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9. Development of homology model, docking protocol and machine-learning based 

scoring functions for identification of Equus caballus’s BChE inhibitors 

9.1. Introduction 

Horse BChE is widely used for the screening of BChE inhibitors and shares structural 

homology with the human BChE. The 3-dimensional crystal structure of the enzyme from 

horse is not available, which makes it challenging to use the SBDD approach for the 

identification of inhibitors. A homology model was developed for the horse BChE in the 

present study. It was further subjected to its structural refinement through energy 

minimisation. The docking protocol was developed and validated by redocking a set of 

co-crystallised inhibitors, obtained from human BChE and their interaction profiles were 

compared. The performance of the Autodock SF was poor and therefore, a ML-based SF 

was developed and validated. 

9.2. Material and methods 

9.2.1. Homology modelling 

SWISS-MODEL (https://swissmodel.expasy.org/) was used to generate a 3-dimensional 

protein structure for Equus caballus’s BChE (ecBChE) by homology modelling [188, 

261]. UniProt accession code - P81908 (https://www.uniprot.org) was employed to obtain 

various templates to build ecBChE models[275]. The developed models were evaluated 

using GMQE, QMEAN Ramachandran plot, and parameters obtained from MolProbity 

[197, 262, 263]. 

9.2.2. Protein model refinement and preparation 

The selected homology models were refined by DOCKPREP utility of Chimera-1.4 to 

repair incomplete side chains, add hydrogens and charges [276, 277]. Further, PDB2PQR 

server (http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1) was used to assign protonation states to 

various amino acid residues, at a physiological pH of 7.4 [264, 265]. Each model 

https://swissmodel.expasy.org/
https://www.uniprot.org/
http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1
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developed was then subjected to energy minimisation by using Amber18 using protocol 

described in section 4.2.9 (Table T1 of appendix) [197, 266, 267].  

9.2.3. Ligand preparation and grid generation 

The SMILES strings of the ligands were PDBQT protocol described in section 4.2.7. The 

grid box size of 78 × 90 × 86 was selected for grid generation with the grid centre placed 

at 55.007, 53.553 and 43.81 representing X, Y and Z coordinates, respectively.  

9.2.4. Validation of docking protocol and scoring function 

Autodock-4.2.6 was used to perform molecular docking. The conformational search was 

carried out by LGA and Solis-Water local search [112, 196, 235]. The docking results 

were processed by a python script, i.e., vstools_v0.16 and post docking analysis and 

visualisation were performed by Discovery studio visualiser 2020. 

BChE inhibitors co-crystallised with human BChE were docked on the homology model 

and the interaction profiles of the inhibitor, with both the enzymes, were compared to 

evaluate the interaction similarity. The validation of binding energy, obtained from 

Autodock SF, was performed by docking BChE inhibitors on horse BChE by the above-

mentioned protocol. The binding energies of the inhibitors and the experimentally 

determined IC50 values were used for validation. The cut-off of IC50 values viz. 100, 500, 

1000, 5000 and 10000 nM were used to classify the compounds in two classes (0, if IC50 

<= cut-off value and 1, if IC50 > cut-off value). Similarly, various threshold cut-off values 

of binding energies were selected to perform binary classification of the compounds. The 

above obtained binary datasets were used for the development of a classification matrix, 

calculation of TPR and FPR. A ROC curve was plotted and the AUC was calculated. The 

other validation method involved the conversion of IC50 value using logarithm and were 

compared with the binding energies of ligands to obtain correlation coefficient. The IC50 



Development of homology model, docking protocol and machine-learning based scoring 

functions for identification of Equus caballus’s BChE inhibitors 

 

Page | 220  

values were also standardised about the mean and standard deviation and were correlated 

with binding energies [112]. 

