
 

 

 

 

Chapter 10 

Development of web 

application for the 

identification of anti-

Alzheimer’s ligands  
 

 

  



Development of web application for the identification of anti-Alzheimer’s ligands 

 

Page | 244  

 

10. Development of web application for identification of anti-Alzheimer’s ligands  

10.1. Introduction 

AD is a neurodegenerative disease with the involvement of various enzymes and receptors 

that could be therapeutic targets. The various hypotheses regarding the pathology and 

progression of AD include amyloid-β cascade, tau hypothesis, oxidative stress, 

neuroinflammation, glucose hypermetabolism, cholinergic disruption and loss, gut 

microbiome, bacteria-derived metabolites, some immune and endocrinal related 

pathways [4]. Some of the important therapeutic targets under clinical investigation are 

BACE1, GSK- 3β, MAO- B, matrix metalloproteases, NMDA receptors, tau kinase [246]. 

The present study deals with the development of a web application to identify inhibitors 

of AChE, BChE, BACE1, GSK-3β, MAO-B and N2B subunit of NMDA receptors. The 

datasets for the targets were obtained, processed and molecular descriptors were 

calculated. The descriptors were used for training the ML models using various binary 

classification algorithms and were validated. The models that performed well were 

selected and deployed in a web application for the users. 

10.2. Materials and methods 

10.2.1. Dataset preparation 

The datasets of the inhibitors of the selected targets were obtained from the Bindingdb 

database (http://bindingdb.org/bind/index.jsp) [270]. The datasets were preprocessed to 

remove compounds with missing IC50 values, nonstandard structures and duplications. 

The organophosphorus compounds were removed in the case of AChE and BChE. 

10.2.2. Molecular descriptor calculation 

Molecular descriptors were calculated by employing the RDkit module in python for each 

dataset [283]. A total of 208 descriptors were calculated from the SMILES string of the 

molecules. 

http://bindingdb.org/bind/index.jsp
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10.2.3. Classification of the datasets 

The IC50 values of the inhibitors of a dataset were converted into two classes, i.e., active 

(IC50 <= 5000 nM) and inactive (IC50 > 5000 nM) for the development of binary 

classification models. Figure 10.1 represent the division of various datasets in binary 

classes. 

10.2.4. Feature selection 

The 208 descriptors calculated for each dataset were further reduced in order to improve 

the accuracy of the ML model as well as to decrease the computational time. Initially, a 

zero-variance filter was applied to drop a feature with zero variance. It was followed by 

the application of the correlation filter with the criteria that only one of the features would 

be used in a group of features that show a correlation of more than 0.9. Finally, a 

sequential feature selector was applied that used an RF classifier to obtain the feature 

importance of individual descriptors in a dataset. This resulted in the preparation of the 

final descriptors set with 25 features each for all the targets. Figure 10.2 represent the 

various stages of the feature selection process. 

10.2.5. Division of dataset 

Each dataset was divided into three groups, i.e., training, validation and test set in a ratio 

of 70:15:15. The training set was deployed for model training, while the validation and 

test sets were used for determining the accuracy of the model.  

10.2.6. Training of machine learning models  

Six binary classification algorithms viz. LR, KNN, SVC, Bernoulli Naïve Bayes, decision 

tree and RF classifier were employed to train models on the training dataset. The LR, 

KNN and SVC, were trained on a standardised dataset while others were trained on the 

actual dataset. The training was carried out using 5-fold validation on the training set. 

Various models built using a combination of hyperparameters for each algorithm were 

tested on the validation set. Then, the models were tested on a test set to select final 
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models that would be deployed on a web application built using streamlit library of 

python. All the machine learning classification algorithms were employed using sci-kit 

learn 0.22.1 on python 3.7. 

10.2.7. Validation of machine learning model 

The developed models were validated using accuracy, precision, recall and F1-score as 

described earlier (Section 1.4.3). 

 

Figure 10.1 Distribution of datasets into active and inactive classes. 
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Figure 10.2 Feature selection using filters. 

