnight under running tap water for 24 hours to 

allow paraffin wax to infiltrate into the tissue easily.  

Tissue processing: 

Figure 3.4 shows the following steps in the tissue processing methods with the 

help of automatic tissue processor. 

Dehydration: Washed tissues were further processed to dehydration with increasing 

concentration of alcohol gradient as 30%, 50%, 70%, 90%, and 100%. Each alcohol 

gradient was used for 30 minutes. 

Clearing/Hydration: Dehydration was checked by immersing the tissues in xylene 

for 10-30 minutes. The presence of water shows milky white colour when exposed to 

xylene. If water was present in tissues they were again put in the absolute alcohol.  

Impregnation: Washed tissues were infiltrated by two changes of paraffin wax that is 

first put in 1:1 solution of xylene + wax for 45 minutes and after that pure paraffin 

wax and left for 45 minutes to 2 hours at 45 ± 50ºC. 
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Figure 3.4: Tissue processing step. 
(a) Tissue sample. (b) After grossing sample present in the box was kept in the container for 

tissue processing. (c) Automatic tissue processor.  

Tissue embedding and block preparation:  

‘L’ shape-mould used to make paraffin wax block which holds the tissue 

specimen. The processed tissues were embedded in molten paraffin wax poured into 

the L- moulds at 55-60˚C. The air bubbles were removed with the help of a hot pointed 

needle and blocks were made.  After complete solidification, the blocks were removed 

and stored for 24 hours in a refrigerator in small labelled paper bags before use as 

shown in figure 3.5.  

 

Figure 3.5: Steps for block preparation. 
(a) Tissues in L-mould shape block. (b) Pouring of melted wax (55-60˚C) in the blocks 

contain tissue sample. (c) Solidification of block (d) Prepared block. Tissue sectioning and 

slide preparation:  

The paraffin block having tissue was attached in the rotary microtome. The 

rotary microtome was used for sectioning of tissue blocks with the thickness of 3-5μm. 

The sections were carefully picked from the knife by a forceps which float in a water-

bath of 50 to 55˚C (slightly below the melting point of wax) to remove folds in the 

sections.  
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Unfolded sections were picked by clean microscopic glass slides and were 

placed in an oven maintained at a temperature of 50
o
C for 20-30 minute for proper 

drying and better adhesion. At this stage, the sections were ready for staining as shown 

in figure 3.6. 

 

Figure 3.6: Tissue sectioning and slide preparation step. 
(a) Tissue sectioning by microtome. (b) Section kept in the water bath for proper spreading. 

(c) Sections transferred to the slide. 

Hematoxylin and eosin staining: 

 To visualize different components of the tissue under a microscope, the 

sections were dyed with one or more stains for highlighting them. The objective of 

staining is to enhance the contrast and highlight specific intra or extracellular structures 

under the microscope. Staining methods provide details of structure and organization, 

by the proper treatment of the section with various dye solutions. The nucleus is acidic 

in nature and has an affinity for basic dyes while the cytoplasm is basic and has the 

affinity for acidic dyes. Therefore, two different dyes, one Haematoxylin (basic) and 

eosin (acidic) are used to differentiate the cellular structures, such as nucleus and 

cytoplasm. Haematoxylin stains DNA rich nuclei in blue, while eosin stains cytoplasm 

in dark pink shade, muscle in a medium pink shade, stroma and connective tissue in a 

light pink shade. For this purpose the sections on a slide were de-waxed by incubating 

in xylol, for about 30 minutes, followed by the second wash of xylene. Afterthat, 

rehydrated with graded series of alcohols 100%, 90%, 70%, 50% and 30% for 10-20 

minutes.  
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Rehydration was followed by staining with Haematoxylin for 1-2 minutes, 

destaining in 1% acid solution. Again the sections were dehydrated in series of 30%, 

50%, and 70% alcohols and stained in eosin for 2-5 min., washed twice in 70 % 

alcohol.  After staining, dehydration was carried out at 90% then 100% ethanol. In 

100% alcohol, the slides were kept a little longer (10-15 minutes) then cleared in clove 

oil, washed with xylol to remove the traces of clove oil. After that adequate amount of 

mountant Dibutyl Phthalate in Xylene (DPX) was put and the sections were covered 

with a cover slip. The slides were stored at room temperature in horizontal position till 

DPX hardens.  Figure 3.7 (a) show the haematoxylin and eosin stained slide 3.7 (b) 

shows the magnified form of stained slide. 