9.2.5. Development and validation of the scoring function 

9.2.5.1. Preparation of datasets 

BChE inhibitors docked on the homology model were utilised to prepare a dataset for the 

development of SF. The binding energy obtained from the native SF was used as one of 

the features. The best ligand poses, selected by native SF, were used to calculate the 

protein-ligand interactions through PLIP package [278]. Further, the ligand SMILES 

strings were used to calculate 2D descriptors from RDkit. The features were pre-

processed for the training of certain ML algorithms, through standardisation about the 

mean and standard deviation value of the feature or were normalised in a range of 0 – 1.  

The IC50 values were converted into a binary categorical variable, using a cut-off value 

of 10000 nM, for the development of the binary classification-based SF. On the other 

hand, IC50 values were converted to a logarithmic value for development of regression-

based models. Finally, the dataset was divided into training and test subsets (85:15). Five-

fold validation was used for the training of models on the training set. The training set 

was divided into five equal parts and one part was kept for validation, while training was 

performed on the remaining four parts iteratively. The test set was used for testing the 

final selected models. 

9.2.5.2. Development of scoring function using binary classification algorithms 

Various ML algorithms were employed to develop binary classification models by using 

Sci-kit learn, a python library. The binary classification models were developed by using 

machine learning algorithms viz. logistic regression, SVM, KNN, Naïve Bayesian, 

discriminant analysis and a variety of ensembled based and semi-supervised techniques. 

The models developed were identified from a combination of hyperparameters using grid 
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search methods for each algorithm. The developed models were validated using the 

confusion matrix with the use of accuracy, precision, recall and F1-score on the 

independent test dataset [112].  

9.2.5.3. Development of scoring function using regression algorithms 

Two sets of regression-based models were developed on the basis of IC50 values. If the 

selected binary classification model, developed in the previous section, predicted that a 

compound was belonging to a class with IC50 less than or equal to 10000 nM; then the 

IC50 prediction would be carried out by using the model trained on a dataset containing 

compounds with IC50 below 10000 nM. Otherwise, the prediction would be carried by 

using the second model developed on a dataset with IC50 above 10000 nM.  

The regression algorithms viz. linear regression, ridge regression, lasso regression, elastic 

net regression, SVR, RF regressor, Bayesian Ridge regression, stochastic gradient 

regression and neural networks were used in the study.  

The coefficient of determination (r2) defines the dependence of one variable on another 

and ranges between 0 to 1. A higher value of r2 represents a better fitting of the line or 

manifold plain on the data. Mean absolute error (MAE) and mean squared error (MSE) 

are other essential parameters and should be as low as possible. The Q2ext-based metrics, 

i.e., Q2
F1 and Q2

F2 should be greater than 0.5. The lower value indicates that the model 

fits better on the training set but have poor predictivity on an independent test dataset, i.e., 

overfitting. Further, Golbraikh and Tropsha’s criterion were also used for the evaluation 

of the model, which takes into account observed (Yobs), predicted (Ypred) activities, and 

squared correlation coefficients (r2
0 or r`0

2) [279]. 
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9.3. Results and discussion 

9.3.1. Homology modelling 

Homology modelling utilised a template structure having a high degree of sequence 

similarity for protein model development . The selection of the template was performed 

through sequence alignment. The template search identified twelve PDB, including 

human BChE and rat AChE, and were used for model building. The homology model 

developed by using crystal structures of human BChE were found to be superior in quality 

than mouse AChE due to high sequence similarity. The X-ray diffraction (XRD) derived 

protein structures were better than cryo-electron microscopy generated structures as a 

template for model building. QMEAN score is a linear combination of Cβ, all-atom, 

solvation and torsion potentials and is expected to be in the range of -4 – 1 [280]. QMEAN 

scores for Model_6EMI, Model_4TPK and Model_5LKR were -0.46, -0.67 and -0.87, 

respectively and were better than the remaining models. The selected models had good 

GMQE scores of above 0.8. Interestingly, the templates of the three selected models were 

derived from XRD and were human BChE with high sequence similarity. The 

Ramachandran plot exhibited that more than 93% of residues were in favoured region, 

and less than 1 % in outlier region for the selected models. Model_6EMI had Asn54, 

Model_4TPK had Asn54 and Asp283 and Model_5LKR had Glu158 as outlier residues. 