10.3. Results and discussion 

10.3.1. Model development for identification of acetylcholinesterase inhibitors 

The AChE datasets obtained from the Bindingdb database consisted of 7213 inhibitors. 

After preprocessing, it resulted in 3329 inhibitors that were divided into active and 

inactive classes using an IC50 cut-off value of 5000 nM as reported in the figure (Figure 

10.1). Further, the number of RDkit descriptors were reduced using various filters, as 

indicated in the figure (Figure 10.2). The training accuracy of the model showed that 

KNN, SVC, decision tree and RF classifier performed well on the training dataset with 

mean accuracies above 80 %. Further evaluation on the validation and test reflected that 

accuracy remained above 80 %. (Table 10.2). 

The F1 score was also above 85 % for these models, which indicated that both precision 

and recall values were high. Finally, the area under the precision-recall curve was above 

90% with both datasets, indicating good quality of models. Hence, these four models were 

selected for the development of the web application. 
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Table 10.1 RDkit descriptors used for the development of ML models. 

Target Features 

AChE 

MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, qed, MolWt, 

NumRadicalElectrons, MaxPartialCharge, MinPartialCharge, 

BCUT2D_MWHI, BCUT2D_CHGHI, BCUT2D_CHGLO, 

BCUT2D_LOGPHI, BalabanJ, HallKierAlpha, Ipc, PEOE_VSA11, 

PEOE_VSA14, PEOE_VSA2, PEOE_VSA3, PEOE_VSA5, PEOE_VSA7, 

SMR_VSA4, SlogP_VSA1, SlogP_VSA8, VSA_EState1 

BChE 

MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, qed, MolWt, 

MaxPartialCharge, FpDensityMorgan1, BCUT2D_MWHI, BCUT2D_CHGLO, 

BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRLOW, 

HallKierAlpha, PEOE_VSA1, PEOE_VSA10, PEOE_VSA11, PEOE_VSA13, 

PEOE_VSA14, PEOE_VSA5, PEOE_VSA8, SMR_VSA9, SlogP_VSA10, 

SlogP_VSA11, EState_VSA11, EState_VSA6 

BACE1 

MinEStateIndex, MinAbsEStateIndex, qed, NumRadicalElectrons, 

BCUT2D_MWLOW, BCUT2D_CHGHI, BCUT2D_LOGPHI, 

BCUT2D_LOGPLOW, BCUT2D_MRLOW, HallKierAlpha, PEOE_VSA1, 

PEOE_VSA13, PEOE_VSA14, PEOE_VSA7, SMR_VSA5, SMR_VSA6, 

EState_VSA3, EState_VSA6, VSA_EState2, VSA_EState4, VSA_EState9, 

NumAliphaticHeterocycles, NumAliphaticRings, fr_alkyl_halide, fr_guanido 

GSK3B 

MinEStateIndex, qed, MolWt, MaxAbsPartialCharge, BCUT2D_MWLOW, 

BCUT2D_CHGHI, BCUT2D_CHGLO, BCUT2D_LOGPHI, 

BCUT2D_LOGPLOW, BCUT2D_MRHI, BertzCT, HallKierAlpha, Ipc, 

PEOE_VSA11, PEOE_VSA13, PEOE_VSA2, PEOE_VSA6, PEOE_VSA7, 

PEOE_VSA9, SlogP_VSA11, SlogP_VSA2, VSA_EState2, VSA_EState3, 

NumSaturatedRings, fr_NH1 

MAOB 

MolWt, MinPartialCharge, FpDensityMorgan1, BCUT2D_MWLOW, 

BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRHI, PEOE_VSA10, 

PEOE_VSA11, PEOE_VSA2, PEOE_VSA7, SMR_VSA10, SMR_VSA7, 

SlogP_VSA3, SlogP_VSA4, SlogP_VSA5, EState_VSA8, VSA_EState6, 

FractionCSP3, NumAromaticHeterocycles, fr_Al_COO, fr_COO, fr_HOCCN, 

fr_NH1, fr_priamide 

N2B 

MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, qed, MolWt, 

MaxPartialCharge, MinPartialCharge, MaxAbsPartialCharge, 

FpDensityMorgan1, BCUT2D_MWHI, BCUT2D_CHGHI, 

BCUT2D_CHGLO, BCUT2D_LOGPHI, BCUT2D_LOGPLOW, 

BCUT2D_MRHI, BCUT2D_MRLOW, BalabanJ, BertzCT, HallKierAlpha, 

PEOE_VSA11, PEOE_VSA3, PEOE_VSA4, PEOE_VSA7, SMR_VSA1, 

VSA_EState6 

 

