CONTENTS

List of Figu	res		x-xiv
List of Table	es		XV
List of Abbr	eviations		xvi-xviii
List of Symb	pols		xix-xxi
Preface			xxii-xxvi
CHAPTER	1		1-46
Introductio	on and Sco	ope of the Thesis	
1.1	Solar C	ell	2
	1.1.1	Origin of Solar Cells	3
	1.1.2	Generation of Solar Cells	4
1.2	Perovsk	kite Solar Cell	3
	1.2.1	Perovskite Material	8
	1.2.1.1	Crystal Structure	9
	1.2.1.2	Optoelectronic Properties	10
	1.2.2	Working Principle of Perovskite Solar Cells	11
	1.2.3	Numerical Modeling of Perovskite Solar Cells	13
1.3	Fabrica	tion Process for Perovskite Solar Cells	17
	1.3.1	Electrodes	21
	1.3.2	Photoabsorber Layers	22
	1.3.2.1	One Step Deposition via Spin Coating	23
	1.3.2.2	Two Step Deposition via Spin Coating	24
	1.3.2.3	Vapor Assisted Deposition Technique	25
	1.3.3	Charge Transport Layers	26
1.4	Charact	erization Techniques for Perovskite Solar Cells	26
			29

	1.4.1	Surface Characterization	20
	1.4.1.1	Atomic Force Microscopy	29
	1.4.1.2	Scanning Electron Microscopy	29
	1.4.1.3	Transmission Electron Microscopy	30 20
	1.4.1.4	X-Ray Diffraction	30 21
	1.4.2	Optical Characterizations	22
	1.4.2.1	Absorbance	32 22
	1.4.2.2	Photoluminescence	32 22
	1.4.3	Optoelectronic Characterizations	32 33
1.5	Literatu	re Review	33 25
	1.5.1	Review of Perovskite Based Solar Cells	25
	1.5.2	Review of TiO ₂ Nanorods Based Perovskite Solar Cells	33
	1.5.3	Review of ZnO Nanorod Based Perovskite Solar Cells	30 20
	1.5.4	Major Observation from the Literature Survey	<i>J</i> 9 <i>A</i> 1
1.6	Issues a	nd Challenges in Perovskite Solar Cells	41
1.7	Motivat	ion and Problem Definition	42
1.8	Scope o	f the Thesis	43
			44

CHAPTER 2

47-63

Effect of TiO₂ Nanorods (TNRs) ETL Thickness on the Performance of FTO/TNRs/CH₃NH₃PbI₃/PTAA/Pd Structure Based Perovskite Solar Cells

2.1	Introdu	Introduction	
2.2	Experi	mental Details	50
	2.2.1	Material Used	50
	2.2.2	TiO ₂ Nanorods Synthesis and TiCl ₄ treatment	50
	2.2.3	CH ₃ NH ₃ I Perovskite Precursor Synthesis	51
	2.2.4	Device Fabrication	51

2.3	Numer	ical Modeling and Device Simulation	52
2.4	Results	s and Discussion	56
	2.4.1	Thin Film Characterization	56
	2.4.2	Solar Cell Characterization	58
2.5	Conclu	ision	62

CHAPTER 364-84Effects of Solvothermal Etching and TiCl4 Treatment of TiO2 Nanorods (TNRs)ETL on the Performance Characteristics of FTO/TNRs/CH3NH3PbI3/Spiro-OMeTAD/Pd Solar Cells

3.1	Introdu	Introduction	
3.2	Experi	mental Details	66
	3.2.1	Preparation of Electron Transport Layer (ETL)	66
	3.2.2	Solar Cell Fabrication	69
	3.2.3	Material and Device Characterization	70
3.3	Results	s and Discussion	72
	3.3.1	Thin Film Characterization	73
	3.3.2	Solar Cell Characterization	79
3.4	Conclu	ision	83

CHAPTER 4						85-102
Fabrication	and	Characterization	of	FTO/ZnO	Seed	Layer/ZnO
Nanorods/CH3NH3PbI3/PTAA/Au Solar Cells with Different Seed Layers						

4.1	Introdu	iction	86
4.2	Experi	mental Details	87
	4.2.1	Solution Preparation for Seed Layer	87
	4.2.2	Growth of ZnO Nanorods	89

	4.2.3	Solar Cell Fabrication	91
4.3	Results	s and Discussion	92
	4.3.1	Thin Film Surface Characteristic	93
	4.3.2	Optical Characterization	95
	4.3.3	Electrical Characterization	98
4.4	Conclu	ision	102