The details of the homology models that includes PDB templates and their validation 

parameters are included in table (Table 9.1).  

9.3.2. Protein model refinement and preparation 

The missing and incorrect side chains of the selected models were refined through the 

assignment of partial charges and appending them with the help of the Dunbrack rotamer 

library [281]. The hydrogens and protonation states of the side chains of amino acids were 

assigned by using the PDB2PQR server at a physiological pH of 7.4 and considering de-

solvation, hydrogen bonding, and charge-charge interactions [282]. The other parameters 
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were standardised by using AMBER forcefields. The energy minimisation was carried out on 

the protein soaked in a box of TI3P water molecules. The disulphide bonds providing 

structural stability were assigned between Cys64 – Cys92, Cys252 – Cys263 and Cys400 – 

Cys519 prior to the energy minimisation. The minimisation process allowed a gradual 

decrease in the energy by reducing the restrain on the protein structure and increasing the 

flexible movement in order to reach minima (Figure 9.1).  

The coordinates obtained at the end of each minimisation stage was evaluated by using a 

structure assessment tool accessible through the SWISS-MODEL web server. The 

comparison between the quality of protein structures obtained after various stages of energy 

minimisation of the selected models are presented in figure (Figure 9.1). The energy 

minimisation of Model_4TPK, Model_5LKR and Model_6EMI ceased with the potential 

energies of -297340, -309150, -308320 Kcal/mol, respectively, at the end-stage. The 

models throughout energy minimisation displayed Pro102 residue in the cis conformation, 

similar to human BChE. The MolProbity and clash scores gradually decreased with 

minimisation for Model_5LKR and Model_6EMI. On the contrary, Model_4TPK showed an 

initial increase, followed by a decrease in their values with the progress of energy 

minimisation process. In the case of Ramachandran favoured and outlier residues, there was 

an increase and decrease in their corresponding values, respectively, during energy 

minimisation, except the end phase. The fifth minimisation stage of the Model_4TPK 

displayed an optimal trade-off between the clashes and beneficial factors with zero C-β 

deviation, low clash score, rotamer and Ramachandran outliers. Although the Model_6EMI 

displayed slightly better, Ramachandran favoured residue scores than others but had the 

highest clash score throughout the minimisation process. The three optimised protein 

models were selected and compared (Table 9.2). The final selected model (Model_4TPK, 

stage 5) was converted into PDBQT format using Autodock Tools-1.5.6, along with the 

assignment of the Gasteiger partial charges and atom types for each atom. 
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Table 9.1 Homology models developed for ecBChE from crystal structures of various organisms. 

S.No

. 

Template PDB Resolut

ion (Å) 

Organism Model code GMQE QMEAN Ramachandran 

Favoured (%) 

Ramachandran 

Outliers (%) 

1 6EMI(Chain A) 2.48 Homo sapiens Model_6EMI 0.83 -0.46 95.81 0.38 

2 4TPK(Chain A) 2.7 Homo sapiens Model_4TPK 0.86 -0.67 94.67 0.95 

3 5LKR(Chain A) 2.52 Homo sapiens Model_5LKR 0.86 -0.87 93.51 0.57 

4 6I2T(Chain B)* 5.7 Homo sapiens Model_6I2T_B 0.87 -1.37 94.24 0.9 

5 2JGE(Chain A) 2.6 Mus musculus Model_2JGE 0.76 -1.39 93.21 0.75 

6 2C0P(Chain A) 2.5 Mus musculus Model_2C0P 0.77 -1.39 92.84 0.94 

7 1MAA(Chain A) 2.9 Mus musculus Model_1MAA 0.76 -1.44 93.79 0.94 

8 3O9M(Chain A) 2.98 Homo sapiens Model_3O9M 0.86 -1.47 92.44 1.13 

9 1Q83(Chain A) 2.65 Mus musculus Model_1Q83 0.76 -1.55 94.9 0.57 

10 6I2T(Chain A)* 5.7 Homo sapiens Model_6I2T_A 0.87 -1.61 94.64 1.61 

11 1KU6(Chain A) 2.5 Mus musculus Model_1KU6 0.76 -1.63 93.76 1.13 

12 2WHP(Chain A) 2.2 Mus musculus Model_2WHP 0.77 -1.73 95.85 0.57 

* Structure derived through cryo-EM 

 

Table 9.2 Homology models developed for ecBChE from crystal structures of various organisms. 