10.3.2. Model development for identification of butyrylcholinesterase inhibitors 

A dataset of 9930 human BChE inhibitors was collected from the Bindingdb database 

was processed to obtained 2243 compounds. The 25 rdkit descriptors of the compounds 

that were selected for training are available in the table (Table 10.1). The results indicated 
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that the LR and Naïve Bayes classifier poorly classified the datasets. The low precision 

and recall indicated that the models could not identify the active compound in the 

validation and test sets (Table 10.3). The other models based on KNN, SVC, decision 

tree and RF classifier showed accuracy above 80 % on the training set. However, the 

validation and test set accuracy remained below 80 % for these models except the model 

developed from the RF classifier. The area under the precision-recall curve was more than 

90% for only the RF classifier. Hence, it was the only model selected for deployment on 

the web application. 

10.3.3. Model development for identification of β-secretase 1 inhibitors 

The development of the ML model for BACE1 inhibitor’s prediction was carried out with 

a dataset of 4179 BACE1 inhibitors obtained from the Bindingdb database after 

processing 13481 inhibitors. It was observed that the KNN, SVC, decision tree and RF 

classifier models performed well in terms of accuracies among all three datasets. The 

precision and recall values of these models were quite high, i.e., above 90 % on the 

validation set as well as test set (Table 10.4). 

The remaining algorithms, viz. LR and Gaussian Naïve Bayes algorithms, did not perform 

well. However, their precisions were relatively high, but they could not predict the 

negative sample, i.e., inactive compounds, correctly at a large scale. Further, a single 

decision tree displayed lower accuracy than the RF classifier that used a combination of 

various decision trees trained on the subsets of the data. The KNN, SVC, decision tree 

and RF classifier models were used for a web application. 

10.3.4. Model development for identification of glycogen synthase kinase 3β 

inhibitors 

A dataset of 8322 GSK-3β inhibitors was collected and processed to obtain 2343 

compounds with their IC50 values. Except for the LR, the other models performed well 

on the training dataset. Further, the F1 score and area under the precision-recall curve 
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were above 90 %. Hence, the model based on KNN, SVC, decision tree and RF classifier 

algorithms were selected (Table 10.5). 

10.3.5. Model development for identification of monoamine oxidase B inhibitors 

The ML models for MAO-B were developed from 2933 inhibitors that were obtained 

after processing the 8176 inhibitors obtained from Bindingdb. The training of the models 

provided an interesting observation that all the ML models, except the RF classifier, 

showed training accuracy below 80 %. However, these models showed test and validation 

accuracies above 80% (Table 10.6). Hence, the RF classifier was only selected for the 

web application. Its F1 and area under the precision-recall curve scores were relatively 

high.  

10.3.6. Model development for identification of N2B inhibitors of NMDA receptor 

A dataset of 3198 N2B subunit inhibitors was collected and processed to obtain 1719 

compounds with their IC50 values. The training of the model resulted in all the algorithms 

showing training accuracies above 80 %. Further, the validation and test sets also reflected 

similar results (Table 10.7). Hence, the model based on KNN, SVC, decision tree and RF 

classifier algorithms were selected due to their F1 scores above 90 %.  

10.3.7. Alzleads 

The selected models were deployed in the form of a web application which was built and 

hosted with the help of Streamlit, a python library. Alzleads is a web application made 

available to the user through the website (https://www.drugdesign.in/tools/alzleads). 