 

Figure 3.7: Stained slide with haematoxylin and eosin.  
(a) Sample present on slide. (b) Photomicrograph of a cross section of the 

histopathological images of biopsy sample.  

3.4.2 Image acquisition: 

The images of tissue slides were captured using brightfield microscope 

Olympus CH 20I coupled to a CCD color camera, TOUPVIEW software and computer 

system Dell E19144/E20144 having processor Intel
®
Core TM i5-4590 CPU@3.30GH 

and 64-bit window 8.1 operating system. Microscope illumination system has a Philips 

halogen bulb of 6V 20 W types 7388. The size of the mechanical stage was 160(W) X 

132(D) mm, and movement range was 76(H) X40 (V) mm. The obtained image was 

saved in .tiff format, having 2592 × 1944 pixel resolution. The sections of the tissue 

were examined at magnification of (40 x and 100 x) objectives using Olympus camera. 

The selected sections of different types of cancer cells were evaluated for histological 

changes. Figure 3.8 depicts the images which show low and high magnified benign and 

malignant breast cancer images. 
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Figure 3.8: Histopathological HE stained breast cancer images  
(a) Malignant cervix cancer, at 40x and 100x (b) Malignant breast cancer image at 40x and 

100x. 

The prepared histopathological images contain certain degrees of noises. 

Histopathology images are acquired from microscopes, henceforth, it may consist 

some deficient like uneven staining, low contrast, dust particles, air bubbles, and tissue 

folding. Pathologists face difficulty in cell image detection because of artefact, 

overlapping, and blurred, low contrast as well as weak boundary detection caused by 

uneven dyeing as shown in figure 3.9. Henceforth, for removal of acquired noises, we 

had undertaken various image enhancement techniques. 

 

Figure 3.9: Example of challenges in cells detection and classification.  
(a) Artifact (b) Overlapping (c) Heterogeneity 
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3.4.3 Algorithm for DSR based enhancement and segmentation: 

In the present chapter, DSR based segmentation method is proposed for 

histopathological stained images of four types of cancer cells i.e. breast, cervix, 

prostate and ovarian cancer. Otsu's method used for thresholding on DSR processed 

intensity values of HSI decomposed image. Simple Otsu's, k-means, Fuzzy c-means 

image segmentation algorithms were compared with proposed methodology. It has 

been observed the DSR works well for the histopathological images having cells with a 

similar background. The comparison results reveal that the proposed DSR based Otsu's 

thresholding has a clear edge on considered segmentation techniques. 

DSR utilizes the internal noise of image to enhance it and automatic threshold 

method detects the cells from the images. The obtained input images were transformed 

to DCT to demonstrate the effect of the input domains on enhanced image quality. The 

DCT used to change the domain of input image as it provides better energy 

compaction (Khayam et al., 2003). Hence, we have used the coefficients of DCT for 

DSR processing. The discrete dynamics of DSR uses the step size, 0.01 to process the 

DCT coefficients of intensity component of the image. Finally, reconstruction of the 

images takes place to obtain the enhanced output image. This technique tunes the 

intensity values of the image according to the Quartic bi-stable double-well system 

parameters "𝒂" and "𝒃" and utilizes internal noise for the enhancement. The separate 

intensity component from the HSI space utilizes SR based enhancement on this 

component and afterward applies Otsu's thresholding on the SR processed output 

images. Eventually, the final step includes a combination of all the three frames 

respectively. 

Figure 3.10 shows a generalized schematic block diagram of segmentation of 

low-contrast, noisy images based on DSR. This algorithm is used to identify a target 

object represented by a region of connected pixels. The proposed methodologies are 

implemented on PC with 3.4 GHz Intel Core i7 processor, 4GB RAM, and the entire 

image processing algorithms reported here were developed in the MATLAB
®
12 on 

Windows 8.1 platform.  
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Figure 3.10: Illustration of image segmentation using DSR. 
 

The algorithm steps are as follows: 

Step 1 Compute HSI decomposition of DCT transformed input image. 