Model Stage of 

minimisation 

MolProbity 

Score 

Clash 

Score 

Ramachandran 

Favoured (%) 

Ramachandran 

Outliers (%) 

Rotamer 

Outliers 

(%) 

C-Beta 

Deviations 

Bad 

Bonds 

Bad 

Angles 

Model_4TPK 5 0.88 0.12 95.3 0.41 0.45 0 0 12 

Model_5LKR 7 0.9 0 93.98 0.21 0.68 1 0 9 

Model_6EMI 6 0.96 0.36 95.24 0 0.45 1 0 16 

Models indicated in bold were selected for further study. 
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Figure 9.1 (a) Validation score of protein structures at various energy minimisation stages, (d) 

Potential energy (Kcal/mol) of the protein models during energy minimisation. 
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Figure 9.2 (a) Active site of human BChE (b) Sequence comparison (active site and tunnel 

residues) of ecBChE with human. 

9.3.3. Ligand preparation and grid generation 

The rdkit was used to generate 3D structures which were then converted to PDBQT format 

with the assignment of Gastiger partial charges to each atom and an Autodock atom type. The 

grid maps generated using grid box covered the entire active site and the tunnel approaching 

it, which consisted of sixty-six amino acid residues, as indicated in the figure (Figure 9.2). 

9.3.4. Validation of docking protocol and scoring function 

Molecular docking was performed by Autodock-4.2.6, using a force field-based scoring 

function and de-solvation term. The usual validation process involved the redocking of the co-

crystallised ligand, followed by calculating the root mean square deviation (RMSD). However,  
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Figure 9.3 (a, b, c, d, e) 3D interaction diagrams of 40V, 3F9, 92H, 5HF and 9A5 with ecBChE, 

(f) Comparison of the interaction profile of 40V, 3F9, 92H, 5HF and 9A5 among human and 

horse BChE.  
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Figure 9.4 (a, b, c, d, e) 3D interaction diagrams of HUK, HUQ, HUN, BUW and THA with 

ecBChE, (f) Comparison of the interaction profile of HUK, HUQ, HUN, BUW and THA 

among human and horse BChE.  
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the docking was performed on a homology model of horse BChE with no co-crystallised 

ligands. Hence, ten ligands co-crystallised with human BChE were docked on the homology 

model. The comparison of their interactions of these lignads with the human and horse BChEs 

are presented in the figures (Figures 9.3 and 9.4). Most of the ligands docked with horse BChE 

displayed interactions similar to human BChE. The redocking also indicated that the 

interactions with the major sites of the enzyme were retained when compared to human BChE. 

The validation study showed that the protocol developed for docking produced poses similar 

to human BChE.  

Ten inhibitors co-crystallised with human BChE, used for pose validation, were analysed by 

using molecular fingerprints to identify essential features for BChE inhibition. It was observed 

that 149 fingerprints were present in the compounds and were crucial for the enzyme inhibition 

(Table T33 in appendix). About 1110 BChE inhibitors were acquired from the Bindingdb 

database (http://bindingdb.org/). The inhibitors were filtered to remove duplicate compounds 

or that have missing IC50 values to obtain 795 compounds [270]. Further, the compounds were 

subjected to a fingerprint filter with a criterion of at least 30% selected fingerprints should be 

present in a molecule, resulting in 755 inhibitors. The selected inhibitors with their known IC50 

values were used as a dataset for validation of SF of Autodock-4.2.6 and the development of 

new ML-based SF. The binding energies obtained after docking of these inhibitors on the 

homology model were correlated with experimentally obtained IC50 values to validate the SF. 