CHAPTER 5

103-119

Effect of Doped Spiro-OMeTAD Based HTL on the Performance of FTO/ZnO Nanorods/CH₃NH₃PbI₃/ Spiro-OMeTAD/Pd Perovskite Solar Cells

Author's Rel	evant Pu	blications	148-149
References			128-147
6.3	Future	Scope of Work	126
6.2	Chapter	r-Wise Major Observations	122
6.1	Introdu	ction	121
Conclusion	and Fut	ure Scope	
CHAPTER	6		120-127
5.5	Conclu	sion	119
	5.4.2	Solar Cell Characterization	114
	5.4.1	Thin Film Characterization	111
5.4	Results	and Discussion	110
5.3	TCAD	Simulation and Models	108
	5.2.2	Film and Device Characterization	107
	5.2.1	Thin Film Growth and Perovskite Solar Cell Fabrication	ı 105
5.2	Experin	mental Details	105
5.1	Introduction		

Figure 1.1:	Various non-renewable and renewable energy sources.	4
Figure 1.2:	Different generations of solar cells.	7
Figure 1.3:	Comparative rapid growth in PCE for perovskite based solar cells.	8
Figure 1.4:	(a) Structure of ABX_3 perovskite (b) Cubic unit cell of $CH_3NH_3PbI_3$.	11
Figure 1.5:	Band structure of MAPbI ₃ .	12
Figure 1.6:	General structure of perovskite solar cell.	14
Figure 1.7:	Electrical equivalent model of the perovskite solar cell.	15
Figure 1.8:	J-V curve for PSC device where the red curve is for under illumination and black is for dark. The area in the shade gives maximum achievable power.	16
Figure 1.9:	Band-to-band, SRH, and Auger recombination.	21
Figure 1.10:	Block diagram of physical vapor deposition.	22
Figure 1.11:	Deposition methods for the perovskite thin film (a) Physical vapor deposition, (b) One step deposition, and (c) Two step deposition.	24
Figure 1.12:	Measurement setup for (a) AFM, (b) HRSEM, (c) TEM, and	31

List of Figures

(d) XRD.

Figure 1.13:	Measurement setup for (a) Photoluminescence spectrometer	33
	and (b) UV-Vis absorption spectroscopy.	

- Figure 1.14: Optoelectronic characterization setup for perovskite solar cells. 34
- Figure 1.15:Progress in power conversion efficiency of PSCs from 2005 to362018.
- Figure 2.1:(a) Device structure of the PSCs. (b) Band diagram for the52fabricated PSCs structure under equilibrium.
- Figure 2.2:(a) Equivalent circuit of perovskite solar cell;(b) Equivalent J-52V characteristic and performance parameters of PSC.
- Figure 2.3: (a) HRSEM image of TNRs and (b) EDS image of TNRs. 57
- Figure 2.4:(a) XRD pattern of hydrothermally synthesized TNRs and (b)57PL emission spectra of perovskite thin film.
- Figure 2.5:HRSEM image of (a) perovskite thin film surface (b) Cross-58sectional view of PSC structure without metal electrode.
- Figure 2.6: (a) Absorbance spectra of hydrothermally synthesized and 58 simulated TNRs on FTO coated glass substrate, (b) Absorbance spectra of synthesized and simulated perovskite thin film.
- Figure 2.7:J-V curve of fabricated and simulated PSCs with (a) 500 nm60TNRs, (b) 650 nm TNRs, (c) 800 nm TNR
- Figure 2.8:External quantum efficiency of fabricated and simulated PSCs62with 500 nm ETL, 350 nm active layer and 100 nm HTL.
- Figure 3.1: (a) FTO coated glass, (b) TiO₂ seed layer on FTO coated glass, 68
 (c) Hydrothermal Process at 170^oC in Teflon lined cylinder, (d)
 TNRs after hydrothermal process, (e) Solvothermal etching of

TNRs at 180° C and (f) TiO₂ NRs after solvothermal etching.