Step 2 Application of DSR to intensity component (𝐼’) of an image. 

a) Initialize 𝑥 0 =  0, 𝑎 =  2𝜎2 , 𝑏 ≤
4 𝑎3

27
, 𝑘   

           where σ is the mean of the image  

b) Use iterative equation given in equation (3.13) to compute intensity 

value 

𝑥 𝑛 + 1 = 𝑥 𝑛 + 𝑘 (𝑎 𝑥(𝑛) − 𝑏 𝑥3(𝑛) + 𝐼’) 

 Repeat steps 2 (b) to get maximum performance of segmentation. 

Step 3 Compute inverse DCT of intensity value of image  

Step 4 Apply Otsu's method for bi-level thresholding on intensity value  

           and  merge it to another component.  

Step 5 Analyze performance measure of segmented image.  
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3.4.4 Segmentation performance matrices:  

Several segmentation methods have been adapted for cytoplasm, cell, and 

nuclei segmentation from histopathology images utilizing threshold based, region 

based, and clustering based algorithms respectively. However, the selections of 

segmentation methods depend on the type of the features to be preserved and 

extracted. For the segmentation of ROI, the ground truth image is manually cropped 

and created from histology dataset (Al-Kofahi et al., 2010). The DSR based Otsu’s 

thresholding segmentation algorithms are used because of the preservation of the 

desired information (Gammaitoni et al., 1998). The performance of various 

segmentations is quantified in terms of (a) Correlation, (b) Global Consistency Error 

(GCE) Martin et al., 2001) (c) Variation of Information (VI) (Unnikrishnan et al., 

2007) and (d) Normalized Probabilistic Rand (NPR) index (Unnikrishnan et al., 2005) 

of the segmented image with the ground truth image. The brief description of these 

performance measures is as follows. 

Correlation: 

Correlation is a qualitative measure for the edge preservation. This parameter 

can be used to preserves the edges of the original image (Salinas et al., 2007). 

Correlation implies a mutual relationship or connection between two or more things. 

Correlation is any of a broad class of statistical relationships involving dependence, 

though in common usage it most often refers to the extent to which two variables have 

a linear relationship with each other (Rodgers et al., 1988; Dowdy et al., 1983). If we 

have a series of ‘n’ measurements of ‘X’ and ‘Y’ written as 𝑥𝑖  and 𝑦𝑖  for i = 1, 2, ..., n, 

then the sample correlation coefficient can be used to estimate the population Pearson 

correlation ‘r’ between X and Y. The sample correlation coefficient is written: 

𝑟𝑥𝑦  =
 (𝑥𝑖 −

𝑛
𝑖=1 𝑥  ) (𝑦𝑖 − 𝑦  )  

(𝑛 − 1) 𝑠𝑧  𝑠𝑦
 =

 (𝑥𝑖 −
𝑛
𝑖=1 𝑥  ) (𝑦𝑖 − 𝑦  )  

  (𝑥𝑖 −
𝑛
𝑖=1 𝑥  )2  (𝑦𝑖 −

𝑛
𝑖=1 𝑦  )2  

  (3.16)  

where 𝑥   and 𝑦   are the samples means of X and Y, and 𝑠𝑥  and 𝑠𝑦  are the 

sample standard deviations of X and Y (Francis et al., 1999). 
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Global Consistency Error (GCE):  

In research paper (Martin et.al. 2001) authors propose two metrics that can be 

used to evaluate the consistency pair of segmentations. These measures are designed in 

such a way that they are tolerant to refinement, i.e. if subsets of regions in one 

segmentation consistently merge into some region in the other segmentation the 

consistency error should be low. To compute the consistency error for a pair of images, 

at first a measure of the error at each pixel 𝑝𝑖  is defined as follows: 

𝐸 (𝑆1, 𝑆2, 𝑝𝑖)   
|𝑅 𝑆1, 𝑝𝑖 \𝑅 𝑆2, 𝑝𝑖 |

|𝑅 𝑆1, 𝑝𝑖 |
                                                               (3.17) 

where, 𝑅 (𝑆𝑗 , 𝑝𝑖) is the region in segmentation j that contains pixel 𝑝𝑖 ,\ denotes 

set difference, and | . |denotes set cardinality. This error measure evaluates to 0 if all 

the pixels in 𝑆1are also contained in 𝑆2 thus achieving the tolerance to refinement 

discussed above. This measure is not symmetric, so far every pixel it must be 

computed twice, once in each direction. Given the error measures E at each pixel, the 

two segmentation error measures namely local consistency error (LCE) and GCE 

defined by Martin et al., 2001) reads 

𝐺𝐶𝐸  𝑆1, 𝑆2 =
1

𝑛
 𝑚𝑖𝑛    𝐸

𝑖

 𝑆1, 𝑆2, 𝑝𝑖 , 𝐸

𝑖

 𝑆2, 𝑆1, 𝑝𝑖                           (3.18) 