ROC is a plot between the specificity and 1-sensitivity (TPR and FPR). Its AUC represents the 

degree of separability of various classes of a classification model. A randomly generated 

predictor has an expected AUC of 0.5. In contrast, an ideal predictor has an AUC value of 1 

for the ROC curve. The AUC of the SF was found to be between 0.4 – 0.65 for various IC50 

cut-off values, indicating poor prediction by Autodock SF (Figure 9.5).  

 

http://bindingdb.org/
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Figure 9.5 (a, b, c) IC50 cut-off, area under the curve and receiver operating characteristic of 

the docking validation set for validation of the Autodock scoring function using binary 

classification. (d and e) Scatter plot showing the relationship between binding energy with 

standardised IC50 and Log IC50, respectively. 

The second validation method assumed both binding energies and IC50 values as continuous 

variables, and a relationship between the two was identified. The range of IC50 values of the 
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BChE inhibitors (0 – 1980000 nM) was quite extensive. Hence, the IC50 values were scaled 

through logarithmic conversion and standardisation processes. The plots between the binding 

energies and the IC50 values are included in the figure (Figure 9.5). The correlation coefficients 

were found to be 0.0183, between standardised IC50 values and binding energies and 0.013, 

between log IC50 values and binding energies. The regression coefficients displayed a poor 

correlation between the two variables, indicating the unsuitable performance of the SF of 

Autodock-4.2.6. 

9.3.5. Development and validation of the scoring function 

9.3.5.1. Preparation of datasets 

A molecular library of 755 compounds used for docking validation studies was employed. The 

predicted binding energy, ligand interactions with the 64 residues of the active site and 102 

2D-descriptors of ligands were used as predictors. The IC50 values of the compounds were used 

to assign labels as active (1) and moderately active (2), using a cut-off IC50 value of 10000 nM 

for building binary classification models. The dataset of the BChE inhibitors was divided into 

training and test set in a ratio of 85:15 (Figure 9.6). The log IC50 values of the training and test 

sets overlapped in both the regression models, indicating the correct division of the datasets. 

9.3.5.2. Development of scoring function using binary classification algorithms 

Sixteen algorithms were used for the training of the binary classification model. Shapiro-Wilk 

test for normality was performed and the features displaying normal distribution were 

standardised about their mean and standard deviation, while the other features were scaled in 

the range of 0 – 1. The pre-processed dataset was employed for the training of models for LR, 

SVC, KNN classifier, ridge classifier, perceptron and MLP algorithms. The features with 

different ranges create bias in model training towards any specific feature with large values for 

the algorithms. LR, SVC and KNN performed well with training accuracy of 80% and above, 

but the test accuracy was poor, thus indicating underfitting. The perceptron and MLP models 
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performed poorly on training and test sets, with an accuracy below 80 % in each case. Similar 

results were also observed with the models developed from LDA, QDA, Bernoulli Naïve 

Bayesian, label propagation and label spreading and were not suitable. 

 

Figure 9.6 Data distribution for (a) classification models, (b and d) regression models dataset 

with IC50 below and above 10000 nM, (c and e) Log IC50 distribution of training and test sets 

for regression models dataset with IC50 below and above 10000 nM 

The decision tree displayed low accuracies on the training and test datasets. However, ensemble 

techniques that used various weak decision trees improved the performance, which was evident 

in the case of RF and extra tree classifiers. The gradient and adaptive boosting techniques 

performed well, like the RF and extra tree classifiers. Further, the extra tree classifier was better 

than other ensemble techniques due to the higher precision value. Molecular docking and 

virtual screening require the correct prediction of active compounds to yield good results in the 

in vitro testing. Hence, the precision value was the most important criterion for selecting the 



Development of homology model, docking protocol and machine-learning based scoring 

functions for identification of Equus caballus’s BChE inhibitors 

 

Page | 233  

final model to develop as SF. The AUC for the extra tree classifier was 0.911, indicating good 

quality. Finally, the extra trees classifier was selected for SF. The validation scores and AUC 

are presented in Table 9.3 and Figure 9.7, respectively.  