 

https://www.drugdesign.in/tools/alzleads
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Table 10.2 Performance of the models trained on AChE inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 29.763, class 

weight = balanced, 

solver = liblinear 

71.05 ± 1.65 72.94 83.92 74.31 78.82 86.79 70.6 82.88 71.39 76.7 86.79 

KNN 

algorithm = brute, leaf 

size =1, metric = 

euclidean, 

n_neighbors = 3 

83.53 ± 2.05 84 84.59 93.4 88.78 93.28 83.6 84.82 92.33 88.42 93.28 

SVC 

C = 20, class weight = 

balanced, gamma = 

0.1, probability = 

True 

84.24 ± 1.42 84 87.16 89.58 88.36 90.93 85 88.6 89.38 88.99 90.93 

Gaussian 

Naïve Bayes 
- 69.67 ± 0.09 67.76 67.76 100 80.79 76.8 68 67.94 100 80.91 76.8 

Decision 

tree 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.5 

82.36 ± 1.18 82.12 86.05 87.85 86.94 91.15 83.4 85.96 90.27 88.06 91.15 

RF classifier 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.7, n_estimators = 

50 

86.86 ± 1.43 86.82 87.18 94.44 90.67 95.73 87.6 87.95 94.69 91.19 95.73 

The training set accuracy is represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve. 
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Table 10.3 Performance of the models trained on BChE inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 0.61, class weight 

= balanced, solver = 

liblinear  

67.84 ± 2.07 67.13 73.29 66.05 69.48 75.61 64.39 78.12 65.79 71.43 78.15 

KNN 

algorithm = ball_tree, 

leaf size = 4, metric = 

euclidean, 

n_neighbors = 3 

80.99 ± 0.25 79.02 78.65 86.42 82.35 88.88 79.23 84.05 85.53 84.78 90.87 

SVC 

C = 10, class weight = 

balanced, probability 

= True 

81.78 ± 1.73 77.62 79.52 81.48 80.49 85.44 78.34 85.71 81.58 83.6 87 

Gaussian 

Naïve Bayes 
- 

41.67 ± 2.84 46.5 73.68 8.64 15.47 67.76 37.98 80.65 10.96 19.31 78.55 

Decision 

tree 

class weight = 

balanced, 

max_features = 0.5, 

splitter = random 

78.14 ± 2.37 78.32 77.47 87.04 81.98 85.95 78.04 83.48 84.21 83.84 89.19 

RF classifier 

class weight = 

balanced, 

max_features = 0.1 

83.09 ± 1.87 80.42 78.8 89.51 83.82 90.89 81.01 83.88 89.04 86.38 90.94 

The training set accuracy was represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve. 
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Table 10.4 Performance of the models trained on BACE1 inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 0.033, class 

weight = balanced, 

penalty = l1, solver = 

liblinear 

75.22 ± 2.48 74.91 91.85 75.17 82.68 93.8 77.26 92.1 78.61 84.82 93.76 

KNN 

algorithm = ball_tree, 

leaf size = 10, metric 

= euclidean, 

n_neighbors = 3 

86.67 ± 0.77 88.1 89.7 96.09 92.79 95.41 87.69 90.89 94.22 92.53 96.07 

SVC 

C = 1, class weight = 

balanced, gamma = 

0.1, probability = 

True 

85.02 ± 1.08 86.26 91.86 90.8 91.33 97.36 87.23 94.14 89.79 91.91 97.51 

Gaussian 

Naïve Bayes 

- 71.53 ± 12.3 77.84 87.74 83.91 85.78 92.53 78.35 87.7 85.16 86.41 90.49 

Decision 

tree 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.7, splitter = 

random 

82.89 ± 1.2 85.53 91.4 90.34 90.87 94.76 84.11 90.64 89.6 90.12 94.42 

RF classifier 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.5 

87.48 ± 0.75 89.38 90.36 97.01 93.57 97.81 87.54 89.84 95.38 92.52 97.52 

The training set accuracy was represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve.  
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Table 10.5 Performance of the models trained on GSK-3β inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 1.62, class weight 