And 

𝐿𝐶𝐸  𝑆1, 𝑆2 =
1

𝑛
  𝑚𝑖𝑛

𝑖

  𝐸  𝑆1, 𝑆2, 𝑝𝑖 , 𝐸  𝑆2, 𝑆1, 𝑝𝑖                           (3.19) 

 

Since LCE < GCE, hence GCE is a tougher measure than LCE and that’s why 

it is used in this thesis. A small value of GCE close to zero represents better 

segmentation. GCE quantify the amount of error in segmentation i.e. 0 signifies no 

error and 1 indicates no agreement. 
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Variation of Information (VI): 

Variation of Information (VI) is a measure of the distance between two clusters 

(partitions of elements) (Unnikrishnan et al., 2007). Clustering with clusters is denoted 

by a random variable, 𝑋, 𝑋 = {1, . . , 𝑘} such that 𝑃𝑖 = |𝑋𝑖 |/𝑛, 𝑖  ϵ 𝑋, and 𝑛 = Σ𝑖 𝑋𝑖 is the 

variation of information between two clusters 𝑋 and 𝑌.  Thus VI (𝑋, 𝑌) is represented 

using 

𝑉𝐼 (𝑋, 𝑌)  =  𝐻 (𝑋)  =  𝐻 (𝑌)  −  2𝐼 (𝑋, 𝑌)                                              (3.20) 

where 𝐻 (𝑋) is entropy of 𝑋 and 𝐼 (𝑋, 𝑌) is common information between ‘𝑋’ 

and ‘𝑌’. VI (𝑋, 𝑌) measures the reduction in cluster assignment in clustering ‘𝑋’ into 

the uncertainty of item’s cluster in clustering ‘𝑌’. 

Normalized Probabilistic Rand (NPR):  

Normalized probabilistic rand (NPR) is the nonparametric measure of goodness 

of segmentation algorithms (Unnikrishnan et al., 2005). Rand index between test ‘S’ 

and ground truth ‘G’ is estimated by adding the number of pixel pairs with the same 

label and some pixel pairs having different labels in both ‘S’ and ‘G’ then dividing it 

by a total number of pixel pairs. Given a set of ground truth segmentations 𝐺𝑘 , the 

NPR is estimated using Equation (3.21) such that 𝑐𝑖𝑗  is an event that describes a pixel 

pair (𝑖, 𝑗)  having the same or different label in the test image test  

NPR  Stest ,  𝐺𝑘  =
1

(𝑁/2)
 [

𝑖,𝑗  & 𝑖<𝑗

𝑐𝑖𝑗𝑝𝑖𝑗 +  1 − 𝑐𝑖𝑗   1 − 𝑝𝑖𝑗  ]           (3.21) 
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3.5 Results and discussion: 

This study analyzes the effect of image transformations on DSR in terms of 

quality of histopathological images. Figure 3.11 depicts the qualitative comparison of 

various conventional image enhancement techniques such as gamma correction, 

CLAHE, SSR and proposed DSR based image enhancement for the histopathological 

image of cervix cancer. The ultimate goal of the work is to segment cells from the 

background using DSR and Otsu's thresholding. Henceforth, we have considered only 

intensity component of the original image to compare the enhancement performance. 

The figure 3.11 (f) depicts the DSR based image enhancement (our proposed 

methodology) with better suppression of the background Red Blood Cells (RBC) in 

comparison to other classical techniques as revealed from figure 3.11 (c) ϒ correction 

with ϒ=1.1, 3.11 (d) SSR method, and 3.11 (e) enhancement using CLAHE 

respectively. 

 

Figure 3.11: Enhancement results using classical and proposed DSR method. 
(a) Photomicrograph of cervix cancer at 40× magnification. (b) Enhancement of intensity 

component of HSI image using (c) ϒ correction with ϒ=1.1. (d) Single Scale Retinex (SSR) 

method. (e) CLAHE method. (f) DSR method. 
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The proposed image segmentation technique was tested on many 

histopathological images of cervix, ovarian, prostate and breast cancer respectively. 