 

Figure 9.7 ROC of various algorithms used for the generation of binary classification models.
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Table 9.3 Validation scores of machine learning algorithms employed in the development of binary classification models. 

   Training set Test set 

Algorithm Parameters Data 

Preprocessing 

Accuracy 

(Mean ± SD) 

Accuracy Precision Recall F1 score 

Logistic regression C = 50, class_weight = balanced, 

max_iter = 10000, penalty = l2, solver = 

saga 

Yes 80.28 ± 6.57 75.55 73.85 81.36 77.42 

SVC C = 10, gamma = 0.1, kernel = rbf, 

probability = 1 
Yes 81.63 ± 5.05 78.6 78.51 80.51 79.5 

K Neighbors Classifier metric = manhattan, n_neighbors = 9, 

weights = uniform Yes 82.54± 6.22 83.41 83.9 83.9 83.9 

Ridge classifier alpha = 0.001, class_weight = balanced, 

solver = sag 
Yes 81.08 ± 6.32 77.73 76.8 81.36 79.01 

Perceptron alpha = 0.001, class_weight = balanced, 

max_iter = 10000 Yes 72.04 ± 8.11 72.05 87.5 53.39 66.32 

MLP activation = relu, alpha = 0.01, 

batch_size = 8, learning_rate = adaptive, 

solver = adam 
Yes 79.95 ± 4.32 74.24 73.98 77.12 75.52 

Linear Discriminant Analysis solver = svd No 77.12 ± 3.85 78.17 80.8 79.53 80.16 

Quadratic Discriminant 

Analysis 

 

No 74.15 ± 8.15 74.24 89.53 60.63 72.3 

Bernoulli Naïve Bayesian 
 

No 73.77 ± 5.39 75.98 78.57 77.95 78.26 

Label Propagation kernel = knn, n_neighbors = 5 No 78.82 ± 4.57 76.42 80.67 75.59 78.05 

Label Spreading kernel = knn, n_neighbors = 5 No 81.62 ± 4.29 78.17 80.8 79.53 80.16 

Random forest classifier bootstrap = True, criterion = gini, 

max_features = auto, n_estimators = 100 No 83.48 ± 5.75 83.84 87.5 82.68 85.02 

Extra trees classifier bootstrap = False, criterion = gini, 

max_features = auto, n_estimators = 200 No 84.07 ± 3.61 83.41 87.39 81.89 84.55 

Decision tree classifier class_weight = balanced, criterion = gini, 

max_features = auto, splitter = best No 78.42 ± 6.14 77.73 78.36 82.68 80.46 

AdaBoost classifier n_estimators=100, algorithm = 

SAMME.R 
No 84.63 ± 2.78 82.97 87.29 81.1 84.08 

Gradient boosting classifier loss = exponential, n_estimators = 200 No 82.18 ± 5.19 83.41 83.97 86.61 85.27 
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9.3.5.3. Development of scoring function using regression algorithms 

The first set of regression-based models were developed for predicting IC50 of the ‘active 

compounds’ as predicted by the binary classification-based model in the previous section. This 

set of models would predict IC50 below 10000 nM and are designated as 1.01 and so on (Table 

9.4). A set of 417 compounds, having IC50 below 10000 nM, were used to develop these 

models. The pre-processing, either by standardisation or normalisation, was performed 

depending on the distribution of data in a feature determined using Shapiro-Wilk test for 

normality for each feature. The dataset was divided into training and test sets in a ratio of 75:25. 

Various regression models, neural networks and ensemble algorithms were employed for 

model training. Linear regression displayed a good r2 of 0.893 on the training set but had poor 

MAE and MSE. The lasso and elastic net regression showed poor r2 values on the training set. 

Further, Q2
F1 and Q2

F2 indicated a correlation between the actual and predicted activity of the 

test set with respect to mean activity of training and test sets, respectively. A value of above 

0.5 was an indicator of a good model. A poor value of Q2
F1 and Q2

F2 with a good r2 indicated 

overfitting of the model on the training set. In contrast, good Q2
F1 and Q2

F2 scores above the 

desired threshold with a poor r2 indicated underfitting. Linear regression showed overfitting, 

while the lasso and elastic net regression indicated poor fitting. Bayesian ridge regression, used 

naïve Bayes probability for prediction, performed quite good with an r2 value of 0.75 and 

acceptable Q2
F1 and Q2

F2 scores. 