- Figure 3.2:Fabrication steps used for device A, B and C.71
- Figure 3.3: (a) The device structure of PSC after solvothermal etching of 72 TiO₂ NRs and (b) Schematic representation of the energy band diagram of PSC.
- Figure 3.4: (a) XRD analysis of TiO₂ NRs annealed at 450⁰ C. (b) Energy 74 dispersive spectroscopy (EDS) and elemental composition of TNRs.
- Figure 3.5: (a) And (c) are the TEM images of pristine rutile TNRs and 75
 TNRs after solvothermal etching respectively. Fig. (b) and (d) are the selected area electron diffraction patterns corresponds to Fig (a) and (b) respectively.
- Figure 3.6: Top view SEM image of TNRs annealed at 450^o C in ambient 76 environment before solvothermal etching: (a) 200 nm scale, (b) 500 nm scale (Inset of Figure 3.6 (b) shows the cross-sectional image of TNRs at 500 nm scale); after solvothermal etching: (c) 200 nm scale, (d) 500 nm scale. Top SEM image of perovskite thin film deposited on solvothermal etched TNRs (e) 200 nm scale and (f) 500 nm scale.
- Figure 3.7: AFM image of TNRs without solvothermal etching (a) 2D and 77
 (b) 3D. AFM image of TNRs with solvothermal etching (c) 2D and (d) 3D. AFM image of perovskite film deposited on etched TNRs (e) 2D and (f) 3D.
- Figure 3.8: (a) Transmittance of TiO₂ NRs before and after solvothermal 79 etching. (b) UV-VIS absorbance spectrum of perovskite film deposited on TiO₂ nanorods without TiCl₄ treatment, TiO₂ nanorods with TiCl₄ treatment before and after solvothermal etching.

- Figure 3.9: (a) *I-V* characteristics of the junction diode made of modified 82 TNRs. Inset of (a) shows SCLC region in all the diode. (b) Emission characteristics in three solar cell structures of TiO₂ NRs before and after solvothermal etching. Inset of (b) shows impedance characteristics of three solar cells.
- **Figure 3.10:** (a) J_{ph}-V characteristics of Device A, B and C. (b) Comparison **83** of EQE of Device A, B and C.
- Figure 4.1: Graphical view of the preparation process of the solutions for 88 the seed layers (a) ZnO drop-cast (b) ZnO NPs (c) ZnO QDs (d) Solvothermal ZnO NRs.
- Figure 4.2: Seed layer deposition process using drop-cast, spin coating, and 90 solvothermal. Growth of nanorods in the last step using the solvothermal process.
- Figure 4.3:Fabrication flow diagram for the perovskite solar cell.92
- Figure 4.4: Top view of ZnO nanorods grown on different seed layers of 94 (a) drop-cast (b) spin coated (ZnO NPs) (c) spin coated (ZnO QD) (d) solvothermal.
- Figure 4.5: XRD pattern of ZnO NR grows on different ZnO seed layers 95 deposited using (a) drop-cast (b) spin coated (ZnO NPs) (c) spin coated (ZnO QD) (d) solvothermal.
- Figure 4.6:Photoluminescence emission and optical absorbance spectra of96ZnO seed layer samples deposited on FTO substrate.
- Figure 4.7:Tau plots for different ZnO seed layer samples.97
- Figure 4.8:Transmittance spectra of ZnO nanorods deposited on various100ZnO seed layer.
- Figure 4.9:Impedance characteristics of PSCs A, B, C, & D100

List of Figures

- Figure 4.10:Current density vs voltage (J-V) curve of four ZNRs based101PSCs Fabricated on different ZnO seed layers.
- Figure 4.11: External quantum efficiency (EQE) of PSCs A, B, C, and D 102
- Figure 5.1:(a)Fabrication flowchart for the PSCs.(b) Complete device107structure of the fabricated PSCs.
- Figure 5.2:(a) Energy band diagram of perovskite solar cell and(b) 109Equivalent electrical circuit.
- Figure 5.3:(a) Transmitance spectra of ZnO NRs and (b) Tauc plot for112ZnO NRs.
- Figure 5.4:AFM image of (a) ZnO NRs without TiCl4 treated, (b) ZnO113NRs with TiCl4 treatment, and (c) Perovskite layer on ZnO NRs
- Figure 5.5:HRSEM image of (a) ZnO quantum dot, (b) Solvothermally114synthesized ZnO NRs, (b) Perovskite thin film on ZnO NRs,
and (d) Cross-sectional image of perovskite layer on ZnO NRs.
- Figure 5.6: (a) Nyquist plot for fabricated PSC with undoped and doped 116 HTL layer; (b) Equivalent circuit model employed using impedance characteristics.
- Figure 5.7:(a) Imaginary impedance vs. frequency plot, and (b) Real116impedance vs. frequency plot of fabricated PSCs
- Figure 5.8: Current density vs. voltage curve for (a) Undoped spiro- 117 OMeTAD and (b) Doped spiro-OMeTAD.
- Figure 5.9:External quantum efficiency of (a) Undoped spiro-OMeTAD118based PSC and (b) Doped spiro-OMeTAD based PSC.