The figure 3.12 (a) depicts the RBC and cancerous cells that belong to the original 

images. Hematoxylin and Eosin (HE) staining produced a very slight color difference 

between blood cells and cancerous cells. The figure 3.12 (b) shows proposed DSR 

method based suppression of the RBC and background staining while preserving the 

cancerous cells. Further, in figure 3.12 (c) depicts the automatic thresholding 

segmented cancerous cells from the blood cells. 

 

Figure 3.12: Segmentation results of DSR processed image using Otsu’s 

thresholding of cervix cancer obtained at 40× magnification. 
(a) Photomicrograph of cervix cancer. (b) Image obtained using DSR on intensity component, 

(c) Segmented cells from the image. 

 

After the aforementioned steps, the proposed methodology was tested for the 

detection of different types of cancerous cells. The figure 3.13 (a) depicts the 100× 

magnification of the cervix cancer. The figure 3.13 (b) shows the image enhancement 

using proposed DSR technique. The figure 3.13 (c) shows image enhancement 

technique induced better segmentation of cervix cancerous cells. Eventually, the 

irregular shape and presence of more than one nucleus in the segmented image (as 

shown with the ellipse) confirms the malignant stage of cancer.  
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Figure 3.13: Segmentation results of DSR processed image using Otsu’s 

thresholding of cervix cancer obtained at 100× magnification.  
(a) Photomicrograph of cervix cancer. (b) Image enhancement using DSR. (c) Segmented 

cells from the image. 

The image as shown in figure 3.14 (a) has been obtained using the 100× 

magnifications of prostate cancer. In this case, the cells were lightly stained and had 

poor boundaries, which makes it tough to segment cells from the background. The 

image present in figure 3.14 (c) reveals that all the cells are segmented accurately with 

least presence of background effect.  

 

Figure 3.14: Segmentation results of DSR processed image using Otsu’s 

thresholding of prostate cancer obtained at 100× magnification.  
 (a) Photomicrograph of the prostate cancer. (b) Image enhancement using DSR. (c) 

Segmented cells from the image. 

The image as shown in figure 3.15 (a) has been obtained using the 100× 

magnifications of ovarian cancer where some of the cells are very lightly stained and 

some are highly stained. As shown in figure 3.15 (b), enhanced images where the 

contrast is increased, and the cells appeared clearer. 
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The intensity component of this enhanced image helps to make better 

segmentation. As shown in figure 3.15 (c) more than one nucleus present in the cells 

confirms the malignant stage of ovary cancer. 

 

Figure 3.15: Segmentation results of DSR processed image using Otsu’s 

thresholding of ovarian cancer obtained at 100× magnification. 
(a) Photomicrograph of ovarian cancer. (b) Image enhancement using DSR, (c) Segmented 

cells from the image. 

 

The comparison of segmentation results was performed on  publically available 

datasets of breast cancer images obtained from www.bioimage.ucsb.edu (Centre for 

Bio-image Informatics, University of California, Santabarbara (UCSB) for analysis. 

The algorithm has been applied to total twenty-two (22) breast cancer images 

including benign and malignant with ROI segmented ground truth images to validate 

the performance of our proposed DSR based Ostu’s thresholding method.  

The figure 3.16 (benign-1), 3.17 (benign-2)and figure 3.18 (malignant-1), 3.19 

(malignant-2) shows qualitative comparison among (c) automatic thresholding based 

Otsu’s method (Kittler et al., 1985), (d) k-means (Chen et al., 1998; Kailasanathan et 

al., 2001), (e) fuzzy c-means (Lim et al., 1990; Ahmed et al., 1999; Pham et al., 1999) 

and (f) proposed DSR based segmentation method for benign breast and malignant 

breast cells respectively. Cells present in the images shown in figure 3.16, 3.17 (f) for 

benign and figure 3.18, 3.19 (f) for malignant have clearer boundaries and closely 

related to the ground truth images using DSR based segmentation method. 
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Figure 3.16: Comparative segmentation results of (Benign 1).  
(a) Photomicrograph of the benign stage of breast cancer (b) Ground truth image. (c) Otsu's 

thresholding method. (d) k-means clustering method. (e) Fuzzy c-means method (f) Proposed 

DSR based Otsu’s thresholding method. 