Similarly, ridge, SVR, SGD and ARD regression models performed well with the r2, Q2
 F1 and 

Q2
F2 values comparable to the model developed from Bayesian ridge regression. Among the 

other regression methods, MLP and Huber regression displayed good r2. Q2
F1 and Q2

F2 were in 

the acceptable range for MLP but were poor in the case of Huber regression. However, 

ensemble methods have outperformed all other algorithms with the lowest MAE and MSE on 

training and test datasets. The RF and extra tree regression have the best Q2
F1 and Q2

F2 among 
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all the regression models. The two algorithms were able to pass Tropsa criteria among the 

developed models. Further, RF regression performed better among the two and was selected. 

The details of the validation parameters for all the generated models are tabulated (Table 9.4) 

and presented in figure (Figure 9.8). 

 

Figure 9.8 Scatter plot between predicted and experimental IC50 obtained from various 

algorithms for the development of regression-based models for the compounds with IC50 below 

10000 nM (active). 



 

Page | 237  

Table 9.4 Validation scores of machine learning algorithms employed in the regression-based models for prediction of IC50 below 10000 nM. 

Model  Algorithm 
Coefficient of 

determination(train) 

MAE 

Test 

MAE 

Train 
MSE Test 

MSE 

Train 
Q2

F1 Q2
F2 

TROPSA 

criteria 

1.01  Linear regression 0.893 1460421 0.617 2.24E+14 0.643 -3.6E+13 -3.6E+13 FAIL 

1.02  Ridge regression 0.774 1.03 0.889 1.749 1.365 0.719 0.719 FAIL 

1.03  Lasso regression 0 2.119 2.071 6.228 6.03 0 -0.002 FAIL 

1.04  ElasticNet regression 0 2.119 2.071 6.228 6.03 0 -0.002 FAIL 

1.05  SVR regression 0.72 1.037 0.862 1.796 1.691 0.712 0.711 FAIL 

1.06  BayesianRidge regression 0.75 1.034 0.93 1.717 1.507 0.724 0.724 FAIL 

1.07  SGD regression 0.712 1.046 0.999 1.866 1.738 0.7 0.7 FAIL 

1.08  ARD regression 0.798 1.305 0.833 3.741 1.217 0.399 0.398 FAIL 

1.09  ExtraTrees regression 1 0.795 0 1.391 0 0.777 0.776 PASS 

1.10  RandomForest regression 0.964 0.771 0.331 1.227 0.214 0.803 0.803 PASS 

1.11  MLP regression 0.992 1.084 0.121 2.248 0.05 0.639 0.638 PASS 

1.12  Huber regression 0.837 1.34 0.605 5.923 0.986 0.049 0.047 FAIL 
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Similarly, the other set of models were developed from a dataset of compounds having IC50 

above 10000 nM. The dataset had 338 compounds with 167 features. The pre-processing and 

dataset bifurcation was carried out as described previously.  

 

Figure 9.9 Scatter plot between predicted and experimental IC50 obtained from various 

algorithms for developing regression-based models for compounds with IC50 above 10000 nM 

(moderately active). 

Linear and ridge regression models performed well on the training dataset with r2 values of 

0.865 and 0.715, respectively. However, the test set evaluation indicated poor correlation 

between the predicted and observed activities with poor Q2
F1 and Q2

F2. Lasso and elastic net 

regression performed poorly on both datasets. The models developed from SVR, SGD, ARD 
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and Bayesian ridge regressions performed quite better than lasso regression, but still had a 

suboptimal fitting on both the datasets. Interestingly, the MLP and Huber regression models 

were performing well on the training dataset with high values for r2, but were underfitted on 

the test set. The ensemble-based extra trees regressions algorithms performed well in all aspects 

and fulfilled Tropsa criteria with acceptable values of Q2
F1 and Q2

F2. The extra trees regression 

model was finally selected to develop the SF due to better performance than the random forest 

algorithm on the test dataset. The validation report for all the developed models is tabulated 

(Table 9.5) and presented in the figure (Figure 9.9). 