= balanced, penalty = 

l1, solver = liblinear 

69.67 ± 1.56 67.89 90.58 68.92 78.28 93.08 71.02 87.66 73.84 80.16 90.73 

KNN 

algorithm = ball_tree, 

leaf size = 1, metric = 

euclidean, 

n_neighbors = 8 

85.99 ± 0.44 85.95 88 96.41 92.02 96.89 83.81 84.47 97.49 90.52 95.34 

SVC 

C = 10, class weight = 

balanced, gamma = 

0.1, probability = 

True 

86.05 ± 1.44 88.96 91.92 95.22 93.54 97.48 86.93 90.03 93.91 91.93 94.66 

Decision 

tree 

class weight = 

balanced, 

max_features = 0.1 

83.1 ± 1.19 82.27 87.79 91.63 89.67 93.22 83.24 87.67 91.76 89.67 92.98 

RF classifier 

class weight = 

balanced, 

max_features = 0.7, 

n_estimators = 50 

87.22 ± 1.63 84.95 87.59 95.62 91.43 96.97 85.51 86.31 97.13 91.4 95.48 

The training set accuracy was represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve 
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Table 10.6 Performance of the models trained on MAO-B inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 0.03, class weight 

= balanced, solver = 

liblinear 

64.42 ± 1.76 72.94 83.92 74.31 78.82 86.79 70.6 82.88 71.39 76.7 86.79 

KNN 

algorithm = ball_tree, 

leaf size = 1, metric = 

euclidean 

79 ± 1.72 84 84.59 93.4 88.78 93.28 83.6 84.82 92.33 88.42 93.28 

SVC 

C = 20, class weight = 

balanced, gamma = 

auto, probability = 

True 

79.42 ± 1.28 84 87.16 89.58 88.36 90.93 85 88.6 89.38 88.99 90.93 

Gaussian 

Naïve Bayes 

- 65.64 ± 5.53 67.76 67.76 100 80.79 76.8 68 67.94 100 80.91 76.8 

Decision 

tree 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.5 

74.71 ± 2.07 82.12 86.05 87.85 86.94 91.15 83.4 85.96 90.27 88.06 91.15 

RF classifier 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.7, n_estimators = 

20 

80.89 ± 1.04 86.82 87.18 94.44 90.67 95.73 87.6 87.95 94.69 91.19 95.73 

The training set accuracy was represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve 
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Table 10.7 Performance of the models trained on N2B subunit inhibitor dataset. 

  Training set Validation set Test set 

Algorithm Parameters Accuracy Accuracy Precision Recall 
F1 

score 

PR 

AUC 
Accuracy Precision Recall 

F1 

score 

PR 

AUC 

Logistic 

regression 

C = 0.61, class weight 

= balanced, solver = 

liblinear 

85.17 ± 1.39 88.64 96.59 89.95 93.15 98.86 81.4 94.05 82.46 87.88 93.76 

KNN 

algorithm = ball_tree, 

leaf size = 1, metric = 

euclidean, 

n_neighbors = 3 

93.07 ± 1.46 94.55 94.92 98.94 96.89 97.58 90.7 91.93 97.16 94.47 96.26 

SVC 

C = 20, class weight = 

balanced, gamma = 

0.1, probability = 

True 

91.53 ± 2.17 91.82 96.22 94.18 95.19 97.67 90.7 93.9 94.79 94.34 94.49 

Gaussian 

Naïve Bayes 

- 86.3 ± 0.86 89.55 95.6 92.06 93.8 94.28 84.88 93.88 87.2 90.42 95.5 

Decision 

tree 

class weight = 

balanced, criterion = 

entropy, max_features 

= 0.5  

92.91 ± 1.71 92.73 96.26 95.24 95.74 97.79 89.53 93.81 93.36 93.59 96.3 

RF classifier 

class weight = 

balanced, 

max_features = 0.1, 

n_estimators = 50 

94.6 ± 1.53 95.45 95.9 98.94 97.4 98.95 92.64 93.24 98.1 95.61 95.91 

The training set accuracy was represented as Mean ± SD that was obtained from 5-fold validation. PR AUC represents the area under the precision-

recall curve 

 