 

Figure 3.17: Comparative segmentation results of (Benign 2).   
(a) Photomicrograph of the benign stage of breast cancer (b) Ground truth image. (c) Otsu's 

thresholding method. (d) k-means clustering method. (e) Fuzzy c-means method. (f) Proposed 

DSR based Otsu’s thresholding method. 
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Figure 3.18: Comparative segmentation results of (Malignant 1). 
(a) Photomicrograph of the malignant stage of breast cancer (b) ground truth image. (c) Otsu's 

thresholding method. (d) k-means clustering method. (e) Fuzzy c-means method. (f) Proposed 

DSR based Otsu’s thresholding method. 

 

Figure 3.19: Comparative segmentation results of (Malignant 2). 
(a) Photomicrograph of the malignant stage of breast cancer. (b) Ground truth image. (c) 

Otsu's thresholding method. (d) k-means clustering method, (e) Fuzzy c-means method (f) 

Proposed DSR based Otsu’s thresholding method. 
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Segmentation is quantified in terms of (a) correlation, (b) NPR index 

(Unnikrishnan et al., 2005), (c) VI  (Unnikrishnan et al., 2007) and (d) GCE (Martin et 

al., 2001) of the segmented image with the ground truth image. GCE and VI should be 

low, whereas correlation and NPR should be high for a better-segmented image. The 

results have shown in table 3.1 (Ostu’s thresholding), 3.2 (k-means clustering), 3.3         

(fuzzy c-mean), reveals that Otsu's method, k-means method, and fuzzy c-means 

method have high GCE and VI whereas low NPR index and correlation in comparison 

to proposed method presented in table 3.4. This phenomenon shows the edge of 

proposed method (DSR technique) over conventional methods in terms of 

segmentation performance. 

Table 3.1, 3.2, 3.3, and 3.4 represent information of Otsu's method, k-means 

method, and fuzzy c-means method and proposed DSR based Otsu's thresholding 

method respectively. The Table 3.1 to 3.4 contains the finding reports that include the 

proposed method based tests conducted over 22 histopathological images of breast 

cancer for performance validation. 
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Table 3.1: Quantitative evaluation of Ostu’s thresholding segmentation methods 

for 22 images. 

Segmentation 

Method 

 

Sample 

image 

Performance   measure 

Correlation 

(Higher 

better) 

NPR 

(Higher 

better) 

GCE 

(Lower 

better) 

VI 

(Lower 

better) 

Ostu’s 

thresholding 

1test image 

(Benign 1) 0.6365 0.9491 

 

0.0337 

 

0.3286 

2 test image 

(Benign 2) 0.6842 0.9771 

 

0.0206 

 

0.195 

3 test image 

(Malignant 1) 0.71 0.976 

 

0.0202 

 

0.1889 

4 test image 

(Malignant 2) 0.5164 0.9624 

 

0.0212 

 

0.2349 

5 image 0.726 0.9789 0.0194 0.1912 

6 image 0.3547 0.9392 0.0328 0.3413 

7 image 0.6191 0.9526 0.0377 0.3422 

8 image 0.6661 0.9752 0.0215 0.2272 

9 image 0.5474 0.9582 0.0206 0.2488 

10 image 0.7081 0.9612 0.0361 0.3159 

11 image 0.6087 0.9449 0.0393 0.377 

12 image 0.644 0.966 0.0244 0.2404 

13 image 0.4936 0.9332 0.0362 0.394 

14 image 0.5788 0.9616 0.0208 0.2356 

15 image 0.586 0.9436 0.0299 0.3224 

16 image 0.5786 0.966 0.0192 0.2142 

17 image 0.5798 0.948 0.0275 0.3022 

18 image 0.6022 0.9548 0.0308 0.306 

19 image 0.4445 0.9323 0.0353 0.3909 

20 image 0.4684 0.9351 0.0419 0.4163 

21 image 0.5964 0.958 0.0326 0.3053 

22 image 0.4693 0.9426 0.021 0.2942 

Average 

value 0.58267 0.955273 

 

0.028305 

 

0.291477 
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Table 3.2: Quantitative evaluation of k-means clustering segmentation methods 

for 22 images. 