9.3.5.4. Applicability domain for the scoring function 

The goal of the applicability domain is to define the assumptions in the development of a ML 

model and to assess that the assumptions are satisfied during the prediction in order to ascertain 

confidence over the obtained results. Usually, the applicability domain is the chemical space 

used to build or train the ML or a QSAR model and the compounds that fall within the 

applicability domain space can be predicted with certainty. It depends on the similarity of the 

compound to that of the training set used to build the model. In the present study, the 

applicability domain for the developed SF was also defined. The training and test datasets were 

populated with the compounds having similarities with ten inhibitors co-crystallised with 

human BChE. The 149 previously identified fingerprints from the BChE inhibitors were used 

to define applicability domain. The molecules having at least 30% of the fingerprints in their 

chemical structure were only selected. The other criterion was the predicted activity of the 

compound, which should be within the range of the observed activity of the training set (i.e., 0 

– 1980000 nM). The molecules satisfying both the criteria of the applicability domain were 

selected. 
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Table 9.5 Validation scores of machine learning algorithms employed in the regression-based model for prediction of IC50 above 10000 nM. 

Model Algorithm 
Coefficient of 

determination (train) 

MAE 

Train  

MAE 

Test 

MSE 

Train 

MSE 

Test 
Q2

F1 Q2
F2 

TROPSA 

criteria 

2.01 Linear regression 0.865 38.082 0.304 24968.49 0.158 -21178.6 -21300.7 FAIL 

2.02 Ridge regression 0.715 0.73 0.462 0.858 0.334 0.272 0.268 FAIL 

2.03 Lasso regression 0 0.912 0.84 1.179 1.17 0 -0.006 FAIL 

2.04 ElasticNet regression 0 0.912 0.84 1.179 1.17 0 -0.006 FAIL 

2.05 SVR regression 0.651 0.628 0.395 0.723 0.409 0.387 0.383 FAIL 

2.06 BayesianRidge regression 0.658 0.718 0.5 0.806 0.4 0.317 0.313 FAIL 

2.07 SGD regression 0.5 0.74 0.592 0.865 0.585 0.266 0.262 FAIL 

2.08 ARD regression 0.737 0.699 0.445 0.874 0.308 0.259 0.254 FAIL 

2.09 ExtraTrees regression 1 0.512 0 0.439 0 0.627 0.625 PASS 

2.10 RandomForest regression 0.933 0.555 0.205 0.5 0.078 0.576 0.574 FAIL 

2.11 MLP regression 0.95 0.826 0.168 1.186 0.058 -0.006 -0.011 FAIL 

2.12 Huber regression 0.813 0.923 0.26 1.347 0.218 -0.142 -0.149 FAIL 
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9.3.5.5. Formulation of the scoring function 

The selected binary classification as well as the regression-based models, performed 

better than the native SF of the Autodock for BChE inhibitors (Figure 9.10). Various 

selected models were compiled as SF along with the applicability domain and termed as 

Protein-Ligand Scoring Function (PLSF). SF accepted two inputs, i.e., the pose of the 

ligand obtained from docking and its SMILES string. It was followed by a calculation of 

the various features. The features were fed to the Extra tree binary classification model to 

produce one of the outputs, i.e., active or moderately active. If the compound was 

predicted as active, the IC50 prediction was carried out by using a RF based regression 

model; otherwise, the extra tree regression model was employed. Further, the input was 

also tested for the applicability domain. The developed SF was compiled as a python 

library and made available to users (https://www.drugdesign.in/tools). 

https://www.drugdesign.in/tools
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Figure 9.10 (a) Comparison between the Autodock SF and selected ML models, (b) 

Schematic representation of the formulated scoring function. 

 