Segmentation 

Method 

Sample 

image 

Performance   measure 

Correlation 

(Higher 

better) 

NPR 

(Higher 

better) 

GCE 

(Lower 

better) 

VI 

(Lower 

better) 

K -mean 

clustering 

1 test image 

(Benign 1) 0.8187 0.9783 

 

0.0111 

 

0.2097 

2 test image 

(Benign 2) 0.8744 0.9872 

 

0.0037 

 

0.1281 

3 test image 

(Malignant 1) 0.7457 0.9821 

 

0.007 

 

0.1495 

4 test image 

(Malignant 2) 0.7751 0.9861 

 

0.0061 

 

0.1259 

5 image 0.7627 0.985 0.0042 0.1301 

6 image 0.686 0.9627 0.0127 0.2716 

7 image 0.8277 0.9741 0.0096 0.2341 

8 image 0.6321 0.9761 0.0081 0.1819 

9 image 0.6749 0.9708 0.0122 0.2381 

10 image 0.7343 0.9839 0.0055 0.1362 

11 image 0.7837 0.9799 0.0123 0.1925 

12 image 0.8243 0.988 0.0051 0.1138 

13 image 0.7008 0.9765 0.0107 0.1909 

14 image 0.7373 0.9752 0.0111 0.2088 

15 image 0.5601 0.9673 0.0137 0.2472 

16 image 0.7916 0.9728 0.0156 0.2522 

17 image 0.7951 0.9781 0.0146 0.2109 

18 image 0.8737 0.9913 0.0045 0.1078 

19 image 0.5464 0.972 0.0063 0.1873 

20 image -0.0051 0.9587 0.0054 0.2284 

21 image 0.7049 0.9655 0.0219 0.28 

22 image 0.7507 0.9777 0.0078 0.1882 

Average  

value 0.70887 0.976786 

 

0.009509 

 

0.191509 
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Table 3.3: Quantitative evaluation of Fuzzy c-means clustering segmentation 

methods for 22 images. 

Segmentation 

Method 

Sample 

image 

Performance   measure 

Correlation 

(Higher 

better) 

NPR 

(Higher 

better) 

GCE 

(Lower 

better) 

VI 

(Lower 

better) 

Fuzzy  

c-mean 

clustering 

1 test image 

(Benign 1) 0.8207 0.9785 

 

0.0104 

 

0.2096 

2 test image 

(Benign 2) 0.8731 0.9896 

 

0.0055 

 

0.1234 

3 test image 

(Malignant 1) 0.7772 0.9838 

 

0.0072 

 

0.1451 

4 test image 

(Malignant 2) 0.843 0.9897 

 

0.0061 

 

0.1132 

5 image 0.7953 0.987 0.0071 0.1333 

6 image 0.7775 0.9697 0.0137 0.2554 

7 image 0.8489 0.9787 0.0133 0.2296 

8 image 0.6046 0.975 0.0084 0.1864 

9 image 0.7075 0.9687 0.0234 0.2609 

10 image 0.7345 0.9838 0.0066 0.1403 

11 image 0.7376 0.9745 0.0225 0.2205 

12 image 0.8423 0.99 0.0063 0.1101 

13 image 0.7639 0.9786 0.0154 0.1904 

14 image 0.7497 0.9747 0.018 0.2223 

15 image 0.6438 0.9705 0.0174 0.245 

16 image 0.7018 0.9621 0.0337 0.3042 

17 image 0.7622 0.9748 0.0217 0.2285 

18 image 0.6858 0.9815 0.017 0.1633 

19 image 0.592 0.9736 0.007 0.1837 

20 image 0.7705 0.9811 0.0117 0.1741 

21 image 0.7215 0.969 0.0194 0.2664 

22 image 0.7663 0.9787 0.0101 0.1928 

Average  

value 0.75089 0.977891 0.013723 

 

0.195386 
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Table 3.4:  Quantitative evaluation of proposed DSR based Otsu's thresholding 

segmentation methods for 22 images. 

Segmentation 

Method 

Sample 

image 

Performance   measure 

Correlation 

(Higher 

better) 

NPR 

(Higher 

better) 

GCE 

(Lower 

better) 

VI 

(Lower 

better) 

Proposed 

DSR based 

Otsu's 

thresholding 

method 

1 test image 

(Benign 1) 0.8373 0.9802 

 

0.0108 

 

0.2054 

2 test image 

(Benign 2) 0.8935 0.9903 

 

0.0046 

 

0.1219 

3 test image 

(Malignant 1) 0.8034 0.9846 

 

0.0081 

 

0.1457 

4 test image 

(Malignant 2) 0.8568 0.9905 

 

0.0051 

 

0.1078 

5 image 0.8137 0.9872 0.0052 0.1271 

6 image 0.7673 0.9687 0.0128 0.2551 

7 image 0.8526 0.9778 0.0113 0.2283 

8 image 0.637 0.9762 0.0081 0.1815 

9 image 0.7251 0.9724 0.0167 0.2418 

10 image 0.7381 0.9839 0.0061 0.1383 

11 image 0.7676 0.9783 0.0173 0.2042 

12 image 0.8332 0.9885 0.0064 0.1143 

13 image 0.7867 0.9806 0.0113 0.1778 

14 image 0.7466 0.9751 0.0157 0.2186 

15 image 0.6109 0.9692 0.0152 0.2447 

16 image 0.788 0.9739 0.0193 0.2541 

17 image 0.7744 0.977 0.0189 0.2205 

18 image 0.7921 0.9876 0.0097 0.131 

19 image 0.7062 0.9786 0.0089 0.1733 

20 image 0.7426 0.9763 0.0209 0.1968 

21 image 0.8216 0.9781 0.0115 0.218 

22 image 0.7916 0.9802 0.0079 0.1813 

Average 

value 0.77665 0.979782 

 

0.011445 

 

0.185795 

(NPR -Normalized Probabilistic Rand, GCE - Global Consistency Error, VI - Variation of Information) 
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The figure 3.20 depicts the mean and standard deviations of correlation, GCE, 

NPR and VI for total 22 images (including benign and malignant cancer) respectively.  

It is evident that correlation and NPR are highest for proposed method whereas VI is 

lowest than the other competing methods. However, k-means based segmentation has 

slightly more GCE than the proposed algorithm. The least standard deviation of 

correlation, GCE, NPR, and VI obtained using proposed algorithm showing its highest 

consistency of segmentation irrespective of input image quality. 

 

Figure 3.20: Comparison of Otsu's thresholding, k-mean, fuzzy c-mean and 

proposed DSR segmentation methods for 22 images.  
(a) Correlation (b) Normalized probabilistic rand index (c) Global consistency error (d) 

Variation of information. Statistical analysis has been performed using Origin (Ver.8, Origin 

Lab Corporation, UK) were used in this study. The results presented here are expressed as 

Mean ± S.D. 
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DSR technique in discrete cosine transform based segmentation is proposed for 

the enhancement and segmentation of cells of histopathological images. Some existing 

image segmentation algorithms were compared with proposed methodology (DSR). 

The experimental results reveal that these Otsu's method, k-means method, and fuzzy 

c-means method are not suitable to get adequate cell segmentation for noisy images. 

Besides, the performance of these algorithms degrades for objects having the similar 

background. At this point, our proposed DSR based technique produces better image 

enhancement and restoration of essential information.  

3.6 Conclusion:  

The motivation of this chapter was to investigate the neutralization of noise 

because of the lack of illumination using the internal noise itself. DSR in the spatial 

domain enhances for the segmentation of low contrast histopathological images. This 

technique tunes the intensity values of the image according to the Quartic Bi-stable 

double-well system parameters 𝑎 and 𝑏 and utilizes internal noise for the enhancement. 

The iterative process facilitates the transition of the image from low contrast to good 

contrast state, which finally yielded better segmentation. The segmented output images 

of proposed algorithm have been compared with the processed images of existing 

Otsu's threshold, k-means, and fuzzy c-means techniques. It has been quantitatively 

found that the segmented image has high correlation and less mismatched pixels with 

ground truth image for the proposed method. The main advantage of proposed 

algorithm is that it deals with only intensity component of a colour model, which was 

processed with DSR, based technique.  The DSR based proposed approach associated 

with the high value of correlation and NPR with the low value of GCE and VI in 

comparison to other methods. The proposed DSR based Otsu’s thresholding 

segmentation method perform better than other methods and shows recommendable 

potential for feature extraction of images in cancer cell detections. DSR demonstrated 

very impressive performance to enhance low contrast histopathology images 

 


